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Modular scaffolding proteins are designed to have multiple interactors. CASK, a member
of the membrane-associated guanylate kinase (MAGUK) superfamily, has been shown to
have roles in many tissues, including neurons and epithelia. It is likely that the set of
proteins it interacts with is different in each of these diverse tissues. In this study we
asked if within the Drosophila central nervous system, there were neuron-specific sets of
CASK-interacting proteins. A YFP-tagged CASK-β transgene was expressed in genetically
defined subsets of neurons in the Drosophila brain known to be important for CASK
function, and proteins present in an anti-GFP immunoprecipitation were identified by mass
spectrometry. Each subset of neurons had a distinct set of interacting proteins, suggesting
that CASK participates in multiple protein networks and that these networks may be
different in different neuronal circuits. One common set of proteins was associated with
mitochondria, and we show here that endogenous CASK-β co-purifies with mitochondria.
We also determined CASK-β posttranslational modifications for one cell type, supporting
the idea that this technique can be used to assess cell- and circuit-specific protein
modifications as well as protein interaction networks.
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INTRODUCTION
CASK (also known as Camguk and Caki in Drosophila) is a
member of the membrane-associated guanylate kinase (MAGUK)
family of scaffolding proteins. CASK is present in many cell types,
including most neurons (Martin and Ollo, 1996). In Drosophila,
the Cask gene encodes two families of proteins from two inde-
pendent transcriptional start sites. CASK-β proteins, which are
homologous to mammalian CASK, have a CaMK domain fol-
lowed by two L27’s, a PDZ, an SH3 and a guanylate kinase
domain. The other proteins are CASK-α’s which have a short
unique N-terminal sequence before the PDZ and lacks the CaMK
and L27 domains. CASK-α’s are more similar to mammalian
p55/MPP1 and may have functionally distinct roles (Slawson
et al., 2011).

Most previous work on CASK’s nervous system function has
been conducted on transheterozygote deficiency animals lacking
both the CASK and MPP1-like proteins. Adult deficiency ani-
mals are infertile and have severe locomotor defects (Martin and
Ollo, 1996). This is accompanied by long latency in the giant
fiber pathway and increased spontaneous release at the flight
muscle neuromuscular junction (Zordan et al., 2005). Larvae
lacking both proteins have locomotor defects (Sun et al., 2009)
and decreased FM dye loading/unloading at the neuromuscu-
lar junction, as well as reduced evoked and spontaneous current
amplitudes (Chen and Featherstone, 2011).

To look specifically at the role of the CASK protein in
Drosophila, we generated a mutant that lacked only CASK-β pro-
teins but retained the ability to make the shorter MPP1-like

proteins (Slawson et al., 2011). These animals are fertile and much
healthier than transheterozygote deficiency animals. In adults,
selective loss of the CASK-β protein produces locomotor (Slawson
et al., 2011) and learning defects (Malik et al., 2013). These
phenotypes map to separate neuronal subpopulations.

At the molecular level, CASK in Drosophila has been shown
to regulate the Eag potassium channel (Marble et al., 2005),
alter CaMKII autophosphorylation to decrease its calcium-
responsiveness (Lu et al., 2003; Hodge et al., 2006) and to interact
with neurexin to potentially regulate vesicle fusion (Sun et al.,
2009). In mammals, CASK has been associated with both presy-
naptic and postsynaptic function (for review see Hsueh, 2009)
and with signaling to the nucleus (Hsueh et al., 2000). CASK
may also regulate CaMKII autophosphorylation and synaptic
growth, phenotypes in glutamatergic motor neurons (Gillespie
and Hodge, 2013). The complex roles of CASK in behavior
and the multitude of binding partners in the literature sug-
gest that CASK may have different roles in different neuronal
circuits.

To test the idea that CASK may have neuron type-specific
binding partners, we developed methods to purify CASK-β pro-
tein complexes from neuronal subpopulations and identify asso-
ciated proteins by mass spectrometry. We find that CASK-β (from
here on referred to as just CASK) isolated from different neu-
ronal groups is associated with distinct, but overlapping sets
of proteins. Analysis of these proteins confirms CASK’s role in
synaptic function, and identifies a novel role for CASK as a
mitochondrially-associated protein.
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MATERIALS AND METHODS
FLY HUSBANDRY
All flies were raised at 25◦C in a 12:12 h light:dark cycle. Flies
were fed standard cornmeal-dextrose agar media. CASK pro-
teins (full-length wild type β isoform or mutants containing a
deletion of either the L27 or CaMK domains) tagged with a
C-terminal YFP were expressed in a cell-specific manner using
the GAL4/UAS system (Brand and Perrimon, 1993). All experi-
ments were done on a CASK-β null genetic background [CASKP18

allele (Slawson et al., 2011)] to ensure that the only CASK-
β present was the product of the tagged transgene. Briefly,
animals carrying a UAS-CASK-YFP transgene (made from a
cDNA encoding isoform B) were crossed to animals carrying
GAL4’s which expressed in specific cell types. The GAL4’s used
in this study were: C155-GAL4 (Genotype:P{GawB}elavC155,
Bloomington stock 43351; chromosome X), all neurons (Lin
et al., 1994); C164-GAL4 (Genotype:P{GawB}C164, Bloomington
stock 33807), a subset of adult neurons including some dopamin-
ergic neurons (Slawson et al., 2011; Slawson et al., in prepara-
tion); TH-GAL4, (Genotype:P{ple-GAL4.F}, Bloomington stock
8848; Chromosome 3), dopaminergic neurons (Friggi-Grelin
et al., 2003); and DILP2-GAL4 (Genotype:P{Ilp2-GAL4.R},
Bloomington stock 37516; Chromosome 2), neurons of the pars
intercerebralis which express Drosophila insulin-like peptide 2
(Corl et al., 2004).

CELL FRACTIONATION
Mitochondrial and cytosol fractions were separated as described
(Bahadorani et al., 2010). Briefly, 50 flies were gently crushed in
1 mL of chilled mitochondrial isolation medium (MIM: 250 mM
sucrose, 10 mM Tris (pH 7.4), 0.15 mM MgCl2) and then spun
twice at 1000 × g for 5 min at 4◦C to remove debris. Crude cytosol
was then spun at 13,000 × g for 5 min at 4◦C. The pellet, con-
taining the mitochondria, was washed once with MIM before
immunoblotting. The cytosolic supernatant was also collected for
immunoblotting.

IMMUNOPRECIPITATION
Approximately 100 fly heads, collected by sieving after freez-
ing flies in liquid nitrogen, were homogenized in 250 μl
chilled homogenizing buffer (20 mM Tris pH 7.2, and pro-
tease inhibitors). 250 μl of chilled solubilization buffer (20 mM
Tris pH 7.2, 2 mM EDTA, 200 mM NaCl, 2% deoxycholic acid,
2% Triton-X-100, and protease inhibitors) was added to the
homogenates. Proteins were solubilized by gentle rocking at 4◦C
for 2 h. The lysates were then centrifuged at 20,000 × g for
20 min to pellet undissolved material. Solubilized lysates were
filtered through an 0.2 μm filter and incubated overnight at
4◦C with Chemotrek GFP-TRAP™ beads (Allele Biotechnology,
San Diego, CA.), which had been previously equilibrated with
wash buffer (20 mM Tris pH 7.2, 100 mM NaCl, 1% deoxycholic
acid, 1% Triton X-100, and protease inhibitors). Following this
overnight incubation period, the beads were washed thrice with
ice cold wash buffer, boiled in SDS sample buffer, and sub-
jected to SDS-PAGE electrophoresis (see above). The gels were
analyzed by either Coomassie staining (for mass spectrometry)
or immunoblot. For analysis of posttranslational modifications

by mass spectrometry, immunopreciptation reactions included
50 mM NaF, 1 mM sodium orthovanadate and 0.1 μM Okadaic
acid in the buffer.

IMMUNOBLOTS
Samples were separated by 8% SDS-PAGE, transferred to nitro-
cellulose, and visualized on immunoblots. Bound secondary anti-
body (used at 1:5000) was detected via enzymatic assay using ECL
detection reagents (Amersham) and visualized with film using
a Kodak X-OMAT 2000A Developer. Primary antibodies used:
anti-ATP synthase subunit beta (MitoSciences MS503, 1:1000);
anti-CASK (gift of Gisela Wilson, 1:1000); anti-tubulin (Sigma
T-5168, 1:1000).

MASS SPECTROMETRY
LC-MS/MS was carried out at the Taplin Biological Mass
Spectrometry Facility, Cell Biology Department, Harvard Medical
School. Coomassie-stained bands were cut from SDS-PAGE into
approximately 1 mm3 pieces. Gel pieces were then subjected to a
modified in-gel trypsin digestion procedure (Shevchenko et al.,
1996) directly or for analysis of posttranslational modifications,
samples were reduced with 1 mM DTT for 30 min at 60◦C and
then alkylated with 5 mM iodoacetamide for 15 min in the dark at
room temperature before the in-gel trypsin digestion. Gel pieces
were washed and dehydrated with acetonitrile for 10 min followed
by removal of acetonitrile and complete drying in a speed-vac.
Gel pieces were rehydrated in 50 mM NH4HCO3 containing 12.5
ng/μl modified sequencing-grade trypsin (Promega, Madison,
WI) at 4◦C. After 45 min, the excess trypsin solution was removed
and replaced with 50 mM NH4HCO3 to just cover the gel pieces.
Samples were then placed at 37◦C overnight. Peptides were recov-
ered by removing the NH4HCO3 solution, followed by one wash
with a solution containing 50% acetonitrile and 1% formic acid.
The extracts were then dried in a speed-vac (∼1 h). Samples were
stored at 4◦C until analysis.

On the day of analysis, samples were reconstituted in 5–10 μl
of HPLC solvent A (2.5% acetonitrile, 0.1% formic acid). A
nano-scale reverse-phase HPLC capillary column was created
by packing 5 μm C18 spherical silica beads into a fused silica
capillary (125 μm inner diameter × ∼20 cm length) with a flame-
drawn tip (Peng and Gygi, 2001). After equilibrating the column
each sample was loaded onto the column via a Famos auto sam-
pler (LC Packings, San Francisco CA). Peptides were eluted with
increasing concentrations of solvent B (97.5% acetonitrile, 0.1%
formic acid).

As peptides eluted they were subjected to electrospray ioniza-
tion and then entered into an LTQ-Velos or LTQ-Orbitrap ion-
trap mass spectrometer (ThermoFisher, San Jose, CA). Peptides
were detected, isolated, and fragmented to produce a tandem
mass spectrum of specific fragment ions for each peptide. Peptide
sequences (and hence protein identity) were determined by
matching protein databases or translated nucleotide databases
with the acquired fragmentation pattern using the software pro-
gram, Sequest (ThermoFisher, San Jose, CA) (Eng et al., 1994).
Spectral matches were manually examined and multiple identified
peptides per protein were required. For posttranslational modifi-
cations, mass units corresponding to phosphate or acetate were
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included in the database searches and peptides were manually
inspected to ensure confidence.

ANALYSIS OF INTERACTORS
The complete list of detected peptides, the % coverage and the
number of peptides is shown in Supplemental Table 1. We applied
two criteria to determine the set of interactors for each cell type.
First, as a criterion for significance, we only considered pro-
teins for which >4 unique peptides were detected. Second, as a
criterion for specificity, we only considered proteins for which
the CASK-YFP immunoprecipitation produced at least a 4-fold
greater number of peptides than the control GFP immunoprecip-
itation. A list of proteins which met this criterion is provided for
each GAL4 driver in Supplemental Table 2.

To determine functional groupings of interactors, the CG
numbers of genes for which peptides were found were iden-
tified from FLYBASE and used as input in DroPNet (Renaud
et al., 2012), a web-based interface for building networks
(https://dropnet.gred-clermont.fr/DroPNet_project/index.faces).
Networks were created inclusive of all the filters. Hierarchical
network figures were generated and served as a template for
appropriate placement of nodes and edges in Adobe Illustrator.

For generating the pathway description table, plain text files
of the proteins co-precipitated with CASK were uploaded on
R-Spider interface (http://www.bioprofiling.de/gene_list.html).
Two separate analyses were taken into consideration, ProfCom
(Antonov et al., 2008) and R-Spider (Antonov et al., 2010) using
the Reactome and KEGG databases to determine biological path-
ways of the precipitated proteins.

RESULTS
RECOVERY OF CASK COMPLEXES FROM NEURONAL SUBPOPULATIONS
In order to identify cell type-specific binding partners for
CASK-β, we expressed YFP-tagged CASK-β in spatially restricted
domains on a CASKP18 null mutant background using the
GAL4/UAS system (Brand and Perrimon, 1993). This ensured
that the only source of full length CASK was the tagged trans-
gene. The tagged proteins were recovered by immunoaffinity
precipitation and their interacting proteins identified by mass
spectrometry. Figure 1 shows a schematic of this strategy.

We chose to examine 4 neuronal populations defined by
different GAL4 lines which we deemed potentially relevant
for CASK’s behavioral function. These lines were subsequently
tested for their ability to rescue CASKP18 phenotypes when wild
type CASK was expressed. C155-GAL4 expresses in all neu-
rons, while C164-GAL4 expresses in a subset of adult CNS
neurons. Expression of CASK under control of either of these
drivers can fully rescue the complex locomotor defects of the
CASKP18 mutant (Slawson et al., 2011). C164-GAL4 expresses
in a subset of dopaminergic neurons (data not shown), as
well as in mushroom bodies, pars intercerebralis, subesophageal
ganglion, motor neurons and antennal lobes (Slawson et al.,
2011). Behavioral experiments (Slawson et al., in preparation)
dissecting the contribution of these regions to locomotor func-
tion concluded that TH-GAL4, which expresses in dopamin-
ergic neurons, could rescue the initiation defects of the null
mutant, consistent with a role for dopaminergic transmission

in motor initiation in many species (Feany and Bender, 2000),
so this line was also used for pull-down. Expression in the
pars intercerebralis with DILP2-GAL4 did not rescue locomo-
tion, so this line was chosen to serve as a non-motor-relevant
control.

Domain organization of CASK transgenes used in these stud-
ies is shown in Figure 2A. Figure 2B shows Coomassie-stained
gels of immunoaffinity purified complexes and starting material.
CASK-YFP proteins and mCD8-GFP can be seen in the pull-
downs, but not in the starting material. A large number of bands
appear to be present in common, but there are also bands that are
unique to each GAL4.

Supplemental Table 1 lists all proteins from which we recov-
ered peptides. Significant interactors were defined as those pro-
teins for which more than 4 peptides were present and which
had a 4-fold or greater enrichment compared with a GFP control.
Using these criteria, from the list of >1000 proteins detected in
all the mass spec runs, we found 23 to be significantly associated
with CASK in C155-GAL4 cells, 63 to be associated in C164-GAL4
cells, 84 to be associated in TH-GAL4 cells and 6 to be associ-
ated in DILP-GAL4 cells (Supplemental Table 2). In all data sets,
CASK itself was recovered with ca. 20–30% coverage, indicating
successful immunoprecipitation.

KNOWN CASK INTERACTIONS ARE DEMONSTRATED IN
NEURON-SPECIFIC DATA SETS WITH FULL LENGTH CASK
CASK has many binding partners (for review see, Hsueh, 2009).
CASK was first identified as a neurexin binding protein (Hata
et al., 1996) and subsequently found to be a member of a tri-
partite neuronal complex with Mint1 (x11) and Veli (Butz et al.,
1998). Both neurexin and x11 (the fly Mint1 ortholog) were iden-
tified as significant interactors in the C155 and C164 samples and
Veli was recovered in the C155 pull-down (Supplemental Table 1).
CASK has also been shown to bind to and regulate CaMKII (Lu
et al., 2003; Hodge et al., 2006) and this kinase was present in all
samples except those derived from DILP2-GAL4 cells. The pres-
ence of known CASK-binding proteins in the pull-downs, but not
the GFP control, suggests our technique can recover genuinely
associated proteins.

There is also a significant amount of overlap in data sets from
different neuronal subsets (Supplemental Table 3). While only 5
proteins other than CASK were found in significant amounts in
all of the data sets, there were 22 that were found in 3 out of 4
of the neuron types. For this set of proteins the only cell type
that did not have them was DILP2-GAL4. Whether this is due to
the small number of these neurons and poor recovery of material
compared to the other drivers, or to some difference in the func-
tion of CASK in peptidergic neuroendocrine cells remains to be
determined.

ANALYSIS OF CASK-ASSOCIATED PROTEINS SUGGESTS THAT CASK IS
INVOLVED IN BOTH SYNAPTIC AND METABOLIC FUNCTIONS
Pathway analysis of the significantly associated proteins for the
C155, C164, and TH data sets is presented in Table 1.

The small number of significant interactors in the DILP2 data
set prevented meaningful pathway analysis for this line. In all
3 other neuronal sets, CASK has significant interactions with
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FIGURE 1 | Schematic representation of protocol. CASK-YFP fusion
proteins were expressed in a cell-specific manner using the GAL4/UAS
system (Brand and Perrimon, 1993) on a CASK-β null background (Slawson
et al., 2011) to ensure that the only CASK-β present was the product of the
transgene. Adult heads were collected and homogenized, and CASK
proteins were recovered with anti-GFP-conjugated beads. Eluted proteins
were separated by SDS-PAGE and Coomassie-stained gels were sent for
analysis by mass spectrometry to determine the proteins which associate
with CASK in the cell type targeted by the specific GAL4 line.

metabolic proteins. This is especially prominent in the TH data
set, where many mitochondrial proteins are found associated with
CASK. In the C155 and C164 data sets, a role for CASK in subcel-
lular localization is suggested by the presence of proteins involved
in formation of subcellular complexes.

CASK is also associated with a number of proteins involved
in neurotransmitter release (Supplemental Table 2). While the
stringency of the pathway analysis only renders this statistically
significant for C164, Comatose (comt), the fly NSF homolog, is a
significant hit in all but the DILP2 data set, and x11 and neurexin
are present in both C164 and C155. Synapsin (Syn) was found in
TH cells, but not other neuron types. Hsc70-4, a protein known
to be involved in calcium-dependent neurotransmitter release in
Drosophila (Bronk et al., 2001) was also present in the TH data
set. This association with vesicle release complexes is consistent
with synaptic phenotypes reported in Drosophila CASK mutants
(Zordan et al., 2005; Sun et al., 2009; Chen and Featherstone,
2011).

CASK IS PART OF SEVERAL PROTEIN INTERACTION NETWORKS
To further understand the nature of the relationships among the
significantly associated proteins we recovered, we asked if there
were physical interactions between the members of each data set
that might define networks or larger complexes. Using DroPNet,
we ran the data sets against protein interaction databases from
fly, human, worm and yeast. There were several statistically

FIGURE 2 | Isolation of CASK-interacting proteins. (A) Schematic of
CASK-β proteins used in this study. (B) Proteins eluted from anti-GFP beads
were separated by SDS-PAGE and visualized by Coomassie staining.
Genotypes are indicated above each lane. Bands can be seen at the correct
molecular weights for CASK-YFP and CASK-YFP deletion mutants
(indicated by “{”) and for control mCD8-GFP (indicated by “∗”). Identities of
proteins were confirmed by immunoblotting (data not shown).

significant networks uncovered for C155, C164, and TH, but
again the DILP2 data set was too small to yield results. Figure 3
shows the networks.

It is notable that the C155 networks are much less complex
than those found in TH and C164 neurons. Since C155 is a
panneuronal driver, it is sampling a very heterogeneous pool of
neuron types compared to the more restricted C164 and TH
drivers. This might suggest that these two drivers are picking up
cell type-specific interaction networks that are diluted when pull-
down of CASK is performed from all neurons. The extent and
interconnectedness of the C164 and TH neurons also suggests that
some of the proteins in the pull-downs might not directly interact
with CASK, but rather are brought down as part of a larger pro-
tein complex. Proteins that did not have known interactions with
other CASK-associated proteins are not shown in the figure and
may therefore reflect proteins for which direct interactions occur,
although this would have to be validated.

CASK IS ASSOCIATED WITH MITOCHONDRIA
A major feature of the groups of proteins associated with CASK
is their involvement in metabolic processes. In particular, CASK
appears to associate with a number of mitochondrial proteins,
including DJ-1(dj-1β), a mitochondrial stability factor involved
in Parkinson’s disease (Chang et al., 2014). To determine whether
this reflected the presence of CASK in or bound to mitochon-
dria, we purified this organelle by differential centrifugation and
immunoblotted the fractions for CASK, tubulin (as a marker
for cytosol), and ATP synthaseβ subunit (as a marker for mito-
chondria). Figure 4 demonstrates that CASK is present in both
cytoplasmic and mitochondrial fractions. Similar purification of
mitochondria from CASKP18 null animals shows no CASK band,
demonstrating the specificity of the antibody.
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THE CASK N-TERMINAL DOMAINS HAVE SPECIFIC INTERACTIONS
Previous work in our lab had shown that the CaMK and L27
domains in the N-terminal of the full length CASK-β protein
were required for its role in locomotion, since loss of that pro-
tein, in the context of normal levels of the CASK-α MPP1-like
protein, caused disruption of locomotor activity (Slawson et al.,
2011). Motor initiation defects could be rescued by expression
of full length CASK-β by either TH-GAL4 (Slawson et al., 2011),
but not with expression of forms of CASK-β lacking either the
CaMK or L27 domains (Slawson et al., in preparation). To see if
loss of these domains changed the binding of particular associ-
ated proteins, we expressed the mutant proteins under control of
TH-GAL4 and compared the recovered peptides to the data set of
the 101 significantly associated proteins obtained for full length
CASK.

The first immediately interesting observation was that there
were no proteins whose recovery was unique to the mutant forms
or was increased significantly (>2-fold) by loss of either of the
domains. This implies that neither of these domains is inhibit-
ing binding of ligands to other CASK domains (for schematic of
domain organization see Figure 2A).

There were, however, a small number of proteins whose bind-
ing was substantially (≥2-fold) decreased by loss of one or both
N-terminals domains, suggesting that these proteins are specifi-
cally interacting with the missing domains. Table 2 lists proteins
lost from pull-downs of mutant CASK.

The L27 domain had only 2 specific interactors, whereas the
CaMK domain had 13. These included synapsin (Syn) and chee-
rio (cher), proteins involved in synaptic function and plasticity.
The decrease in the number of CASK peptides recovered in the

Table 1 | Pathway analysis of associated proteins.

Process Pathway ID Description # Of input Input genes p-value

genes

PATHWAYS ASSOCIATED WITH PROTEINS PULLED DOWN WITH C155-GAL4

Cellular process GO:0007163 Establishment or maintenance of cell polarity 3 NRX CAKI VELI 0.01*

RN00010 Glycolysis/gluconeogenesis 4 TPI PYK ENO CG8036 0.029*

GO:0006468 Protein phosphorylation 3 CAMKII CAKI NINAC 0.295

PATHWAYS ASSOCIATED WITH PROTEINS PULLED DOWN WITH C164-GAL4

Neurotransmission GO:0016080 Synaptic vesicle targeting 3 NRX CAKI X11L 0.01*

GO:0007269 Neurotransmitter secretion 6 CG1618 KHC ALPHA-ADAPTIN
DAP160 CAKI X11L

0.075

Protein synthesis
and transport

GO:0008104 Protein localization 5 NRX ALPHA-ADAPTIN DAP160
TER94 NINAC

0.01*

GO:0006413 Translational initiation 5 EIF-4B EIF3-S9 EIF3-S10
CIF2 AGO2

0.025*

GO:0006886 Intracellular protein transport 3 ALPHA-ADAPTIN NINAC
ALPHACOP

0.325

Cellular process and
tissue development

GO:0007163 Establishment or maintenance of cell polarity 3 NRX CAKI X11L 0.115
GO:0007498 Mesoderm development 3 NK3 CHP PRM 0.325

PATHWAYS ASSOCIATED WITH PROTEINS PULLED DOWN WITH TH-GAL4

Amino acid
metabolism

RN00250 Alanine, aspartate and glutamate metabolism 6 GS2 SSADH CG1640 GOT1 CG7433
CG7145

0.01*

RN00480 Glutathione metabolism 5 PGD IDH DIP-B ZW GCLM 0.175

RN00350 Tyrosine metabolism 3 SSADH GOT1 ADH 0.175

Carbohydrate
metabolism

RN00010 Glycolysis/gluconeogenesis 6 PGI TPI PYK PGK ADH ENO 0.025*

RN00030 Pentose phosphate pathway 4 PGD CG8036 PGI ZW 0.035*

RN00020 Citrate cycle (TCA cycle) 4 IDH ATPCL ACON KDN 0.165

RN00500 Starch and sucrose metabolism 4 PGI UGP CG33138 GLYP 0.305

RN00562 Inositol phosphate metabolism 3 TPI CG9391 INOS 0.305

Cellular homeostasis GO:0055114 Oxidation reduction 16 SOD2 IDH SSADH CG31548 PGD
CG6084 TRXR CG7145 GPO GCLM
SU(R) PDH CG3523 ZW GDH ADH

GO:0045454 Cell redox homeostasis 6 PDI PRX5 ERP60 TRXR JAFRAC1
CG1837

0.065

Cellular process GO:0015992 Proton transport 3 VHA55 VHA68 VHA26 0.285

System process GO:0007611 Learning or memory 3 CAMKII GCLM CHER 0.315

Associated proteins for each GAL4 pull-down were analyzed against the Reactome and KEGG databases using ProfCom (Antonov et al., 2008) and R-Spider (Antonov

et al., 2010). A minimum of 5 genes was required for a pathway to be picked up. P-value is an estimate of the probability to infer the same size model from random

gene list of the same size. *denotes pathways that are represented significantly (P ≤ 0.05).
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FIGURE 3 | Interaction networks of CASK-associated proteins. Interaction
networks were detected using DroPNet (Renaud et al., 2012), a web-based
interface for building networks. Proteins found in each cell type were loaded
into DroPNet and searched against Drosophila, Yeast, Human, and Worm
protein interaction databases. Origin of each interaction is color-coded:
Drosophila databases, green, Drosophila Protein Interaction Mapping project,
purple, Human interlogs, blue, Yeast interlogs, red, and Worm interlogs,
brown. Top: there were 10 interactions in the C155-GAL4 data set (23
proteins), describing 2 networks. 13 members of the data set showed no

interactions and are not shown. The average number of interactions on 10
random gene lists of the same size was 0.2. Middle: there were 82 total
interactions in the C164-GAL4 data set (63 proteins), describing 3 networks.
23 members of the data set showed no interactions and are not shown. The
average number of interactions on 10 random gene lists of the same size was
1.5. Bottom: there were 122 interactions in the TH-GAL4 data set (84
proteins) describing 2 networks. 17 members of the data set showed no
interactions and are not shown. The average number of interactions on 10
random gene lists of the same size was 1.4.

�CaMK pull-downs likely reflects a lack of stability of the trun-
cated protein (see Figure 2B). An interesting point with this
mutant is that there is still association of CaMKII indicating that
there are likely binding sites for the kinase other than the CaMK
domain. This is consistent with the data in Lu et al. (2003) that

suggested interactions of purified CaMKII with multiple domain
of CASK. There were also 4 proteins whose recovery was reduced
in both mutants, suggesting they either may have binding sites
that span both domains or that these domains interact to form a
unique binding surface that is disrupted when one of the domains
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is deleted. Overall, the recovery of only 19 of 84 associated pro-
teins changed, suggesting that the other 65 significantly associated
proteins interact with domains common to CASK-β and the
CASK-α isoforms.

CASK IS POSTTRANSLATIONALLY MODIFIED IN C164-GAL4 NEURONS
Posttranslational modification of eukaryotic proteins is an effec-
tive way of regulating their function (Mann and Jensen, 2003).
Posttranslational modification may alter protein-protein inter-
actions, protein trafficking, enzymatic function and protein
turnover (Seo and Lee, 2004). A challenge to proteomic exper-
iments is to map these modifications accurately. Importantly,
posttranslational modification can vary significantly in differ-
ent cell types, which may contribute to cell-type specific diver-
sification of protein functions (Dickerson and Mains, 1990;

FIGURE 4 | CASK is associated with mitochondria. Debris-cleared fly
head extract (whole) was centrifuged to separate mitochondria (mito) from
cytosol (cyt). Purity of samples was assessed by immunoblotting with
anti-alpha Tubulin, a marker for cytosol and anti-ATP synthaseβ subunit, a
marker for mitochondria. Samples from wild type (WT) and CASKP18

mutant flies (null) were analyzed by immunoblotting. Upper panel shows
CASK associated with both cytosolic and mitochondrial fractions in wild
type fly heads.

Christensen et al., 2007). Most proteomic experiments do not
address these cell-specific differences, since proteins are typically
precipitated only from whole organ lysates. Since we can express
CASK in cell-specific manner using different GAL4 driver lines,
we decided to test the possibility of detecting cell type-specific
posttranslational modifications using this methodology.

We isolated transgenic CASK-YFP from the C164-GAL4 cells
using anti-GFP in the presence of phosphatase inhibitors and high
levels of EDTA to inhibit kinases and acetyltransferases. In this
experiment we were able to acquire ∼80% coverage of CASK-
YFP. We detected three peptides which were posttranslationally
modified (Table 3).

Two of these peptides were phosphorylated at threonine
residues, while one of the peptides was acetylated on a lysine
residue. CASK is an atypical kinase and known to be a phospho-
protein (Mukherjee et al., 2008, 2010), and it is also a substrate
for CDK5 (Samuels et al., 2007).

The phosphorylation sites on mammalian CASK have been
mapped in COS cells (Samuels et al., 2007). Surprisingly, in
our experiments we did not see phosphorylation of the cognate
residues of the Drosophila CASK, indicating that the phosphory-
lation in this type of neuronal cell may be different than in renal
cells. One of the threonines phosphorylated in Drosophila CASK
is conserved in almost all CASK orthologs, indicating that that
phosphorylation may also be evolutionarily conserved.

Protein acetylation is a key posttranslational modification,
regulating various aspect of cell biology. Target proteins that
are acetylated include histones, nuclear transcription factors,
cytoskeletal proteins and proteins involved in cellular metabolism
(Choudhary et al., 2009). Surprisingly, we discovered that a lysine
residue in CASK is acetylated. This lysine is conserved in human
CASK, suggesting that it could be a conserved modification in

Table 2 | Domain-specific CASK interactions in dopaminergic neurons.

Decreased in �L27 Decreased in �CaMK Decreased in both

Gene Function Gene Function Gene Function

CG2947 Hsc binding protein Idh Isocitrate dehydrogenase AnxB9 Annexin

Vha26 vacuolar H+ ATPase subunit Pgk Phosphoglycerokinase CG3244 Lectin-like

CASK MAGUK prtp Thioredoxin

Pdi Protein disulfide isomerase Pyk pyruvate kinase

cher Cheerio, actin-binding

Prx5 Periredoxin

Syn Synapsin

Vha68-1 Vacuolar H+ ATPase subunit

Uba1 Ubiquitin/SUMO transferase

GlyP Glycogen phosphorylase

UGP UTP–glucose-1-phosphate uridylyltransferase

Dip-B Dipeptidase

CG3523-RA Thioesterase

CASK proteins were expressed in dopaminergic neurons under control of TH-GAL4. There were no proteins found to be enriched by greater than 2-fold over full

length CASK for either deletion mutant. Significant hits (≥4 peptides and either absence from GFP control pull-down or enrichment 4-fold) were calculated for

CASK-YFP missing both L27 domains (�L27) and for CASK-YFP missing the CaMK domain (�CaMK). To be considered decreased, a protein had to have a peptide

ratio ≤ 0.5 mutant/full length. Of the 101 proteins found to be associated with full length CASK in TH-GAL4 cells, only 19 were decreased by loss of N-terminal

domains.
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Table 3 | Posttranslational modification of CASK.

Modification Drosophila CASK Human CASK

Acetylation YLAK@HNAIFDTLDVVTYEEVVK YLAKHNAVFDQLDLVTYEEVVK

Phosphorylation DVYGEEALRVT#PPPMVPYLNGDELDNVEGGELQHVTR EVYSDEALRVTPPPTSPYLNGDSPESANGGMDMENVTR

Phosphorylation HNAIFDT#LDVVTYEEVVK HNAVFDQLDLVTYEEVVK

CASK-YFP was expressed under control of C164-GAL4, and then immunoprecipitated and analyzed by mass spectrometry for posttranslational modifications.

The type of modification is indicated in the leftmost column, while the location of modifications is shown in the second column. @ indicates acetylation of the

preceding residue, while # indicates phosphorylation of the preceding residue. The human CASK sequence of the homologous region is shown in the third column.

A single acetylation site was found at aa 394 and this lysine is conserved in human CASK. Two phosphothreonines were detected at positions 149 and 402. Only

the threonine at position 149 is conserved in the human protein. The bold values signify the post-translationally modified residues in Drosophila CASK and the

corresponding residues in human CASK.

mammalian CASK as well. Our results clearly provide a proof
of principle for using this methodology to map posttranslational
modifications in a cell specific manner in vivo.

DISCUSSION
UNCOVERING CELL- OR CIRCUIT-SPECIFIC PROTEIN FUNCTIONS
The limited coding capacity of the genome has resulted in animals
using the same gene products in different ways at discrete times
and places in the organism. This has been especially common in
the brain where many genes implicated in early development (e.g.,
Notch) have been shown to have critical adult-specific functions
in behavior (Presente et al., 2004). It is likely, however, that the
diversity of utilization of particular gene products may go even
deeper. Complex organs like the brain are composed of numer-
ous cell types organized into circuits which carry out specific
brain functions. To achieve a full understanding of how these cir-
cuits function, it is necessary to understand the exact roles of the
molecules present in the neurons. For proteins like CASK, which
have many potential interactors, their role in a particular circuit
cannot be understood without information about which of their
many partners they engage in that neuron type. This serves to
emphasize the need to develop methods to isolate cell-specific
protein interactions and modifications if we are to understand the
function of molecules in their native contexts. The technique that
we have used to examine this issue for CASK, a MAGUK scaf-
folding protein with numerous known interactions, may prove
to be one which could be used to investigate this problem for
other proteins. It may also prove useful for examining changes
in posttranslational modification or protein partners in a sin-
gle cell type after some behavioral manipulation (learning, sleep
deprivation, etc.).

POTENTIAL PITFALLS
The successful use of our method makes several assumptions. The
first is that there will not be “mixing” of complexes/associations
after cell lysis. Many protein-protein interactions are quite sta-
ble and exchange is most likely a problem for interactions that
are low affinity or have fast off rates. The inclusion of salt and
detergents can select for stronger interactions, but there is a risk
of missing interesting low affinity partners. The fact that we see
unique proteins for the different cell types or groups of cell types
suggests that under our conditions we have been able to main-
tain specificity for a subset of protein partners. In contrast, for
proteins that are common between all samples, interpretation is

less clear. Either the strength of the interaction needs to be inves-
tigated to rule out potential for exchange in the lysate or some
functional evidence of interaction from all the cell types needs to
be obtained.

A second assumption that is made is that the amount of the
tagged protein is in the physiologically relevant range in the cell.
Overexpression could drive artifactual association with proteins
that would not normally form complexes with the experimen-
tal molecule. With CASK, we expressed the tagged protein on
a null background and we know that the amount of protein
expressed is sufficient to rescue locomotor defects without induc-
ing locomotor hyperactivity associated with overexpression of
CASK on a wild type genetic background (Slawson et al., 2011;
Slawson et al., in preparation). This behavioral titration pro-
vides confidence that the amount of CASK in our experiments is
appropriate.

NEURON SPECIFIC FUNCTIONS OF CASK: REGULATION OF
NEUROTRANSMITTER RELEASE?
One of the first postulated roles for CASK in the nervous system
was regulation of neurotransmitter release. While the presence
of known interacting proteins (e.g., neurexin, Mint1/x11) and
the pathway analysis (Table 1) support this role, the absence of
particular proteins from a subset of the neuron types may also
be informative. It has been shown for many proteins, including
CASK, that binding sites can have multiple potential partners and
that competition between partners can result in loss of particular
interactions. In the case of Mint1/x11, which we see in C164- and
C155-GAL4 pull-downs, but not in TH- or DILP2-GAL4 cells,
previous work has shown that Caskin can disrupt its interaction
with CASK (Tabuchi et al., 2002). Whether some similar com-
petition with another ligand is behind the failure of Mint1/x11
to be detected in DILP2 or TH cells remains to be explored.
Similarly, neurexin interacts with CASK via its PDZ domain and
the absence of neurexin in DILP2 and TH cells may indicate either
absence of neurexin in these cells or a steric competition. The dif-
ferences in transmitter release-related interactors in different cell
types may point to participation of CASK in cell-specific release
complexes.

NEURON-SPECIFIC FUNCTIONS OF CASK: METABOLISM?
The pull-down of a large number of metabolic and mitochon-
drial enzymes, particularly from dopaminergic cells, suggests that
CASK may have a previously unappreciated role in regulation
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of cellular energy stores. This is supported by our finding that
CASK is physically associated with mitochondria. The fact that
CASK mutants show Parkinsonian-like defects in locomotor initi-
ation (Slawson et al., 2011) which can be rescued by expression of
full length CASK in dopaminergic cells (Slawson et al., in prepa-
ration) indicates that this protein has a unique role in this cell
type. In mammalian models of Parkinson’s disease, defects in
energy balance and oxidative stress are believed to be at the heart
of the pathological process. Dj-1, a gene implicated in familial
Parkinson’s has been shown to be a mitochondrial stability factor
and we show here it is a CASK-associated protein.

NEURON SPECIFIC FUNCTIONS OF CASK: TRANSCRIPTIONAL
REGULATION?
In the sets of cell-specific associated proteins we obtained, it is
notable how different the DILP2 data set is from the other neuron
types. DILP cells are neuroendocrine in nature, and likely have
a different vesicle release machinery, which may account for the
lack of presynaptic proteins involved in small transmitter release.
But what is most remarkable is the presence of histones. CASK is
known to be capable of translocating to the nucleus under some
conditions (Hsueh et al., 2000) and to interact with CINAP, a
nucleosome-modifying protein (Wang et al., 2004). The identifi-
cation of histones in the pull-downs from DILP cells may suggest
that in these cells CASK has a significant nuclear presence, dif-
ferent from its role in dopaminergic or other non-peptidergic
neurons.

CONCLUDING REMARKS
In this study we demonstrate that CASK, a MAGUK scaffolding
protein which has been shown to interact with many different
protein binding partners, participates in distinct protein com-
plexes in different neuronal populations. The method we have
used, expression of tagged protein in a subset of neurons to iden-
tify by mass spectrometry its cell- or circuit-specific interacting
partners, is one that could be utilized in a variety of systems to
understand the specific role of a protein in a specialized neu-
ron type. This technique has the potential to give fine-grained
information on protein interactions that cannot be obtained from
identification of complexes from whole brain where there is a
mixture of many cell types. This kind of analysis will allow us to
build hypotheses about cell-specific molecular functions that will
advance our understanding of behavior.
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