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Besides myelination of neuronal axons by oligodendrocytes to facilitate propagation
of action potentials, oligodendrocytes also support axon survival and function. A key
transcription factor involved in these processes is nuclear factor-κB (NF-κB), a hetero
or homodimer of the Rel family of proteins, including p65, c-Rel, RelB, p50, and p52.
Under unstimulated, NF-κB remains inactive in the cytoplasm through interaction with
NF-κB inhibitors (IκBs). Upon activation of NF-κB the cytoplasmic IκBs gets degradated,
allowing the translocation of NF-κB into the nucleus where the dimer binds to the κB
consensus DNA sequence and regulates gene transcription. In this review we describe
how oligodendrocytes are, directly or indirectly via neighboring cells, regulated by NF-κB
signaling with consequences for innate and adaptive immunity and for regulation of cell
apoptosis and survival.
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INSULATING AXONS VIA OLIGODENDROCYTES
Oligodendrocytes are specialized cells in the CNS that wrap mul-
tiple axons with myelin, forming as many as 40 separate myelin
segments (Salzer, 2003). This specialization of glial cells was the
last major phylogenetical invention for the nervous system of
vertebrates (Zalc et al., 2008). A series of stages that result from
reciprocal, axo-glial interactions are necessary for the develop-
ment of myelinated fibers. For the initial step of myelin formation,
immature post-mitotic oligodendrocytes need to extend numer-
ous cytoplasmic protrusions (filipodia) in order to find suitable
myelin-competent axons. As microfilament-rich filipodia extend
they are invaded by microtubules, thus further enlarging these
processes and converting them to lamellipodia. The oligoden-
drocyte cytoskeleton now increases microfilament polymerization
and branching in response to axonal signals. The majority of
axonal signals identified to date is expressed to prevent the ini-
tiation of myelination and/or exuberant over-myelination. One
example includes axonal PSA-NCAM, which is developmentally
downregulated to coincide with the onset of myelination (Decker
et al., 2000; Fewou et al., 2007). To ensure that glial numbers are
matched to axon length, axon outgrowth regulates gliogenesis
via mitogenic and trophic effects (Barres and Raff, 1999). But
interactions between axonal ligands and glial receptors have to
be integrated to modulate myelination and myelin thickness. But
what are the exact signals? The protein tyrosine phosphatase Src
homology region 2 domain-containing phosphatase-1 (SHP-1) is
a critical regulator of developmental signals leading to terminal
differentiation and myelin sheath formation by oligodendrocytes;
Figure 1). The SHP-1 homolog, SHP-2, regulates oligodendro-
cyte progenitor proliferation (Kuo et al., 2010). ErbB, the neuronal
growth factor receptor of Neuregulin-1 (NRG-1), affects oligo-
dendrocyte specification after binding to its receptor (Figure 1).
It further regulates differentiation, myelination, and survival, at
least in vitro (Canoll et al., 1996; Vartanian et al., 1997; Calaora

et al., 2001). The situation in vivo is more complex. Only minor
effects on overall myelination in the CNS of mice were reported
for knockout of NRG1, whereas a significant hypermyelination
was achieved by transgenic overexpression of NRG1 (Brinkmann
et al., 2008). However, in a more recent study, hypomyelina-
tion and thinner myelin sheaths were found in the prefrontal
cortex when NRG-1 signaling was disturbed (Makinodan et al.,
2012). It should be mentioned that neuronal activity can regu-
late NRG-1 levels thus linking it to myelin production (Ziskin
et al., 2007; Liu et al., 2011). Myelin sheaths are radially orga-
nized with distinct proteins in the abaxonal (e.g., oligodendrocyte
myelin glycoprotein) and inner glial (e.g., MAG and NCAM)
membranes.

Myelination of axons allows for the process of saltatory conduc-
tion, in which a neuronal action potential is propagated between
nodes of Ranvier to increase both the speed and energy efficiency
of nerve conduction. The generation of action potentials (AP) is
possible due to the accumulation of voltage gated sodium chan-
nels, Na+/K+ ATPases, Na+/Ca2+ antiporters, as well as specific
subtypes of potassium channels important for the regulation of
repetitive discharges (Devaux et al., 2004; Pan et al., 2006). Myeli-
nation also markedly decreases the refractory time (time needed
for repolarization before a new AP can be supported by the axon;
Felts et al., 1997; Sinha et al., 2006). Qualitative differences of
myelination along axons, such as variations in internode dis-
tance and myelin sheath thickness, enable systematic regulation
of conduction velocity. Myelination sometimes ensures that axons
of different length have isochronous conduction times, enabling
them to activate their synaptic targets simultaneously. Two exam-
ples include the projections of retinal ganglion neurons to the
lateral geniculate (Stanford, 1987) and projections of inferior oli-
vary neurons to Purkinje cells in the cerebellar cortex (Sugihara
et al., 1993). Thus, intact myelin enhances the integration of infor-
mation across spatially distributed neural networks supporting
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FIGURE 1 | Signals in the regulation of myelination, de- and

remyelination in the CNS with a focus on NF-κB. Myelination involves
a sequence of orchestrated steps, where PSA-NCAM is downregulated in
neurons and astrocytes, and neurons release several growth/trophic
factors such as NRG-1 and regulate oligodendrocyte survival and
maturation by upregulating SHP1. Oligodendrocytes provide trophic
support to axons and promote their viability via upregulation of MCT1 and
the release of lactate. There is no activation of NF-κB in astrocytes or
oligodendrocytes (1). When myelinated axons undergo demyelination,
myelin debris is phagocytized by microglia. Resident astrocytes and

microglia get activated and produce glutamate in addition to inflammatory
signals such as IL6, NO, ADAM12, and TNFα. Activated astrocytes and
microglia show elevated NF-κB activation and produce factors that activate
each other. The role of NF-κB in neurons is unclear at present. NF-κB in
oligodendrocytes is not activated (2). Under the influence of yet unknown
factors that are produced by non-activated microglia and potentially by
non-activated astrocytes, NF-κB is activated in recruited oligodendrocyte
progenitor cells that engage demyelinated axons and differentiate into
remyelinating oligodendrocytes (3). Color code on the left represents cell
type.

cognitive and motor functions (Bartzokis et al., 2001; Lutz et al.,
2005). There is further increasing evidence that oligodendrocytes
provide trophic support to axons and promote their viability.
These mechanisms may include metabolic coupling, with oligo-
dendrocytes providing axons with lactate as an energy source via
the lactate transporter monocarboxylate transporter 1 (MCT1,
also known as SLC16A1; Funfschilling et al., 2012; Lee et al.,
2012b).

Nuclear factor-κB is a ubiquitously expressed dimeric molecule
that regulates the expression of a variety of genes and has a key
role in a number of cellular processes such as innate and adaptive

immunity, cellular proliferation, apoptosis, and development.
Often diseases involving oligodendrocytes are associated with NF-
κB activation causing some degree of demyelination. Whether this
effect is of direct nature or indirect via surrounding cells and the
potential contribution of NF-κB to phenomena like myelination
and remyelination will be carefully highlighted and discussed in
the following paragraphs.

IS NF-κB ESSENTIAL FOR MYELINATION IN THE CNS?
Originally identified as a transcription factor that regulates
expression of the immunoglobulin kappa light chain gene in
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response to cytokine stimulation in B lymphocytes, NF-κB is now
known to be expressed in most, if not all, mammalian cells. Five
subunits, p50, p52, p65 (RelA), RelB, and c-Rel, form homo and
heterodimers (Karin and Lin, 2002; Yan and Greer, 2008). In an
inactive state, NF-κB dimers are sequestered in the cytoplasm by
the specific inhibitors IκBα, IκBβ, and IκBε. On stimulation, IκB is
phosphorylated by the IκB kinase (IKK) complex, ubiquitinated,
and then degraded by the 26S proteasome. The IKK complex con-
tains two enzymatic subunits, IKK1 (also known as IKKα) and
IKK2 (also known as IKKβ), with partially overlapping substrate
specificity. IKK2 is required for NF-κB activation through the
canonical pathway triggered by proinflammatory stimuli. These
diverse stimuli that activate NF-κB do not only include inflam-
matory cytokines such as tumor necrosis factor-α (TNF-α) but
also neurotrophic factors such as nerve growth factor (NGF),
neurotransmitters, cell adhesion molecules and various types of
cell stress (Mattson and Camandola, 2001; Karin and Lin, 2002).
Genes that can be induced by NF-κB include those that encode
cytokines such as TNF-α and interleukin-1β, interleukin 6, the
antioxidant enzyme manganese superoxide dismutase, and the
anti-apoptotic protein Bcl-2 (Mattson and Camandola, 2001).
At present, there is ongoing controversial discussion about the
contribution of NF-κB to myelin production in the CNS. In a
recent study it was shown that in patients with additional copies
of the IKBKG gene, which encodes for NF-κB essential modulator
(NEMO), the regulatory subunit of the IKK complex, NF-κB sig-
naling is impaired. These patients showed defective myelination,
developmental brain abnormalities and mild mental retardation
(Philippe et al., 2013). From these findings it was concluded that
proper myelination in the CNS requires NF-κB activation. How-
ever, several transgenic mouse studies seem to show exact the
opposite. When the NF-κB subunit RelA was almost completely
deleted from the mouse CNS, histological and electron micro-
scopic analyses showed unimpaired oligodendrocyte densities and
normal myelin sheath formation (Kretz et al., 2014). Accordingly,
mice with inactivated NF-κB by either overexpression of the super
repressor IκBα or deletion of the activator IKKβ in the neuro-
glial compartment develop normally and display no alterations
in overall neuro-anatomical and behavioral features (Herrmann
et al., 2005; Zhang et al., 2005). There is further evidence that
IKKβ-mediated NF-κB activation is dispensable for oligodendro-
cyte maturation in vitro and in vivo, and subsequent insulation
of axons in the CNS (Raasch et al., 2011). These results are either
in sharp contrast to the reported crucial role of NF-κB signaling
for myelination in the PNS (Nickols et al., 2003), or display a sim-
ilar picture as seen in mice with ablated IKKβ in Schwann cells,
where NF-κB activation was described as dispensable for myelina-
tion (Morton et al., 2013). Since the study by Nickols et al. (2003)
was solely performed using cultured neurons, a possible expla-
nation for the discrepancy between these findings might be that
Schwann cells simply behave differently in vivo and in vitro. Thus,
NF-κB signaling appears expendable for myelination in the PNS
and CNS.

NF-κB, DE-AND REMYELINATION IN THE CNS
Among the NF-κB family members only deletion of p50 results
in spontaneous demyelination in young adult animals (Lu et al.,

2006). Electron microscopy revealed an age-dependent reduc-
tion in the number of axons and degenerative alterations in
the optic nerve of both wild type and p50−/− mice. P50−/−
knockout markedly accelerated the axonal reduction and degen-
eration most likely due to demyelination as well as axonal
degeneration. This effect on myelination or axonal degeneration
cannot be explained by reduced NF-κB activity since p50 defi-
ciency in mice enhances NF-κB activity (Schmitz and Baeuerle,
1991; Tang et al., 2010). Accordingly, in mice with conditional
neuronal NF-κB ablation, the clinical course of experimen-
tal autoimmune encephalomyelitis (EAE), a well-characterized
animal model mimicking multiple sclerosis in humans, param-
eters of inflammation and axonal densities in the spinal cord
white and gray matter were not different to littermate con-
trols (Lee et al., 2012a). In a similar approach using geneti-
cally engineered mice, a cell type specific knockout of NF-κB
essential modulator (NEMO) or IκBα-kinase-complex (IKK)-2
with Nestin promoter-driven Cre expression ameliorated EAE
(van Loo et al., 2006). Here the NF-κB regulated expression
of pro-inflammatory cytokines and cell adhesion molecules in
astrocytes rather than effects in neurons were found essen-
tial for the propagation of EAE. In the only real contrasting
study a neuroprotective effect of neuronal IKK-2 in autoim-
mune demyelination was reported (Emmanouil et al., 2011). It
cannot be excluded that the observed effects are due to poten-
tially other, so far unknown, phosphorylation targets of IKK-2
than IκB. In vitro studies have shown that NF-κB exhibits a pro-
survival role in a rat oligodendrocyte precursor cell line, with
p50 being more effective than p65 to prevent TNF-α-induced
apoptosis (Hamanoue et al., 2004). NF-κB further promotes
survival and maturation of oligodendrocyte progenitor cells
in vitro (Nicholas et al., 2001), a finding that was not appar-
ent by our in vivo study where we found a normal number
of mature oligodendrocytes in the adult corpus callosum of
IKK2-deficient brains (Raasch et al., 2011). Importantly, brain-
specific IKK2-dependent NF-κB signaling has an essential role
during toxin-induced demyelination in vivo. The amelioration
of demyelination in mice with brain-restricted NF-κB inhibition
correlated with impaired induction of inflammatory cytokines,
which are potentially toxic for oligodendrocytes. This protection
against demyelination was mediated through ablation of IKK2
from astrocytes but not from oligodendrocytes (Raasch et al.,
2011). Astrocytic NF-κB inhibition would also diminish expres-
sion of A disintegrin and metalloproteinase (ADAM) 12, which
showed elevated expression especially in brain regions affected by
oligodendrocyte loss (Baertling et al., 2010). An increased num-
ber of ADAM12-positive astrocytes was for example observed
after the induction of toxic demyelination by cuprizone feeding.
Whether this is ultimately of detrimental or supportive nature
for oligodendrocytic function has to be determined. ADAM12
has been shown to cleave insulin-like growth factor-2 binding
protein-3 (Shi et al., 2000). This protein is obviously functionally
related to the development of oligodendrocytes and the formation
and/or regeneration of the myelin sheath (Mewar and McMorris,
1997; Lovett-Racke et al., 1998). At present, however, it remains
elusive which functions ADAM12 takes over during de- and
remyelination.
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Astrocytic, but not microglial NF-κB inhibition was also
responsible for protection against cuprizone-induced demyelina-
tion by the new oral immunomodulatory compound Laquinimod
(LAQ; Bruck et al., 2012). This finding might seem surprising con-
sidering that during cuprizone-induced demyelination NF-κB was
activated not only in astrocytes but also in microglia (Millet et al.,
2009). Indeed, mice with a selective inactivation of the NF-κB
pathway in microglia were substantially protected from the induc-
tion of EAE (Goldmann et al., 2013). The loss of oligodendrocytes
may be replaced by proliferating nerve/glial antigen 2 (NG2)
cells, also known as oligodendrocyte precursor cells (Tripathi and
McTigue, 2007). These OPCs are able to migrate to the damaged
site and differentiate into mature myelinating oligodendrocytes if
the environment is permissive (Franklin and Ffrench-Constant,
2008). For instance, degenerated myelin contains inhibitory
molecules such as NogoA, Oligodendrocyte-myelin glycoprotein
(OMgp) and myelin-associated glycoprotein (MAG). Degener-
ated myelin further activates the FAK/PI3K/Akt/NF-κB pathway
in macrophages and increases the expression of inflammatory
mediators (Sun et al., 2010). These factors inhibit axon regener-
ation and further activate complement systems to destroy intact
myelin (McKerracher et al., 1994; Chen et al., 2000). In transgenic
mice with NF-κB inhibition specifically in astrocytes an increase
in oligodendrogenesis was observed following spinal cord injury
(Bracchi-Ricard et al., 2013). The same mice were significantly
protected against optic neuritis and showed a nearly complete pre-
vention of axonal demyelination, as well as a drastic attenuation
in retinal ganglion cell death (Brambilla et al., 2012). Follow-
ing EAE induction, NOS2 and the NAD(P)H oxidase subunits
Cybb/NOX2 and Ncf1 were upregulated in WT mice but not in
GFAP-IκBα-dn mice, where NF-κB is selectively inactivated in
astrocytes. On the other hand, activation of the NF-κB path-
way in oligodendrocytes contributes to the protective effects of
enhanced pancreatic endoplasmic reticulum kinase (PERK) sig-
naling during EAE including reduced oligodendrocyte apoptosis,
demyelination, and axonal degeneration (Deng et al., 2004). PERK
signaling activates NF-κB, an antiapoptotic transcription factor, by
repressing the translation of IκBα, an inhibitor of NF-κB (Lin et al.,
2013).

These GFAP-IκBα-dn mice showed not only preservation of
myelin compaction but also enhanced remyelination during recov-
ery from EAE due to reduced expression of pro-inflammatory
genes (Brambilla et al., 2014). In the same line, activation of NF-κB
within astrocytes resulted in a significant increase in oligodendro-
cyte death following trauma by reducing extracellular zinc levels
and inducing glutamate excitotoxicity (Johnstone et al., 2013).
These results are consistent with several in vitro studies which
indicated that astrocytes can directly modulate myelination via
the release of a number of secreted factors, depending on culture
conditions (Moore et al., 2011; Nash et al., 2011). From the in vivo
data, however, it could not be determined whether the decreased
expression of an NF-κB-regulated gene has a direct effect on oligo-
dendrocyte maturation or an indirect effect through other cells
such as microglia and/or infiltrating macrophages. Indeed, it was
speculated that inhibiting astroglial NF-κB affects the activation
status of microglia/leukocytes rendering them more supportive
for remyelination. From in vitro experiments it was reported that

non-activated microglia activate NF-κB in OPCs thereby increas-
ing the number of surviving oligodendrocytes by inhibiting the
apoptosis of OPCs and stimulating their maturation to oligoden-
drocytes (Nicholas et al., 2001). In accordance, when mice were fed
cuprizone together with low concentrations of lactacystin, a spe-
cific inhibitor of the 26S proteasome, they showed a decrease in
activated microglia response with a markedly diminished NF-κB
activation during their remyelination period when compared to
mice fed cuprizone only (Millet et al., 2009). Ineffective remyeli-
nation is often caused by the presence of differentiation inhibitors
in the vicinity of oligodendrocyte damage, which include cytokines
and chemokines, many of which are regulated by NF-κB (Kotter
et al., 2006; Kremer et al., 2011). Although NF-κB might also sup-
port the remyelination process via TNF, a prototypical inducer
of NF-κB, which is required for both remyelination and prolif-
eration of OPCs (Arnett et al., 2001; Figure 1), we found no
active role for oligodendrocyte-specific IKK2 during remyelina-
tion (Raasch et al., 2011). Inhibition of NF-κB in Schwann cells
also seems to have no major impact on remyelination except
for transiently slowing down the whole process (Morton et al.,
2012).

Taken together, the present data suggest no direct contribu-
tion of the oligodendrocytic NF-κB pathway to myelination, de-
and remyelination. Activation of astrocytic and microglial NF-κB,
however, seems to favor demyelination whereas its inhibition
supports remyelination. Activation of NF-κB in OPCs increases
the number of surviving oligodendrocytes and stimulates their
maturation to oligodendrocytes which effects myelination and
remyelination.
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