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PTEN-induced kinase 1 (PINK1) acts at multiple levels to promote mitochondrial health,
including regulatory influence on ATP-synthesis, protein quality control, apoptosis, mito-
chondrial transport, and destiny. PINK1 mutations are linked to Parkinson disease (PD) and
mostly result in loss of kinase activity. But the molecular events responsible for neuronal
death as well as the physiological targets and regulators of PINK1 are still a matter of debate.
This review highlights the recent progress evolving the cellular functions of the cytosolic
pool of PINK1 in mitochondrial trafficking and neuronal differentiation. Regulation of PINK1
signaling occurs by mitochondrial processing to truncated forms of PINK1, differentially
targeted to several subcellular compartments.The first identified activating kinase of PINK1
is MAP/microtubule affinity regulating kinase 2 (MARK2), which phosphorylates T313, a
frequent mutation site linked to PD. Kinases of the MARK2 family perform diverse functions
in neuronal polarity, transport, migration, and neurodegeneration such as Alzheimer disease
(AD).This new protein kinase signaling axis might provide a link between neurodegenerative
processes in AD and PD diseases and opens novel possibilities in targeting pathological
signaling processes.
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INTRODUCTION
Many neurodegenerative disorders, such as Alzheimer (AD) and
Parkinson disease (PD) show mitochondrial abnormalities during
their pathogenesis. Neurons, due to their size and complex geom-
etry, are particularly dependent on the proper functioning and
distribution of mitochondria, which are the powerhouses of the
cells. Beside ATP production, they perform a variety of functions
that are important for cell life and death, including reactive oxy-
gen species (ROS) generation, intracellular calcium homeostasis,
and apoptosis. In the nervous system, mitochondrial dynamics
are crucial to guarantee long distance delivery and balanced dis-
tribution of energy to axons, dendrites and synapses (Jacobson
and Duchen, 2004; DiMauro and Schon, 2008). Tau and other
microtubule associated proteins promote the assembly and stabi-
lization of neuronal microtubule tracks and ensure microtubule
dependent transport. Pathological changes of tau may lead to the
breakdown of microtubules observed in AD while elevated tau
on microtubules can compete with motor proteins, resulting in
inhibition of traffic (Mandelkow et al., 2004; Dixit et al., 2008).
This suggests that a strict regulation is needed to maintain the
flow of material. Phosphorylation of tau, especially at the KXGS
motifs of the repeat domain, decreases its affinity to microtubules
and provides a mechanism for regulating microtubule stability
as well as axonal transport (Matenia and Mandelkow, 2009).
Enhanced phosphorylation of tau at multiple sites is an early hall-
mark of AD, followed by abnormal aggregation of tau protein
into paired helical filaments (PHFs) and neurofibrillary tangles
(NFTs). The microtubule-affinity regulating kinase 2 (MARK2)

was originally discovered by its ability to phosphorylate tau protein
and related microtubule-associated proteins (MAPs; Drewes et al.,
1997; Schwalbe et al., 2013). Furthermore, active MARK2 co-
localizes with NFTs in AD brain, and MARK2 target sites on tau are
elevated in transgenic mouse models of tauopathy, emphasizing
the importance of MARK2 in this disease (Matenia and Man-
delkow, 2009). Recently, MARK2 was identified as an upstream
regulator of PTEN-induced kinase 1 (PINK1; Matenia et al., 2012).
This provides insights into the regulation of mitochondrial traf-
ficking in neurons and a potential link between neurodegenerative
processes in AD and PD.

PTEN-INDUCED KINASE 1
Familial cases of PD can be caused by mutations in different genes,
such as PINK1 or Parkin. PINK1 is a mitochondria-targeted ser-
ine/threonine kinase promoting cell survival, particularly under
conditions of oxidative/metabolic stress (Valente et al., 2004; Deng
et al., 2005; Wood-Kaczmar et al., 2008). In particular, PINK1 reg-
ulates mitochondrial transport, morphology, biogenesis, function,
calcium buffering capacity, and mitochondrial clearance (Petit
et al., 2005; Wood-Kaczmar et al., 2008; Dagda and Chu, 2009;
Gandhi et al., 2009; Gegg et al., 2009; Van Laar and Berman, 2009;
Matsuda et al., 2010; Narendra et al., 2010; Sun et al., 2012). Most
of the reported PD-linked PINK1 mutations result in a loss of
kinase activity (Cookson and Bandmann, 2010).

The molecular events responsible for PINK1-induced neu-
ronal death as well as its physiological substrates or regulators
are still a matter of debate (Deas et al., 2009; Pogson et al.,
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2011). Upon entry to the mitochondria the PINK1 protein is
proteolytically cleaved by mitochondrial processing peptidase
(MPP) and presenilin-associated rhomboid-like protease (PARL)
to produce two N-terminally truncated protein fragments of 54
and 45 kDa without mitochondrial localization sequence (Deas
et al., 2009; Narendra et al., 2010; Greene et al., 2012). The
cleaved �N-PINK1 forms localize preferentially in the cytoso-
lic instead of the mitochondrial fraction (Lin and Kang, 2008).
�N-PINK1 is constitutively degraded in the cytosol by the pro-
teasomal pathway (Yamano and Youle, 2013), indicating that only
the mitochondrially targeted PINK1FL has a cellular function. But
expression of �N-PINK1 protects neurons against the neurotoxin
1-methyl-4-pheny-1,2,3,6-tertahydropyridin (MPTP). This sug-
gests that the mitochondrial import sequence of PINK1 is not
strictly necessary for neuroprotection and that cytosolic targets
and signal transduction pathways may be modified by cleaved
PINK1 (�N-PINK1) to affect neuronal survival (Haque et al.,
2008). Recent studies validate this hypothesis. PINK1 cleavage-
products localized in the cytosol are degraded by proteasomes but
also bind Parkin, repress Parkin translocation to mitochondria and
prevent mitophagy (Fedorowicz et al., 2014; Figure 1A). Further-
more, cytosolic �N-PINK1 influences mitochondrial mobility.
The kinase enhances anterograde movements of mitochondria,
both in dendrites and axons (Matenia et al., 2012; Dagda et al.,
2013). However, the mechanisms of these �N-PINK1 functions
are mostly unknown. So far only one upstream regulating kinase
was identified: MARK2 phosphorylates PINK1 and thereby reg-
ulates mitochondrial transport parameters (Matenia et al., 2012).
This new signaling axis might help to clarify common mecha-
nisms in neurodegenerative diseases, although future studies are

required to understand the exact functional relationship of these
kinases.

REGULATION OF PINK1 AND MITOCHONDRIAL MOTILITY IN
NEURONS
Recent studies have investigated the PINK1/Parkin pathway for
sensing and selectively eliminating damaged mitochondria from
the mitochondrial network. Parkin is a cytoplasmic E3 ubiq-
uitin ligase and can be phosphorylated by PINK1 (Kim et al.,
2008). Both proteins cooperate to control mitochondrial clear-
ance, known as mitophagy. Full length PINK1 (PINK1FL) is
stabilized on mitochondria with low membrane potential and
recruits cytosolic Parkin, which becomes enzymatically active and
initiates the lysosomal degeneration of defective mitochondria
via ubiquitination of mitochondrial target proteins (Youle and
Narendra, 2011; Grenier et al., 2013; Figure 1B).

Another aspect of PINK1 concerns its role in the regulation
of mitochondrial transport in neurons (Wang et al., 2011; Liu
et al., 2012; Matenia et al., 2012; Dagda et al., 2013). Mitochondria
are transported along microtubules by the motor proteins kinesin
(anterograde, toward the microtubule plus ends) and dynein (ret-
rograde). The kinesin-adaptor complex attached to the outer
mitochondrial membrane comprises the GTPase Miro, kinesin
heavy chain, and the adaptor protein Milton (Goldstein et al.,
2008). PINK1FL is also attached to this complex, and even �N-
PINK1 can be targeted to it despite the lack of the mitochondrial
targeting sequence (Weihofen et al., 2009). PINK1FL phospho-
rylates the GTPase Miro, and thus induces Parkin-dependent
degeneration of Miro. The resulting decrease in mitochondrial
movement may represent a quality control mechanism of defective

FIGURE 1 | PINK1 and Parkin regulate mitophagy. (A) In healthy
mitochondria with high mitochondrial membrane potential (↑��),
PINK1FL is maintained at low levels by the sequential proteolytic
actions of mitochondrial processing peptidase (MPP) and
presenilin-associated rhomboid-like protease (PARL; Greene et al., 2012).
The resulting �N-PINK1 is partially located in the cytosol and interacts
directly with Parkin, thereby preventing Parkin-mediated mitophagy

(Fedorowicz et al., 2014). (B) Upon mitochondrial depolarization (↓��)
PINK1FL is stabilized and selectively accumulates in the outer
membrane of defective mitochondria with its kinase domain facing the
cytoplasm. This accumulation is a crucial signal for Parkin recruitment to
impaired mitochondria, promoting ubiquitination of mitochondrial outer
membrane proteins and subsequent disposal of the damaged organelle
(Narendra et al., 2010).
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mitochondria (Wang et al., 2011). Active mitochondria with a
high membrane potential tend to cause cleavage of PINK1FL to
�N-PINK1, which is released to the cytoplasm, where it is not
only destined for degradation by the proteasome but also binds
to Parkin (Miller and Sheetz, 2004; Figure 1A). The interaction
of cytosolic �N-PINK1 with Parkin represses Parkin transloca-
tion to the mitochondria and subsequent mitophagy (Fedorowicz
et al., 2014). The question is therefore how the different isoforms
of PINK1 become active.

Only few studies have examined the regulation of PINK1 and
its consequences for mitochondria. The serine/threonine kinase
MARK2 phosphorylates PINK1, activates the kinase activity of
�N-PINK1 (with regard to the artificial substrate histone H4)
and enhances protein stability of both, PINK1FL and �N-PINK1,
arguing for a physiological relevance of this kinase-substrate
interaction. The primary phosphorylation site is threonine 313
(T313; Matenia et al., 2012). This residue is mutated to a
non-phosphorylatable form (T313M) in a frequent variant of
PD (Mills et al., 2008). Residue T313 is located in β-strand 5
of PINK1 (based on a structural model of PINK1 by Swiss-
Model using CaMK1 as a structure template; Matenia et al.,
2012). Phosphorylation of this residue could therefore result
in the interaction of this strand with helix C which is part
of the scaffold that fixes the Mg-ATP underneath the P-loop.
Stabilization of this part of the catalytic domain is a require-
ment for the activity of the kinase. In fact, mutation of T313
to glutamate further enhances the phosphorylation and acti-
vation of �N-PINK1 by MARK2, suggesting that this residue
could be a priming phosphorylation site, changing the con-
formation of the kinase and preparing it for further modifica-
tions.

The importance of the PINK1 phosphorylation site T313 is fur-
ther emphasized by the fact that expression of PINK1T313M causes
severe toxicity for cells. �N-PINK1T313M leads to abnormal mito-
chondrial accumulation in the cell soma, whereas PINK1FL/T313M

causes degradation of mitochondria. Within neurons endogenous
PINK1 and MARK2 colocalize partly on mitochondria, espe-
cially in axons and dendrites, changing mitochondrial transport
parameters (mitochondrial density and movement direction in
axons). MARK2 interacts with and preferentially phosphorylates
the cytosolic �N-PINK1, thereby increasing its kinase activ-
ity and promoting anterograde mitochondrial motility (Matenia
et al., 2012). Consistent with this, a high membrane potential
enhances the anterograde transport of mitochondria (Miller and
Sheetz, 2004) and also promotes the proteolysis of PINK1FL into
�N-PINK1 (Narendra et al., 2010), thereby inhibiting Parkin-
dependent mitophagy of active mitochondria (Figure 2). Phos-
phorylation and activation of �N-PINK1 by MARK2 possibly
enhances the stability of the mitochondrial transport-complex and
ensures the supply of energy at the growth cone. Conversely, retro-
grade transport is favored for mitochondria with low membrane
potential destined for mitophagy (Jin et al., 2010). In this case the
cleavage of PINK1FL is inhibited. Thus, Parkin decorated mito-
chondria assemble as large clusters primarily in the lysosome-rich
perinuclear area (Narendra et al., 2010). This effect is influenced
by MARK2 (Matenia et al., 2012). MARK2 could phosphorylate
PINK1FL, consequently enhance the binding and possibly the

phosphorylation of Parkin and Miro by PINK1FL. This results
in accumulation of mitochondria around the perinuclear region
and suggests that failure of the MARK2-PINK1 signaling cascade
could contribute to PD. Thus, our study revealed the existence of
two cellular pools of PINK1 that differently modify and regulate
mitochondrial movement direction.

PINK1, MARK2, AND DIFFERENTIATION
MAP/microtubule affinity regulating kinase 2 is involved in sev-
eral regulatory processes of the cell such as determination of
polarity, cell cycle control, intracellular signal transduction, trans-
port, and cytoskeletal stability (Matenia and Mandelkow, 2009).
MARK2 and its homolog par-1 (for “partition defective”) belongs
to a set of conserved proteins in Drosophila and Caenorhabdi-
tis elegans, which are essential for cellular polarity, with roles in
establishing the embryonic body axis and in maintaining cell dif-
ferentiation (Kemphues et al., 1988; Tomancak et al., 2000). The
par-1-dependent cell polarization is based on a tight network
of cross-reactive and feedback interactions of the par proteins,
other regulators of polarity and the cytoskeleton (Munro, 2006).
MARK/par-1 is a central player in localization of the cell polarity
proteins. In mammalian epithelial cells the overexpression of inac-
tive MARK2 disturbs the polarity, suggesting a similar mechanism
of governing polarization (Böhm et al., 1997).

Microtubules are important determinants of cell polarity.
MARK2 plays a significant role in axon formation, which requires
dynamic instability of microtubules (Biernat et al., 2002). This
is in part related to the phosphorylation of axonal Tau pro-
tein in its “repeat domain” which decreases its affinity for
microtubules. The reduction of MARK2 via RNA interfer-
ence (RNAi) induces multiple axons in hippocampal neurons,
whereas enhanced MARK2 expression inhibits axon formation
altogether (Chen et al., 2006). Following the establishment of an
axon MARK2 promotes its elongation (Uboha et al., 2007). In
dendrites, the predominant MAP is MAP2 which has a simi-
lar repeat domain as Tau and can also be phosphorylated by
MARK2 (Illenberger et al., 1996). In this case MARK2 inhibits
the development of dendrites in hippocampal neurons through
phosphorylation of MAP2. In particular, MARK2 shortens the
length and decreases branching of dendrites (Terabayashi et al.,
2007).

Interestingly, transient expression of �N-PINK1 promotes
dendritic outgrowth and neurite length in dopaminergic mid-
brain neurons. This effect seems to be kinase dependent, since a
kinase deficient mutant of PINK1 fails to influence neurite length.
The action of �N-PINK1 on neurite length was not related to its
activity at mitochondria, since an outer mitochondria membrane
(OMM)-targeted �N-PINK1 construct, which exhibits cytoso-
lic localization, failed to enhance neuronal differentiation. These
data indicate divergent roles for cytosolic and mitochondrial tar-
geted forms of PINK1. Furthermore, PINK1 deficiency reduces
dendritic length of primary neurons isolated from PINK1 knock-
out mice. To clarify the mechanism underlying the regulation of
neurite outgrowth induced by cytosolic �N-PINK1, Dagda et al.
(2013) examined the expression of various neuronal differentia-
tion proteins as a function of PINK1. PINK1 increases levels of
MAP2 and activates protein kinase A (PKA)-regulated signaling
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FIGURE 2 | Schematic representation of interplay between MARK2 and

PINK1FL/�N-PINK1 to regulate mitochondrial transport. In a healthy
neuron, mitochondria are carried along by motor proteins dynein (retrograde)
and kinesin (anterograde). PINK1 is a molecular switch that changes the
probability between anterograde and retrograde mitochondrial transport.
Transport direction of neuronal mitochondria is regulated by PINK1 cleavage
and binding/phosphorylation by MARK2. Kinesin motors are linked to
mitochondria by adaptor proteins like Miro and Milton (Weihofen et al., 2009)

and regulate in association with �N-PINK1 the anterograde movement (red
arrow ; Matenia et al., 2012; Dagda et al., 2013), whereas Miro also has an
effect on dynein-mediated retrograde movement (Russo et al., 2009; black
arrow ). Active mitochondria tend to cause cleavage of PINK1FL (Narendra
et al., 2010), which is phosphorylated at Thr-313 by MARK2 (Matenia et al.,
2012); both events promote anterograde movement by kinesin. Retrograde
movement by dynein is promoted by PINK1FL and further increased by
MARK2 (Matenia et al., 2012).

pathways. Since MAP2 is an anchoring protein of PKA in den-
drites (Obar et al., 1989; Harada et al., 2002), this data suggests
that PINK1 is an upstream regulatory kinase of this pathway to
influence dendritic morphology. On the other hand, the ability
of microtubule-associated PKA to promote elongation of den-
drites is independent of MAP2 phosphorylation. This suggests
other proteins in close proximity to the microtubule cytoskeleton
are involved in this process (Huang et al., 2013). Since KXGS is
not only a kinase consensus motif for targets of MARK2 but also
of PKA, both kinases share some substrate preferences (Drewes
et al., 1997). The microtubule binding affinity of tau as well
as that of doublecortin (Dcx) is regulated via phosphorylation
by MARK2 and PKA (Drewes et al., 1997; Schaar et al., 2004).
This provides the clue, that MARK2 signaling pathways could be
involved in �N-PINK1 mediated neurite outgrowth regulation.

Due to substrate competition �N-PINK1 could inhibit MARK2
by binding, thereby enhancing dendritic length.

CONCLUSION AND OUTLOOK
This review summarizes and evaluates recent findings in PINK1
biology and focuses on emerging aspects concerning the novel
role of cytosolic �N-PINK1 that has not yet received adequate
attention as compared to mitochondrial PINK1FL. In the case of
mitochondria the full-length PINK1 regulates the transport and
clearance of defective mitochondria through phosphorylation of
Miro and recruitment of Parkin, respectively (Figure 1). These
protective activities of PINK1FL are dependent on its localization
at the mitochondrial surface and have been studied extensively. But
even the N-terminally truncated enzyme �N-PINK1 lacking the
mitochondrial localization signal can be found in close proximity
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to mitochondria, probably via binding to mitochondrial mem-
brane localized protein adaptor complexes (Figure 2), controlling
their health status and distribution. Beside this task, �N-PINK1
released from mitochondria via proteolytic cleavage by mitochon-
drial enzymes shows neurite promoting activity. This outgrowth
effect was specific to dendrites as axonal length did not change
significantly (Tieu and Xia, 2013).

Microtubule-affinity regulating kinase 2, the upstream regula-
tor of �N-PINK1 and PINK-1FL, activates and regulates a diverse
range of cellular activities and participates in several signaling cas-
cades. Since the discovery of MARK2 as a kinase of Tau and MAP2
(Drewes et al., 1997), several other substrates have been identi-
fied. Some of these affect mitochondrial transport, presumably by
regulating the affinity to microtubules (Thies and Mandelkow,
2007; Pluciñska et al., 2012). Neurons are particularly depen-
dent on mitochondrial function, so disrupting the transport of
these organelles can cause neurological disease (Schon and Przed-
borski, 2011). The vulnerability results from the high metabolic
demands of neurons, their dependence on proper calcium han-
dling and their susceptibility to local ROS signaling, processes in
which mitochondria are critically involved. In the context of trans-
port PINK1 acts as a molecular switch between anterograde and
retrograde mitochondrial transport. As mentioned above, trans-
port direction is regulated by PINK1 cleavage depending on the
mitochondrial membrane potential (Figure 1) and PINK1 bind-
ing/phosphorylation by MARK2 (Figure 2; Matenia et al., 2012).
Since MARK2 is an upstream regulatory component in PINK1
signaling, this extends the complexity of its biological function.
Mitochondria are enriched at synapses and play a critical role in
both pre- and post-synaptic functions (Hollenbeck, 2005). Accu-
rate regulation of mitochondrial motility and maintenance of
neuronal plasticity are closely related.

Increasing evidence implicates that dysfunction of kinase
activities and phosphorylation pathways are involved in the patho-
genesis of neurodegenerative diseases. PINK1 mutations linked to
PD are mostly accompanied by loss of kinase activity; therefore
an effective therapy would have to replace functional PINK1-
signaling. The limiting factor is that the details of the PINK1
signaling network are not yet fully elucidated. An initial step
in the right direction is the identification and characterization
of a PINK1/Parkin independent mitophagy pathway (Allen et al.,
2013). Selective induction of mitophagy could prove beneficial as
a potential therapy for several neurodegenerative diseases in which
mitochondrial clearance is advantageous.
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