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Alzheimer disease (AD) is the most common form of age-related dementia. The etiology
of AD is considered to be multifactorial as only a negligible percentage of cases have
a familial or genetic origin. Glycogen synthase kinase-3 (GSK-3) is regarded as a critical
molecular link between the two histopathological hallmarks of the disease, namely senile
plaques and neurofibrillary tangles. In this review, we summarize current data regarding
the involvement of this kinase in several aspects of AD development and progression, as
well as key observations highlighting GSK-3 as one of the most relevant targets for AD
treatment.
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Alzheimer disease (AD) is a neurodegenerative disorder, first
described by the German psychiatrist Alois Alzheimer in 1906.
AD is the most common form of age-related dementia. The
estimated annual incidence of this disease appears to increase
exponentially with age, from approximately 53 new cases per
1,000 people between the ages of 65 and 74 to 231 new cases per
1,000 people over 85 (Hebert et al., 2001; Alzheimer’s Association,
2012). Although mostly unknown, the etiology of AD is consid-
ered to be multifactorial. Only a negligible percentage of cases
have a familial origin, while most are linked to environmental,
non-genetic risk factors of diverse nature (Blennow et al., 2006).
AD is characterized by a progressive loss of episodic memory
and by cognitive and behavioral impairments. The most relevant
histopathological hallmarks of the disease are extracellular senile
plaques composed by amyloid-β (Aβ) protein and neurofibrillary
tangles (NFTs), the latter formed mainly by hyperphosphorylated
tau protein.

The anatomical changes in AD are highly selective for certain
brain areas, although alterations can be widespread at advanced
stages of the disease. Nevertheless, as one of the most affected brain
structures, the entorhinal cortex (EC) is considered an invariant
focus of pathology in all cases (Van Hoesen et al., 1991). Anatom-
ical studies have revealed that the EC gives rise to axons that
bi-directionally interconnect the hippocampus and the rest of the
cortex. Accordingly, it is widely accepted that the EC functions
as a gateway to the hippocampus, a brain structure that plays
a key role in memory acquisition and consolidation. The EC–
hippocampus disconnection that occurs in AD is believed to play
a prominent role in the aggravation of the memory impairments
that characterize this neurodegenerative disease.

Glycogen synthase kinase-3 (GSK-3) is a highly conserved
protein-serine/threonine kinase that was first isolated from skeletal

muscle in 1980 as one of five enzymes capable of phosphorylating
glycogen synthase (Embi et al., 1980). It was subsequently demon-
strated that insulin triggers the inactivation of this kinase. In
mammals, GSK-3 is encoded by two highly related genes encoding
GSK-3α and GSK-3β, respectively. In the brain, GSK-3β regulates
many crucial cellular processes, acting as a key switch that controls
numerous signaling pathways (Doble and Woodgett, 2007; Forde
and Dale, 2007). The dysregulation of this kinase occurs in the
development of cancer, diabetes, AD, schizophrenia, and bipolar
disorder, among others. Thus, given its relevance in pathophysio-
logical processes, GSK-3 β is widely considered a therapeutic target
of interest.

GSK-3β AS A MOLECULAR LINK BETWEEN Aβ and TAU
The Aβ peptide has been widely considered the cornerstone of
AD pathogenesis, and its precursor protein APP is one of the
most studied molecules in the field of AD research. The APP is
a glycosylated surface membrane protein (Kang et al., 1987). Aβ

is a cleavage product derived from the transmembrane domain
of this large precursor protein. APP undergoes post-translational
processing, involving cleavage by various secretases and proteases,
via two major pathways. Firstly, in the non-amyloidogenic path-
way, APP is sequentially cleaved by α- and γ-secretases, thus
giving rise to easily degradable fragments. Three members of
the α-disintegrin and metalloproteinase (ADAM) family (ADAM-
10, ADAM-17, and ADAM-9) have been proposed to form the
α-secretase complex (Buxbaum et al., 1998; Koike et al., 1999).
GSK-3β may down-regulate the activity of this complex by inhibit-
ing ADAM activity (Zhang et al., 2012). In addition to another
three proteins (APH1, PEN2, and nicastrin), presenilin (PS)
1 and 2 function as the catalytic core of the γ-secretase com-
plex. GSK-3β also regulates Aβ production by interfering with
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APP cleavage at the γ-secretase complex step, since both APP
and PS1 are also substrates of this kinase (Cai et al., 2012). In
vitro studies suggest that GSK-3β affects PS1 function, which
is required for the generation of the toxic Aβ (Uemura et al.,
2007).

In contrast, in the amyloidogenic pathway, APP is cleaved by
β-secretase, generating a membrane-associated fragment (Zhang
et al., 2012). Subsequently, γ-secretase releases Aβ, which tends
to aggregate, giving rise to senile plaques and other insoluble
oligomeric forms of the protein. The putative β-secretase, also
known as β-site APP cleaving enzyme 1 (BACE1), is a type I trans-
membrane aspartyl protease whose active site is located on the
luminal side of the membrane. The knock-down of bace1 prevents
Aβ generation and abolishes amyloid pathology in mice expressing
the Swedish mutation of APP (Cai et al., 2001; Luo et al., 2001).
The expression level and activity of BACE1 have been found to be
elevated in AD patients (Holsinger et al., 2002). Accordingly, GSK-
3β inhibition reduces BACE1-mediated cleavage of APP through
a NF-κB signaling-mediated mechanism. This observation thus
suggests that the inhibition of GSK-3β reduces Aβ pathology (Ly
et al., 2013).

In vitro studies (Takashima et al., 1996b) and transgenic animal
models of AD (Terwel et al., 2008) indicate that Aβ activates GSK-
3β signaling (Takashima et al., 1996a,b) by preventing inhibitory
phosphorylation of this enzyme in the case of in vitro studies and
by an independent mechanism in the case of animal studies. A sim-
ilar increase in GSK-3β activity has been observed in the brains of
AD patients (Leroy et al., 2007). A feed-forward loop is established
after GSK-3β pathological activation by Aβ, which subsequently
contributes to abnormal APP processing and to synaptic failure
(Deng et al., 2014). Consistent with this, GSK-3β inhibition has
been shown to reduce Aβ production in AD murine models (Phiel
et al., 2003; Rockenstein et al., 2007b) and to decrease Aβ-induced
neurotoxicity in cultured neurons (Koh et al., 2008).

In post-mitotic neurons, the microtubule network is of par-
ticular significance in supporting axon function. Microtubule-
associated proteins (MAPs) facilitate and regulate microtubule
formation and stability. Tau is a MAP that is found mainly in the
axonal compartment under physiological conditions. Tau asso-
ciates with microtubules and stabilizes their polymerization. It
has been suggested that the presence of tau is required for Aβ-
induced toxicity (Rapoport et al., 2002; Santacruz et al., 2005;
Roberson et al., 2007). NFTs comprise mainly hyperphospho-
rylated forms of tau protein. In contrast to normal tau, the
hyperphosphorylated form of the protein acquires the shape of
paired helical filaments (PHF-tau). Accumulating evidence indi-
cates that the phosphorylated state of tau is closely associated
with AD pathology (Augustinack et al., 2002). Accordingly, Aβ

induces the formation of tau fibrils in culture (Ferrari et al.,
2003). PHF-tau has been described to be an aggregated and
insoluble deposit in the somatodendritic compartment (Gotz
et al., 1995). In addition, this form of tau is often truncated at
the C-terminal domain and is highly resistant to the action of
phosphatases and proteases. While non-phosphorylated tau is a
flexible protein, PHF-tau is an insoluble misfolded protein. Dur-
ing the course of NFT formation, tau progressively acquires a rigid
conformation.

The distinct phosphorylation states of tau correspond to its
physiological roles (Bretteville and Planel, 2008; Sergeant et al.,
2008), and phosphorylation of some of its serine/threonine
residues elicits a biological effect (Fuster-Matanzo et al., 2012).
The three tau kinases, GSK-3β, CDK-5, and PKA, associate with
both tau and microtubules. Although they show a wide spec-
trum of phosphorylation, the major phosphorylatable sites of
tau for each kinase are limited in preference (Hashiguchi and
Hashiguchi, 2013). Multisite phosphorylation occurs in PHF-tau
and is explained by the catalytic activities of the different kinases,
although the functional significance of this phenomenon is not
completely understood. Indeed, a direct association of tau with
GSK-3β takes place as a functional unit (Sun et al., 2002; Chun
et al., 2004). Although GSK-3β phosphorylates at least 36 residues
in tau (Hanger et al., 2007), the main phosphorylation sites iden-
tified for this kinase are Ser199, Thr231, Ser396, and Ser413
(Billingsley and Kincaid, 1997). A moderate phosphorylation of
Ser46, Thr50, and Ser202/Thr205 has also been reported (Illen-
berger et al., 1998), and minor phosphorylation of other residues
has been described (Hanger et al., 2007). A complete description
of these phosphorylation sites is provided in an extensive review
by Hashiguchi and Hashiguchi (2013).

In the pre-tangle stage of AD, scattered deposits of phospho-
Thr231-tau are detected in the brains of patients (Luna-Munoz
et al., 2007). Interestingly, similar to many other residues of tau,
the phosphorylation of Thr231 demands the combined action
of CDK-5 and GSK-3β (Li and Paudel, 2006; Li et al., 2006).
GSK-3β requires a priming phosphorylation of this residue by
other tau kinases. This phosphorylation reduces tau binding
to microtubules (Sengupta et al., 1998). A similar mechanism
has been described for Ser404 and other residues. Thus, the
combined action of CDK-5 and GSK-3β seems to be required
for the development of the epitope characteristics of PHF-
tau (Plattner et al., 2006; Sengupta et al., 2006). Interestingly,
the protein phosphatases PP-1 and PP-2 effectively dephospho-
rylate these sites, in such a way that the overall tau phos-
phorylation state is determined by the balance between kinase
and phosphatase action. Subsequently, cleavage and conforma-
tional changes of tau occur after its phosphorylation. After
neuronal cell death, intracellular NFTs are released into the
extracellular space (Dickson et al., 1992). Interestingly, grow-
ing evidence indicates that hyperphosphorylated tau activates
GSK-3β through an increase in oxidative stress, neuroinflam-
mation, and apoptosis (Saeki et al., 2011). In addition, GSK-3β

impairs lysosomal acidification, a process that entails an inad-
equate clearance of non-functional proteins (Avrahami et al.,
2013).

In summary, increased GSK-3β activity has been used to
model events occurring in AD, interventions that exacerbate cog-
nitive impairments, and neuropathology in rodent models of
AD (Gomez-Sintes et al., 2011). Conditional overexpression of
GSK-3β in mouse hippocampal neurons results in impaired per-
formance in the Morris water maze, hyperphosphorylation of
tau, reactive astrogliosis and microgliosis, and neuronal death
(Lucas et al., 2001; Hernandez et al., 2002). Restoring normal lev-
els of GSK-3β activity reverses spatial memory deficits, reduces
tau hyperphosphorylation, and decreases reactive gliosis and
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neuronal death (Engel et al., 2006). The deletion of tau in
GSK-3β-overexpressing mice significantly ameliorates memory
impairments, thus indicating that tau phosphorylation con-
tributes to this cognitive impairment (Gomez de Barreda et al.,
2010).

PHYSIOLOGICAL AND PATHOLOGICAL REGULATION OF
GSK-3β ACTIVITY
GSK-3β is constitutively active in most tissues and most commonly
regulated by inhibitory phosphorylation on Ser9. GSK-3β can be
phosphorylated on this serine by several kinases. This observation
allows for an effective mechanism for several intracellular signal-
ing pathways to control the activity of this kinase. However, the
dysregulation of these signal transduction pathways results in fail-
ure to adequately repress GSK-3β, thus allowing GSK-3β to remain
abnormally active. Such a status contributes to various patholo-
gies, including neurodegenerative and mood disorders, diabetes,
and cancer.

The most relevant extracellular signaling pathway known to
regulate GSK-3β activity is that of insulin/insulin-like growth fac-
tor I (Figure 1). In addition, a number of kinases phosphorylate
Ser9 of GSK-3β in the context of specific signaling pathways: PKB
targets GSK-3β in response to insulin (Sutherland et al., 1993);
PKA phosphorylates GSK-3β in Ser9 in response to cAMP (Cross
et al., 1995); p90RSK/MAPKAP kinase-1 phosphorylates GSK-3β

following activation by EGF or PDGF (Sutherland and Cohen,
1994; Fang et al., 2000); and p70S6K targets GSK-3β in response
to stimulation by insulin and other growth factors (Godemann
et al., 1999).

Interestingly, Aβ interferes not only with insulin but also
with Wnt signaling pathways (Townsend et al., 2007; Magde-
sian et al., 2008). GSK-3β is a key transducer of the Wnt

pathway (Figure 1), the components of which are involved in
AD onset (Christian et al., 2002). It has been suggested that
auto-inhibitory phosphorylation on Ser9 participates in the reg-
ulation of GSK-3β activity in response to Wnt (Saito et al.,
1994; Fukumoto et al., 2001). In the canonical Wnt signal-
ing pathway, Wnt stabilizes levels of β-catenin. Subsequently,
stabilized β-catenin initiates the transcription of target genes.
GSK-3β phosphorylates several components of this transduc-
tion pathway, β-catenin being the most widely characterized.
Phosphorylated β-catenin is recognized by ubiquitin and tar-
geted for proteasomal degradation (Wu and He, 2006). Conse-
quently, signals that modify GSK-3β activity are expected to alter
β-catenin levels (Forde and Dale, 2007). In addition, other com-
ponents of Wnt signaling pathway, such as DKK1, negatively
regulate these pathways, thus activating GSK-3β and contribut-
ing to the pathological events triggered by Aβ (Alvarez et al.,
2004).

It has been proposed that GSK-3β activity also depends on
the phosphorylation of Tyr216 (Kannan and Neuwald, 2004).
The underlying mechanisms responsible for regulating tyrosine
phosphorylation of GSK-3β remain controversial. In addition,
it is still unclear whether GSK-3β autophosphorylation is an
intramolecular or intermolecular event.

An interesting alternative regulatory mechanism of GSK-3β

activity involves the action of the calcium-dependent protease
calpain. GSK-3β is a calpain substrate (Goni-Oliver et al., 2007)
and its cleavage by calpain produces the release of the inhibitory
domain containing Ser9. Only in the GSK-3α isoform (but not in
GSK-3β) is this region surrounded by glycine stretches, a feature
that has been proposed to differentially regulate inhibitory phos-
phorylation and cleavage by calpain in both isoforms (Goni-Oliver
et al., 2009).

FIGURE 1 | Regulation of GSK-3β activity. GSK-3β is constitutively
active in most tissues and most commonly regulated by inhibitory
phosphorylation on Ser9. The most relevant extracellular signaling
pathways known to negatively regulate GSK-3β activity are those of
insulin/insulin-like growth factor I and Wnt. In the canonical Wnt
signaling pathway, Wnt stabilizes levels of β-catenin. Subsequently,
stabilized β-catenin initiates the transcription of target genes. GSK-3β

phosphorylates several components of this transduction pathway,
β-catenin being the most widely characterized. Phosphorylated β-catenin
is recognized by ubiquitin and targeted for proteasomal degradation (Wu
and He, 2006). In addition, Akt phosphorylate Ser9 of GSK-3β in the
context of insulin signaling pathway (Sutherland et al., 1993).
Consequently, signals that modify GSK-3β activity are expected to alter
β-catenin levels (Forde and Dale, 2007).
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NEURAL CONSEQUENCES OF THE DYSREGULATION OF
GSK-3β ACTIVITY
CHOLINERGIC SYSTEM ALTERATION
A marked loss of cholinergic neurons in certain cortical areas
is a well-known feature of AD brain (Whitehouse et al., 1981;
Plotkin and Jarvik, 1986). It has been proposed that GSK-3β plays
a key role in choline metabolism, which involves the regulation of
choline acetyltransferase (ChAT) and acetylcholinesterase (Yates
et al., 1983; Samadi et al., 2011). In fact, the loss of cholinergic
neurons in the basal forebrain and hippocampus correlates with
a transient decrease in Ser9 phosphorylation of GSK-3β and a
concomitant increase in tau phosphorylation (Hoshi et al., 1996;
Wang et al., 2009). In addition, cholinergic stimulation in the hip-
pocampus, striatum, and cortex causes a rapid increase in Ser9
phosphorylation of GSK-3β (Wang et al., 2009).

AXONAL TRANSPORT AND MICROTUBULE DYNAMICS IMPAIRMENT
Axonopathy and cytoskeletal disruption play a crucial role in AD
(Kokubo et al., 2005; Robert and Mathuranath, 2007). GSK-3β has
the capacity to phosphorylate several MAPs, thus regulating axonal
stability through direct interaction with microtubules. GSK-3β-
phosphorylated forms of tau and MAP-2 exhibit decreased affinity
toward microtubules and are less stable (Lovestone et al., 1996;
Sanchez et al., 2000; Zumbrunn et al., 2001). This microtubule
destabilization is detrimental for the maintenance of axonal struc-
ture and appropriate synapse function (Sergeant et al., 2008).
Importantly, Aβ plaques can lead to axonal dystrophy, causing
profound impairment of axonal transport, great detriment to
cognitive function, extensive synapse loss, and cell death (Rauk,
2008). Growing evidence indicates that axonal transport failure
makes a significant contribution to AD pathology (Pope et al.,
1993).

During neural development, GSK-3β is involved in axon for-
mation and elongation (Bartzokis et al., 2003). In this regard, it
impairs mitochondrial anterograde and retrograde axonal trans-
port in vitro, a process that involves tau and MAP-1B, respectively
(Jimenez-Mateos et al., 2006; Montenegro-Venegas et al., 2010;
Llorens-Martin et al., 2011), and these alterations can have severe
consequences on synapse function as a result of energy deple-
tion. Accordingly, tau overexpression disrupts axonal transport,
causing vesicular aggregation, a phenomenon reversed by GSK-3β

inhibitors (Soutar et al., 2010).
In addition, PS1 regulates kinesin-related axonal transport by a

mechanism involving GSK-3β activity (Ryan and Pimplikar, 2005)
and the modulation of its role in controlling kinesin binding to
microtubules at sites of vesicle release (Pigino et al., 2003).

APOPTOSIS
Interestingly, GSK-3β promotes both pro-and anti-apoptotic
effects. In this regard, it regulates the two major apoptotic path-
ways: intrinsic and extrinsic. GSK-3β triggers cell death through
the activation of the mitochondrial intrinsic pro-apoptotic path-
way while it inhibits the death receptor-mediated extrinsic apop-
totic pathway (Beurel and Jope, 2006). After activation of the
former, this kinase induces apoptosis in response to a wide range
of detrimental stimuli, such as DNA damage (Watcharasit et al.,
2003), hypoxia (Loberg et al., 2002), growth factor deprivation

(Pap and Cooper, 1998; Johnson-Farley et al., 2006), and heat
shock (Bijur et al., 2000). As a part of this pro-apoptotic cascade,
GSK-3β phosphorylates and inhibits eIF2B (Welsh and Proud,
1993; Pap and Cooper, 2002). A murine model of neuronal
GSK-3β overexpression developed by our group shows enhanced
apoptosis in certain sensitive areas of the brain such as the hip-
pocampal formation, which is crucial for memory and learning
and strongly affected in AD (Fuster-Matanzo et al., 2011; Llorens-
Martin et al., 2013). Although the exact mechanism by which
GSK-3β overexpression induces apoptosis in these cells is unclear,
it has been proposed that the combination of cell-autonomous
effects and other effects indirectly mediated by inflammatory
changes act in a coordinated manner to induce hippocampal
neuron death (Llorens-Martin et al., 2013). However, given the
regulation of the extrinsic apoptotic pathway by GSK-3β, it should
be considered that this kinase modulates crucial steps in each
of the two major pathways of apoptosis, but in opposing direc-
tions. Consequently, inhibitors of GSK-3β provide protection
from intrinsic apoptotic signaling but potentiate that of extrinsic
apoptosis (Gomez-Sintes et al., 2007). These observations should
be taken into account when designing new therapeutic approaches
and novel GSK-3β inhibitors.

SYNAPTIC EFFECTS
Synaptic loss is currently the best neurobiological correlate of cog-
nitive deficits in AD. In addition to the synapse loss caused by
neuronal cell death, living neurons lose synapses in AD (Coleman
and Yao, 2003). It has been proposed that the mechanism allow-
ing information storage in the brain involves changes in synaptic
connection weights, including long-term potentiation (LTP) and
long-term depression (LTD). The finding that LTP inhibits GSK-3β

activity and that this kinase is required for LTD suggests that LTP
regulates LTD (Peineau et al., 2007). Although the exact mech-
anism underlying this regulation remains unclear, it has been
demonstrated that constitutive GSK-3β activity enhances basal
α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor
(AMPAR) endocytosis (Wei et al., 2010). This phenomenon, leads
to the dissociation of AMPAR-containing vesicles from kinesin
(Du et al., 2010). In addition, tau and PS1 may be additional tar-
gets for GSK-3β regulation of synaptic plasticity, or, alternatively,
different transcription factors or miRNAs may be involved in the
protein synthesis-dependent phase of LTD (Manahan-Vaughan,
2010).

Of particular interest is whether the balance between LTP and
LTD leads to functional impairments in memory storage similar
to those described in AD (Bradley et al., 2012). LTD induces the
removal of AMPARs from individual synapses (Luthi et al., 1999)
in a process known as synapse silencing. These silent synapses
are either reactivated through new AMPAR insertion (unsilencing ;
Isaac et al., 1995; Liao et al., 1995) or eliminated (Bastrikova et al.,
2008; Egashira et al., 2010). Synapse elimination is particularly
important during development and crucial for pruning unneces-
sary synaptic connections (Rabacchi et al., 1992; Bhatt et al., 2009).
In fact, NMDAR-triggered apoptosis requires AMPAR endocytosis
(Wang et al., 2004), a process known as synaptosis. In adulthood,
synaptosis is down-regulated, and it is assumed that NMDAR-
related LTD is used for adjusting synaptic weights rather than for
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eliminating synapses. Collingridge and colleagues suggested that
neurodegeneration is often triggered by the reactivation of synap-
tosis, which leads to apoptosis of vulnerable neuronal populations
(Bradley et al., 2012). The imbalance between these mechanisms
may lead to the pathological elimination of synapses, which in
turn leads to neuronal death. In this regard, we have demonstrated
that neuronal GSK-3β overexpression causes a drastic decrease in
postsynaptic density number and volume in hippocampal granule
neurons (Llorens-Martin et al., 2013), a phenomenon that may be
related to cognitive impairment and altered LTP generation pre-
viously observed in these mice (Hernandez et al., 2002; Hooper
et al., 2007). In agreement, Aβ causes synaptic toxicity (Cullen
et al., 1997; Witton et al., 2010). The use of GSK-3β inhibitors pro-
tects synapses from the deleterious effects of Aβ (Shipton et al.,
2011), thus suggesting that GSK-3β activation is required for the
pathological effect of Aβ on synaptic plasticity.

INFLAMMATION
Among the functions regulated by GSK-3β, inflammation has
recently emerged as one of the most relevant for neurodegenera-
tive disorders (Sudduth et al., 2013). GSK-3β itself is an important
positive regulator of the inflammatory process (Martin et al., 2005;
Jope et al., 2007). Within the brain, microglial cells are considered
to be equivalent to macrophages in the periphery and key guardian
immune cells. Numerous stressors activate microglia, including
neurodegenerative diseases, leading to a chronic inflammatory
response and migration of responsive cells from the periphery.
During long-term inflammatory responses, chronically activated
(primed) glia appear to be detrimental to neuronal function and
survival. Therefore, it is relevant that GSK-3β has been identi-
fied as a prominent regulator of inflammation. GSK-3β promotes
the production of various pro-inflammatory cytokines, such as
interleukin-6 (IL-6), IL-1β, and tumor necrosis factor (TNF; Mar-
tin et al., 2005). In addition, this kinase decreases the production of
the anti-inflammatory cytokine IL-10. Remarkably, in vivo admin-
istration of GSK-3β inhibitors confers protection from endotoxin
shock (Martin et al., 2005). Data from our group showed that
GSK-3β overexpression in neurons leads to the appearance of a
unique pattern of cytokines in the brain in vivo (Llorens-Martin
et al., 2013). In addition, we have demonstrated that this pro-
inflammatory environment is detrimental for immature neurons
as it inhibits their appropriate maturation (Fuster-Matanzo et al.,
2013) and leads them to acquire an aberrant morphology (named
“V” shape) markedly similar to that found in AD patient granule
neurons (Llorens-Martin et al., 2013).

CELL CYCLE DYSREGULATION
The formation of dynamically re-arranged synaptic connections
during continuous structural remodeling entails that neurons
must permanently withdraw from the cell cycle (Arendt, 2003). As
elegantly exposed in the“Dr. Jekyll and Mr. Hyde concept,” formu-
lated by Arendt, after leaving the cell cycle, differentiated neurons
modulate synaptic plasticity through molecular mechanisms pri-
marily developed to control proliferation (Arendt, 2003, 2009).
The up-regulation of a various molecular effectors involved in the
activation and progression of the cell cycle occurs at early stages of
neurodegeneration in AD (Arendt et al., 1996; Nagy et al., 1997a,b).

Although the cause of this failure remains to be elucidated, recent
evidence indicates that molecular mechanisms controlling synap-
tic plasticity and cell cycle are shared in the same cells, and,
consequently, attempts to increase plasticity during initial stages
of AD are sometimes disastrous for hippocampal function. At
the molecular level, the Sonic hedgehog (Shh) and Wnt sig-
naling pathways cooperate to orchestrate cellular proliferation,
differentiation, and pattern formation during both development
and adult neurogenesis. As previously discussed, GSK-3β plays a
crucial role in modulating both pathways. Although the under-
lying mechanism regulating GSK-3β activity in response to Shh
remains to be determined, Zhang et al. (2005) proposed the for-
mation of a multi-protein complex similar to that required for
efficient phosphorylation of β-catenin in the Wnt pathway. How-
ever, the physiological relevance of this interaction has yet to be
revealed.

ADULT HIPPOCAMPAL NEUROGENESIS
New neurons are continuously added to the hippocampal den-
tate gyrus (DG) throughout lifetime (Kempermann et al., 1998;
Knoth et al., 2010). During differentiation stages, newborn neu-
rons sequentially increase their dendritic tree complexity and send
axons toward the CA3 region (Zhao et al., 2006). Growing evi-
dence indicates that newborn neurons are crucial for hippocampal
function and hippocampal-dependent memory (Bischofberger,
2007). One of the most important regulators of adult hip-
pocampal neurogenesis (AHN) is GSK-3β. In this regard, it has
been demonstrated that overexpression of this kinase impairs
adult neurogenesis (Sirerol-Piquer et al., 2011; Fuster-Matanzo
et al., 2013) and causes a depletion in the number of prolifera-
tive clusters within the hippocampal DG. In addition, we have
recently reported that GSK-3β overexpression has dual effects
on newborn neurons, blocking the differentiation of newborn
neurons, thus supporting the notion that their maturation is
impaired. We have observed that GSK-3β overexpression leads
to alterations in the rate of death and survival of newborn
neurons, as well as in the expression pattern of the imma-
ture neuron marker doublecortin (Fuster-Matanzo et al., 2013).
In accordance, Spittaels et al. (2002) demonstrated that GSK-
3β influences the post-natal maturation of neurons in vivo in
a transgenic model overexpressing a constitutively active form
of the enzyme. In addition, overexpression of this kinase
causes morphological and connectivity alterations similar to
those observed in the granule neurons of AD patients (Llorens-
Martin et al., 2013). Given the relevance of newborn neurons
in hippocampal-dependent learning, it is reasonable to assume
that the alterations in AHN lead to cognitive impairments. In
fact, murine model overexpressing GSK-3β in the hippocampus
shows impaired hippocampal-dependent learning (Hernandez
et al., 2002).

AD THERAPIES INVOLVING GSK-3β INHIBITION
Growing evidence indicates that GSK-3β contributes to the pathol-
ogy of several neurodegenerative diseases. Thus, there is increasing
interest in applying GSK-3β inhibitors to treat these disorders.
Lithium is a GSK-3 inhibitor that binds directly to GSK-3β (Klein
and Melton, 1996) and increases the inhibitory phosphorylation
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in Ser9 of GSK-3β (Jope, 2003). Lithium is used as a mood stabi-
lizer in patients suffering from mood disorders. Various effects of
lithium are caused by GSK-3β inhibition (Jope, 2011), and lithium
administration reduces the neuropathology and cognitive deficits
in rats that have received intra-hippocampal injections of Aβ (De
Ferrari et al., 2003), rats overexpressing GSK-3β (Liu et al., 2010),
and several murine models overexpressing human APP (Rocken-
stein et al., 2007b; Ghosal et al., 2009; Toledo and Inestrosa, 2010).
However, some studies report poor effects of lithium on behavior
in other murine models of AD (Caccamo et al., 2007; Fiorentini
et al., 2010; Sudduth et al., 2012). It is interesting to note that
although certain cognitive tasks are improved by lithium treat-
ment in healthy rodents, this metal does not significantly affect
cognitive performance.

Recent years have witnessed the development of an increasing
number of novel GSK-3β inhibitors, many of which are ATP-
competitive. However, particularly promising are the non-ATP-
competitive GSK-3β inhibitors, since they tend to be more selective
and less toxic (King et al., 2014). The classical ATP-competitive
GSK-3 inhibitors include Indirubin (Leclerc et al., 2001), Paullone
compounds (Leost et al., 2000), SB415286 and SB216763 (Cogh-
lan et al., 2000), and AR-A014418 (Bhat et al., 2003). Several
well-known non-competitive ATP binding site inhibitors of GSK-
3 are L803-mts (Plotkin et al., 2003; Kaidanovich-Beilin et al.,
2004), TDZD-8 (Martinez et al., 2002), and VP0.7 (Palomo et al.,
2011). The treatment of healthy rodents with GSK-3β inhibitors
produces no remarkable effects on behavioral cognitive scores
(Thotala et al., 2008). Conversely, genetic reduction of GSK-
3β activity appears to be detrimental for hippocampal memory
acquisition (Kimura et al., 2008). In contrast, GSK-3β overex-
pression (both the native and constitutively active forms of the
enzyme) leads to cognitive impairment (Hernandez et al., 2002;
Dewachter et al., 2009). In this regard, inhibitors of GSK-3β have
been reported to rescue cognitive deficits in several murine mod-
els of AD. Treatment with NP12, AR-A014418, and Indirubin
decreases memory deficits in the Morris water maze and reduces
tau phosphorylation and amyloid deposition in various mod-
els of transgenic mice overexpressing human APP (Sereno et al.,
2009; Ding et al., 2010; Ly et al., 2013). In addition, 5XFAD
mice treated with L803-mts exhibit improved hippocampal-
dependent learning capacity (Avrahami et al., 2013). Genetic
approaches aimed to knock down either GSK-3α or GSK-3β have
also been shown to improve cognitive impairments in several
murine models of AD (Rockenstein et al., 2007a,b; Hurtado et al.,
2012).

The promising ability of GSK-3 inhibitors to alleviate the AD-
like phenotype of various murine models of AD has brought about
several clinical studies in patients with this neurodegenerative dis-
ease, although contradictory data regarding the success of these
treatments have been reported by different clinical trials (del Ser
et al., 2013). It should be taken into account that GSK-3 is essential
for cell life, and there is a concern that its inhibition could prevent
cells from operating normally (Martinez et al., 2011).

Lithium has been shown to exert certain protection against the
development of cognitive impairments in bipolar disorder patients
(Nunes et al., 2007; Kessing et al., 2010). Importantly, patients
in early-stage AD receiving lithium treatment showed improved

cognitive function (Leyhe et al., 2009; Forlenza et al., 2011, 2012),
although other studies showing no such enhancement have also
been reported (Macdonald et al., 2008; Pomara, 2009).

CONCLUSIONS AND FURTHER DIRECTIONS
GSK-3β is not a conventional kinase. It plays critical roles in
neurodevelopment and in both physiological and pathological
aging. In AD, a functional link between Aβ and tau unequivo-
cally implicates the dysregulation of GSK-3β activity. In recent
decades, Aβ was considered the cornerstone of AD etiology.
However, the present consensus is that the disease has a mul-
tifactorial origin. Growing evidence supports inflammation as
one of the most deleterious inputs to the aging brain. Given the
relevance of GSK-3β in regulating crucial steps of the inflamma-
tory cascade, efforts should be channeled into the development
of novel and selective inhibitors that safely regulate the activity
of this kinase, and, in parallel, block the inflammatory and self-
propagating cascade that it triggers in previously damaged brain
areas. Although the involvement of GSK-3β in multiple path-
ways controlling most of the crucial aspects of cell physiology
complicates the design of specific inhibitors, it is of paramount
importance to address the whole spectrum of GSK-3β actions
on cell biology under both physiological and pathological condi-
tions. A promising avenue are also regenerative strategies focused
on the capacity of certain neural populations to be continu-
ously generated and integrated into pre-existing neural circuits
(adult neurogenesis). Given the pivotal role played by GSK-3β

in the regulation of these processes, it is imperative to per-
form exhaustive research into the therapeutic potential of GSK-3β

inhibitors. Such drugs would allow the normal development and
functional integration of newborn neurons in the hippocam-
pal formation previously damaged by the progression of the
disease.
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