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Pea3 subfamily of E-twenty six transcription factors consist of three major -exhibit
branching morphogenesis, the function of Pea3 family in nervous system development
and regeneration is only beginning to unfold. In this study, we provide evidence that
Pea3 can directs neurite extension and axonal outgrowth in different model systems, and
that Serine 90 is important for this function. We have also identified neurofilament-L and
neurofilament-M as two putative novel targets for Pea3.
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INTRODUCTION
PEA3 subfamily of ETS (E-twenty six) domain transcription fac-
tors includes PEA3 (Polyoma enhancer activator 3)/E1AF (E1A
enhancer binding protein)/ETV4 (Xin et al., 1992; Higashino et al.,
1993), ER81/ETV1 (Monte et al., 1995), and ETS related molecule
(ERM)/ETV5 in mammals (Laudet et al., 1999). Characteristically,
ETS domain factors are involved in regulation of diverse sets of
gene expression during tissue patterning and lineage commitment
(Anderson et al., 1999; Chotteau-Lelievre et al., 2001), particularly
in tissues that show branching morphogenesis such as lung and
kidneys (Liu et al., 2003), as well as in metastatic tumors. Mem-
bers of the PEA3 subfamily have been shown to be expressed in
the developing nervous system of mouse from E9.5 to birth (Lin
et al., 1998; Chotteau-Lelievre et al., 2001). Strong erm expres-
sion was seen in the caudal region, for example, with restricted

expression in the cephalic region, prospective midbrain and ven-
tral forebrain (Firnberg and Neubuser, 2002). Expression of er81
in various mouse tissues of embryonic origin was less clear, with
a very faint signal being visible only by E9.5 at the frontonasal and
branchial arch regions (Chotteau-Lelievre et al., 1997). In adults,
ER81 transcript was found to be present in a variety of tissues,
including heart, brain, lung, liver, pancreas, spleen, testis, and
intestines (Monte et al., 1995). Pea3 was found to be expressed
in the neural crest in zebrafish (Brown et al., 1998), and in the
developing mouse embryo pea3 expression was similar to that
of erm, both genes being strongly expressed in posterior neural
plate (Chotteau-Lelievre et al., 2001), while in adult mice Pea3
RNA is most abundant in the brain and the spinal cord (Xin et al.,
1992; Laing et al., 2000), and was shown to mediate FGF signaling
(Znosko et al., 2010). Furthermore, regulation of Pea3 through
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FGF18 signaling was shown to be important for the laminar posi-
tioning of developing neocortex (Hasegawa et al., 2004). However,
ER81 was not found to be regulated by FGF in Xenopus, indicating a
divergence in signal response of Pea3 family members (Roussigne
and Blader, 2006). More recently, Pea3 was shown to be upreg-
ulated in DRGs upon NGF signaling during target innervation
(Fontanet et al., 2013).

In concert with their pattern of expression, PEA3 family mem-
bers have been shown to have a role in formation of functional
neuron circuitry, both in chicken and mice (Ghosh and Kolod-
kin, 1998; Lin et al., 1998; Ladle and Frank, 2002). Particularly
striking is the finding that in forming functional neuron circuits
at the spinal cord level, PEA3 family members are selectively
expressed in specific classes of motor neurons and correspond-
ing muscle afferent sensory neurons at limb levels of the spinal
cord in chick; namely, Pea3 positive sensory afferents and motor
neurons form on circuit, while ER81 positive sensory afferents
and motor neurons form a different circuit, indicating a selec-
tivity (Arber et al., 2000). ER81 loss-of-function mutants have
provided supporting evidence for its role in the establishment
of sensory-motor circuits at the limb level (Arber et al., 2000).
Pea3 knock-out mice, however, did not seem to have any major
effects, except for ejaculation dysfunction in males, although it
is suspected that the infertility of pea3−/− males may have an
underlying neuronal basis, particularly since Pea3 is expressed
in specific bundles of motor neurons that innervate limb mus-
cles and in afferent sensory neurons of these same muscles and it
is conceivable that Pea3 is also expressed in neurons that inner-
vate the penis (Laing et al., 2000). Unfortunately, since members
of the PEA3 family of transcription factors have overlapping
expression patterns, the full picture of their function in the organ-
ism may not be revealed until double or triple knockouts are
established.

E-twenty six domain proteins have been shown to be targets
for signaling pathways, particularly the MAPK pathway, during
development (rev. Wasylyk et al., 1998; Sharrocks, 2001). ERM
and Pea3 were implicated in nasal development in response to
FGF signaling (Firnberg and Neubuser, 2002). In spite of all these
pieces of data on the function of Pea3 subfamily at various levels
of nervous system development, and its interaction with various
upstream signals such as FGF, NGF, or GDNF, detailed molecular
mechanisms of upstream signaling and downstream transcrip-
tional targets are still far from understood. Most of the studies on
Pea3 are carried out with respect to breast tumorigenesis, and sev-
eral targets such as matrix metalloproteases have been identified
with respect to metastasis (de Launoit et al., 2006), however how
exactly Pea3 is involved in neuronal differentiation has remained
unclear.

In this study, we wished to address if Pea3 was capable of dif-
ferentiation of neuronal model cells, such as PC12, SH-SY5Y,
or NSC-34, and even in adult DRG cells, and if so which tar-
get genes it may be regulating. We demonstrate that Pea3 can
indeed induce neurite extension in these various systems, indicat-
ing that it may prove a useful target towards neuroregeneration,
and we present evidence that MAPK signaling may be important
for this process, as a transcriptionally inactive Serine90-to-Alanine
mutant of Pea3 is incapable of differentiating NSC-34 cells in vitro.

We further identify two presumptive novel targets of Pea3 to be
neurofilament-L and neurofilament-M.

MATERIALS AND METHODS
PLASMIDS
Mammalian expression plasmids for wildtype mPea3 were kind
gifts of Yvan de Launoit. pCDNA3 VP16 was constructed by
cloning the acidic activation domain of VP16 transcription fac-
tor into the NcoI - Xba I sites of pCDNA3 vector. Pea3VP16
plasmid was constructed by cloning PCR amplification product
of mouse Pea3 sequence into HindIII - XhoI sites of pCDNA3-
VP16 plasmid. pCDNA3-Pea3 was constructed by cloning the
PCR amplification product of mouse PEA3 sequence into the
HindIII - XbaI sites of pCDNA3 vector. pEGFP-C3 was used
in co-transfection experiments. Pea33-Luciferase reporter con-
struct, where 5 × Pea3 optimal sites upstream of the TK minimal
promoter drives the expression of the luciferase reporter gene.

Human Neurofilament M (NFM; promoter ID 39810) and
Neurofilament L (NFL; promoter ID 41145) promoter sequences
were retrieved from Cold Spring Harbor Laboratory “Transcrip-
tional Regulatory Element Database” tool1, and were analyzed for
putative Pea3 protein binding sites with ALGGEN PROMO2, a vir-
tual laboratory to study transcription factor binding sites. Binding
sites within the restricted NFM and NFL promoters were named as
“ets” and sites with highest Pea3 binding affinity (with the dissim-
ilarity rate below 7%) were selected to mutate or delete to study
the trans-activation capacity of Pea3.

Cloning of wild type NFL and NFM promoters were cloned and
mutations of the putative Pea3 binding regions on these promot-
ers were introduced by using primers in Table 1. Amplification
products of NFM and NFL promoters (both spanning a region
from −953 to +64 for hNF-L and from −654 to +10 for hNF-
M) were cloned into KpnI - HindIII sites of pGL2 - Basic vector
(Promega).

Serine residues on mouse Pea3 protein that are potential targets
for Proline-directed phosphorylation were mutated by two-step
PCR-based site directed mutagenesis method. Essentially, forward
and reverse primers were designed to replace the codon for ser-
ine with codon for either alanine or glutamic acid (Table 2). In
the first step of PCR, 100 ng pcDNA3-mPea3 was mixed with the
1.25 U Pfu DNA polymerase (Promega), Pfu buffer (Promega) to
final concentration 1X, dNTP mix to final concentration 200 μM
each, and forward and reverse primers (at varied concentrations)
with mutant codons were paired with ultimate reverse and ulti-
mate forward primers that constraints wild type mouse Pea3
coding sequence, respectively, run at the 56◦C annealing temper-
ature. Amplicons from first step of PCR were run at 46◦C for six
cycles with 10× PrimeStar buffer (Takara) to final concentration
1×, PrimeStar DNA polymerase (Takara) to final concentra-
tion 1.25 U and PrimeStar (Takara) dNTP tofinal concentration
200 μM each to initiate annealing of overlapping mutant regions.
To obtain the full length Pea3 gene coding sequence, second step
of PCR was run at 56◦C for 30 cycles with the previous reaction

1http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=home
2http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
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Table 1 | List of primers used for cloning promoter luciferase

constructs and the mutants thereof.

hNFL-Luc forward 5′-ACGAGACGGTACCGTGCTGCGGTTGGTGG-3′

hNFL-Luc reverse 5′-ACGAGACAAGCTTTGGGAGCCCGGAGAGAG-3′

hNFM -Luc forward 5′-ACGAGACGGTACCGAAAAGGATCTCCGAGG-3′

hNFM -Luc reverse 5′-ACGAGACAAGCTTGCTGTCACAGCGTTCT-3′

NFL�1-Luc forward 5′-AATCAGGAGAAGATGAATTGCA-3′

NFL�1-Luc reverse 5′-TGCAATTCATCTTCTCCTGATT-3′

NFL�2-Luc forward 5′-GGCAACTTACCAAGTGTCACG-3′

NFL�2-Luc Reverse 5′-CGTGACACTTGGTAAGTTGCC-3′

NFM�-Luc Forward 5′-AGACGGTACCGAAGAGGGGCCAAA-3′

NFM�-Luc Reverse 5′-ACGAGACAAGCTTGCTGTCACAGCGTTCT-3′

Table 2 | List of primers used for cloning phosphor-mutants of mPea3.

mPea3 S90A Forward primer 5′GCT TTC CAT GCC CCC ACC3′

mPea3 S90A Reverse primer 5′GGT GGG GGC ATG GAA AGC3′

mPea3 S90E Forward primer 5′GCT TTC CAT GAA CCC ACC3′

mPea3 S90E Reverse primer 5′GGT GGG TTC ATG GAA AGC3′

Sites that are mutated are underlined.

mix completed with ultimate forward and reverse primers and
additional PrimeStar DNA polymerase and PrimeStar buffer.

Resultant PCR products were then cloned into the Hind III-
XhoI sites of pcDNA3 and pCMV3-Tag-6. Bacterial transforma-
tion was done for the amplification of resultant plasmid constructs
and for further validation analysis. The validation of the cloning
was done by the colony PCR where positive bacterial colonies
were directly used as a PCR template, then restriction enzyme
digestion was done with Hind III-XhoI for further confirmation
of the presence of Pea3 coding sequence. Plasmid clones from
positive bacterial colonies were then purified for sequence analysis
for final confirmation of presence of Pea3 sequence with desired
mutation (data not shown). Pea3 phospho-mutant plasmids were
further analyzed for proper gene expression and translation (data
not shown).

CELL CULTURE
PC12 pheochromacytoma cells were maintained in DMEM sup-
plemented with 10% Horse serum and 5% Fetal Bovine serum
in the presence of antibiotics, penicillin and streptomycin, and
L-glutamine. Differentiation experiments were performed in
collagen-coated plates, unless otherwise stated (Collagen Type
IV, Sigma C0543). Transient transfections were carried out with
Effectene reagent (Qiagen 301425), following manufacturer’s
instructions. Nerve growth factor (NGF 2.5 S, Sigma N6009) was
used commonly at 50-100 ng/ml. Epidermal growth factor (EGF,
Sigma E4127) was used at 100 nM. Basic fibroblast growth factor
(bFGF) and Insulin-like Growth Factor-1 (IGF-1) were used at
final concentrations of 20 ng/ml and 100 ng/ml, respectively.

Mouse Motor Neuron (NSC-34) cell line and SH-SY5Y neurob-
lastoma cell line were grown in the high glucose DMEM (Gibco,

1129855) supplemented with 10% Fetal Bovine serum in the
presence of penicillin, streptomycin, L-Glutamine and ampho-
tericin B (Biological Industries, 03-033-1B) and primocin (Invivo-
gen, ant-pm-1). Differentiation experiments were performed in
collagen-coated plates (Collagen I, Gibco A10483-01). SH-SY5Y
cells (106 cells/dish) were treated with 0.3 μM of aphidicolin
(Sigma, 10797) in serum-free medium. After 24 h, the cells were
treated with 10 μM retinoic acid (RA, Sigma R2625) to induce
neuronal differentiation. Cells were collected on day 0, 1, and 3 for
further analysis as required.

Dorsal root ganglia (DRG) from adult rats were dissected, col-
lected in RPMI medium with antibiotic-antimycotic and treated
with collagenase (5000 U/ml) for 60 min followed by 0.25%
trypsin/EDTA for 15 min. They were then transferred to RPMI
medium containing 10% horse serum and 5% fetal bovine serum
and gently triturated by 5-10 passages through a fire-polished Pas-
teur pipette. About 20 softened DRG were co-transfected with
3 μg Pea3 and 1 μg DsRed or with 1 μg DsRed alone in 100 μl
Rat Neuron Nucleofector® solution (Lonza, Austria) using the
Amaxa Nucleofector (program O-03). Transfected neurons were
plated onto poly-D-lysine/laminin pre-coated dishes. Cultures
were maintained in RPMI medium with B27 supplement (Gibco
Invitrogen) and antibiotic-antimycotic at 37◦C in a humidified
atmosphere with 5% CO2. No approval for extracting tissue from
dead animals was required. The DRGs used for cell culture were
obtained from young adult rats immediately after exsanguinations.
This procedure did not involve an animal experiment. Hence no
Ethical Committee Approval was necessary.

IMMUNOFLUORESCENCE
For immunofluorescence, the cells (PC12 or NSC-34) were com-
monly seeded on 12-well plates. For differentiation experiments,
cells were commonly co-transfected with GFP plasmid and live
cells were routinely scored at 48 and 96 h after transfection
under inverted microscope (Nikon ECLIPSE TE200). The expres-
sion plasmid-to-GFP ratio was commonly 3:1. Differentiation
was scored as the percentage of neurite-bearing cells (at least
two cell body length was taken as the cut-off point) among the
GFP-expressing cell population. At least three different fields per
well, and at least two different wells per transfection were scored,
and average and standard deviation calculated using MS Excel
software. The results were represented as the average of dupli-
cate wells (three fields per well) in at least two independent
experiments.

REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION
Total cytoplasmic RNA was prepared using commercial kits
(RNAeasy kit, Qiagen, cat. no. 74104, or GeneJET RNA Purifi-
cation kit, Thermo cat. no. #K0731) using manufacturer’s
instructions. 1 μg (M-Mu-LV-Rtase, Roche) or 500 μg (New
England BioLabs E6300L) RNA was used for each first strand
cDNA synthesis reaction, as per instructions of the mentioned
manufacturer, using random primers (Boehringer Mannheim).
The amount of cDNA used was standardized using GAPDH
and linear range determined. Typically the RT-PCR reactions
were performed using 10–50 ng cDNA template in 25 μl reac-
tion with BioTaq polymerase or 20 μl reaction with iTaq
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FIGURE 1 | Either a constitutively active Pea3-VP16 fusion or Pea3

induced with EGF can induce neurite formation in PC12 cells. (A) A
VP16 fusion of mouse Pea3 leads to neurite formation in PC12 cells. Cells
were transfected with 500–1 μg of GFP expressing plasmid in 1:3 ratio
with either a control plasmid expressing VP16 acidic activation domain
alone, or a fusion of Pea3 to VP16 activation domain, and analyzed by
fluorescence microscopy. A typical micrograph is shown. (B) The cells
were scored for % neurite formation among the GFP-expressing
population. (Two different DNA preparations were used for Pea3VP16
plasmid; data shown for only one of these.) (C) Luciferase assays in
response to NGF, EGF, and transfected Pea3 on SRE-Luciferase reporter

construct; average of at least three independent experiments. (D) A
typical micrograph of cells transfected with 500–1 μg of GFP expressing
plasmid in 1:3 ratio with either a control plasmid expressing pCDNA3 (not
shown), pCDNA3 Pea3, or pCDNA3 Pea3 in combination with EGF as
described, and analyzed by fluorescence microscopy. The arrow shows
axon-like processes several cell body length. (E) A graph summarizing the
scoring for differentiation experiment in (D). The experiment was repeated
with two different DNA preparations for pCDNA3 Pea3, and at least 3
fields per well were counted. The control plasmid pCDNA3 yielded no
differentiation (not shown), while NGF in a similar time scale (2–4 days
after transfection) resulted in around 12% differentiation (not shown).

polymerase, at 50–64◦C, as required, for 26–30 cycles. GAPDH
primers (ADS1036/1037) were 5′ AGACAAGCTTCAGAGCCAC-
CCGGGACC and 5′AGACTCTAGATCGGAGTCAACGGATTTGG;
Pea3-specific primers (ADS1046/1047) were 5′ GACAAGCTTCGC-
CTACG ACTCAGATGTC and 5′ GACTCTAGAAGCTCCAATC-
CCTTCCTGC; Neurofilament-L primers were 5′ CAGTCTG-
GAGAACCTCGACC and 5′ TTCCAGGACCTTGTTCTGCT;
Neurofilament-M primers were 5′AGGCATCGCACATCACGGTG
GAG and GGATATTGTGATTGGGGGTCG. The products were
resolved in 2.5 % Nu-Sieve agarose gels and were analyzed using
QuantiOne imaging software (BioRad).

LUCIFERASE REPORTER ASSAYS
HEK293 and SH-SY5Y cells were grown in 1 g/ml DMEM (Sigma)
supplemented with 10% fetal bovine serum (GIBCO-Invitrogen),
and 1% antimycotic-antibiotic (GIBCO-Invitrogen). 24 h prior
to transfection, cells were seeded into 24-well plates with the
density of 50 thousand cells per well. Plasmid transfections of
cells were performed using 1.5 μl of TransFastTM (Invitrogen) for
reporter assays with NFM and NFL promoter reporter constructs.
Essentially, plasmids were transfected per well in the following
amounts: 100 ng Renilla Luciferase (Promega), 200 ng reporter
construct (NFM-Luc or NFL-Luc) and wild type Pea3 expression
plasmid with varying concentrations as indicated in the text (usu-
ally 5, 25, 50, 100, 150, and 200 ng, completed up to 200 ng
DNA in total with pCMV empty vector). After 48 h, cells were
harvested and lysed for 15 min with Luciferase Cell Culture Lysis

5× Reagent (Promega) diluted to 1× with PBS. Thirty microliter
of cell lysate triplicate for each sample was transferred to the white
opaque luminometer microtiter 96-well plate and mixed first with
the 30 μl Dual-Glo® Luciferase Substrate to measure luciferase
activity from promoter of interest and later 30 μl Dual-Glo®
Stop & Glo® Substrate to measure luciferase activity from inter-
nal control Renilla Luciferase. Luciferase activity was measured
with Luminoskan Ascent (ThermoLab Systems) for 10 s for each
substrate.

CHROMATIN IMMUNOPRECIPITATION (CHIP)
Chromatin Immunoprecipitation (ChIP) assay was carried out
with EZ-ChIPTM ChIP Kit (Catalog # 17-371) according to the
manufacturer’s instructions. Essentially, DNA was sheared enzy-
matically with the micrococcal nuclease. Some of the sheared DNA
was saved as input, and rest of the sample was precipitated using
30 μl of anti-FLAG M2 affinity resin (Sigma) that was previ-
ously resuspended in Triton lysis buffer to precipitate 100 μl of
Flag-tagged Pea3 protein that is bound to sheared DNA. Pea3 pro-
tein bound DNA was then eluted by reverse crosslink reaction
in high salt environment enhanced with heat treatment. DNA
in the samples was purified by using PureLink PCR Purifica-
tion Kit (Invitrogen). Purified DNA from both input and ChIP
samples were then detected by q-PCR (NFM ets-1 spanning
region forward primer: 5′-AAGGGCAGGGTGAACTGGACT-
3′; NFM ets-1 spanning region, reverse primer: 5′-
TTCTTTAGCCTTCTACCCTCTTATCCTC- 3′). Percent Input
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was calculated so as to normalize qPCR data, and essentially signal
intensities obtained from the ChIP samples were divided by signal
intensities obtained from the Input sample.

RESULTS
EXOGENOUS Pea3 CAN ENHANCE NEURITE FORMATION IN PC12 CELLS
In order to study the effects of Pea3 directly in differentiation, a
chimeric protein with full length mouse Pea3 and the potent acidic
activation domain of VP16 transactivator of the Herpes Simplex
Virus (HSV) was constructed. The fusion protein was confirmed
to activate from an artificial luciferase reporter (data not shown).
When exogenous Pea3-VP16 fusion was expressed in PC12 cells,
it induced neurite formation within 2 days, regardless of collagen-
coating (Figure 1A). The percentage of neurite-bearing cells was
significantly increase, up to around 25%, when Pea3-VP16 was
transfected to PC12 cells (Figure 1B). Expression from an SRE-
Luciferase reporter in PC12 cells was not greatly altered upon
stimulation of PC12 cells that were serum starved for 36 h and
stimulated with either EGF or NGF overnight, whereas cells
transfected with exogenous mPea3 showed significant increase
in luciferase reporter activity (Figure 1C), indicating that even
mPea3 without any VP16 fusion was transcriptionally active in
this context.

Although a constitutively active Pea3-VP16 fusion protein is
useful in studying the effects of an activated Pea3, it does not rep-
resent a physiologically relevant situation. Therefore, PC12 cells
were next transfected with mouse Pea3, either in the presence or
absence of Epidermal Growth Factor (EGF). In contrast to Nerve
Growth Factor (NGF), which results in sustained MAPK activation
and neuronal differentiation, EGF is known to lead to proliferation
in these cells through transient activation of the MAPK path-
way (Marshall, 1995; Aksan and Kurnaz, 2003). Although EGF
is not sufficient to drive differentiation of PC12 cells on its own, in
combination with exogenous mPea3 it was seen to enhance long
axonal projections (Figures 1D,E).

EXOGENOUS Pea3 CAN ENHANCE BOTH FGF-INDUCED AND
IGF-1-INDUCED AXONAL GROWTH IN PRIMARY DRG NEURONS
In order to further analyze whether Pea3 would have the same
effect on axonal outgrowth in adult neurons, we have studied adult
DRG cultures transfected with mPea3 expression vectors, in com-
bination with EGF, bFGF, and IGF-1. It was observed that IGF-1
alone could cause a significant increase in total axonal growth
(around 2000 microns), while bFGF alone could not (around
only 1000 microns) in DRGs transfected with DsRed plasmid
alone (Figures 2A,B). When these neurons are co-transfected

FIGURE 2 | Adult DRG neurons co-transfected with Pea3 expression

vector and DsRed and stimulated with bFGF, EGF, or IGF-1.

(A) representative images of DRG neurons co-transfected with Pea3 and
DsRed, stimulated with IGF-1; (B) total axonal growth in adult DRG neurons
transfected with DsRed alone (left panel; IGF-1 and bFGF compared with
control, using one way ANOVA test with Tukey’s post test, **p < 0.01,
***p < 0.001), or co-transfected with DsRed and mPea3, in the presence or
absence of growth factors (right panel; EGF, IGF-1, and bFGF compared with
control, using one-way ANOVA test with Tukey’s post test, **p < 0.01,
***p < 0.001); (C) difference in maximal axonal outgrowth normalized to
control cells transfected with DsRed alone (left panel; IGF-1 and bFGF

compared with control; using one way ANOVA test with Tukey’s post test,
*p < 0.01, **p < 0.001), or co-transfected with DsRed and mPea3, in the
presence or absence of growth factors (right panel; EGF, IGF-1, and bFGF
compared with control, using one-way ANOVA test with Tukey’s post test,
**p < 0.01, ***p < 0.001); (D) number of branch points in adult DRG neurons
transfected with DsRed alone (left panel; IGF-1 and bFGF compared with
control; using one way ANOVA test with Tukey’s post test, **p < 0.01,
***p < 0.001), or co-transfected with DsRed and mPea3, in the presence or
absence of growth factors (right panel; EGF, IGF-1 and bFGF compared with
control, using one-way ANOVA test with Tukey’s post test, **p < 0.01,
***p < 0.001).
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FIGURE 3 | Pea3 can enhance axonal outgrowth in NSC-34 motor neuron

cell lines. (A) Percent differentiation as scored by the number of green
fluorescent cells with axonal outgrowth longer than 2 cell body length versus
total GFP-expressing cells (two sets of duplicates are shown, at least four
different fields are scored per well); (B) representative images of NSC-34
cells transfected with either empty pCDNA3 vector, pCDNA3-mPea3,
pCDNA3-VP16, pCDNA3-mPea3-VP16 or pCDNA3-mPea3-EN; (C) Percent

differentiation by Pea3 phosphorylation mutants as scored by the number of
green fluorescent cells with axonal outgrowth longer than two cell body
length versus total GFP-expressing cells (two sets of duplicates are shown, at
least four different fields are scored per well); (D) representative images of
NSC-34 cells transfected with either empty pCDNA3 vector, wildtype
pCDNA3-mPea3, or the phosphorylation mutants pCDNA3-mPea3-S90A,
pCDNA3-mPea3-S90E.

with DsRed and mPea3 expression vector and then stimulated,
it was observed that while stimulation of mPea3-expressing cells
with bFGF did not cause a significant axonal growth, stimulation
with EGF caused a nearly twofold increase (although variabil-
ity was high between different DRG cultures due to transfection
efficiency), and IGF-1 on mPea3-expressing cells caused a nearly
threefold increase in total axonal growth (Figure 2B).

The results were similar in maximal distance growth analyses,
with EGF and IGF-1 stimulations equally enhancing total growth
when mPea3 was overexpressed in cells, as compared to DsRed
alone (Figure 2C). In terms of number of branches, however,
presence or absence of exogenous mPea3 did not have a significant
effect; there was only a slight enhancement in number of branch
points when mPea3-expressing cells were stimulated with EGF or
IGF-1 (Figure 2D).

WILDTYPE Pea3 CAN INDUCE DIFFERENTIATION IN NSC-34 MOTOR
NEURON CELL LINE, BUT A PHOSPHORYLATION MUTANT CANNOT
NSC-34 is a commercially available motor neuron cell line (pro-
duced through the fusion of embryonic mouse spinal cord cells
with neuroblastoma cells); they are capable of differentiation as
readily monitored by extensive axonal outgrowth, and are readily
transfected, making them valuable developmental models. When

these model cells were co-transfected with an empty expres-
sion vector, pCDNA3, and pEGFP, there was only background
spontaneous differentiation in around 5% of the GFP-positive
cells (Figure 3A), while transfection of Pea3 along with pEGFP
plasmid lead to differentiation of around 15-20 % of the GFP-
positive cells. pCDNA3-VP16/pEGFP co-transfection resulted in
around 10% differentiation, whereas pCDNA3-Pea3VP16/pEGFP
co-transfection resulted in well over 20% differentiation in
GFP-positive cells (Figure 3A). Interestingly, Pea3-EN, a domi-
nant negative form of Pea3 in fusion with the repression domain
of Engrailed transcription factor, also showed some enhanced
differentiation (around 15%), although this was lower than
differentiation induced by either Pea3 or Pea3VP16. Represen-
tative images of NSC-34 differentiation experiments are shown in
Figure 3B. While the motor neuron-derived cells normally appear
round in morphology, in Pea3- or Pea3-VP16-transfected cells
rather extensive axon-like neurite outgrowths of more than 2 cell
body length are readily observed and scored as differentiation.

Since phosphor-specific Pea3 antibodies are not commercially
available, we have generated phosphor-mutants of Pea3; partic-
ularly Serine 90 was shown to be important for transcriptional
activity, as in both PC12 and SH-SY5Y cells Pea3S90A mutants
showed basal level of activity on SRE-Luciferase reporter, while
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FIGURE 4 | Neurofilament-L and –M promoters contain several ets

motifs with significant similarity to Pea3 consensus binding site.

(A) Human Neurofilament-L and –M promoters were analyzed by with Promo
3.0 (http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB =
TF_8.3), and dissimilarity rates (which indicate the variance between the
binding motif of the transcription factor and the nucleotide sequence on the
promoter with respect to predicted transcription start site, shown as

percentage with respect to the binding matrices) are written below the
predicted ets motifs; (B) the expression analysis of NF-L and pea3 genes in
SH-SY5Y cells stimulated with IGF-1 for 30 and 60 min; (C) the expression
analysis of NF-M, NF-L, pea3 and gapdh genes in SH-SY5Y cells before (day 0)
or after (days 1 and 3) of stimulation in the presence (+) or absence (-) of
Retinoic acid and aphidicolin (RA/aph) as described in Sections “Materials and
Methods.”

Pea3S90E mutants showed even enhanced activity as compared to
wildtype Pea3 (data not shown). When NSC-34 cells were trans-
fected with the wildtype mPea3 expression plasmid, differentiation
was observed to increase nearly threefold, around 15%, as com-
pared to cells transfected with empty pCDNA3 plasmid, as in
the previous assay (Figure 3C; compare to Figure 3A). Exoge-
nous expression of a transcriptionally defective Pea3-S90A mutant
resulted in basal level of differentiation, whereas that of a tran-
scriptionally active Pea3-S90E mutant resulted in differentiation
to the same level as wildtype Pea3 (Figures 3C,D).

NEUROFILAMENT-L AND NEUROFILAMENT-M AS POTENTIAL TARGETS
OF Pea3
Since in experimental model systems Pea3 overexpression lead
to morphological changes similar to differentiation, the next
question was identifying which target genes would be responsi-
ble for this transformation. The known transcriptional targets
of Pea3 mostly include matrix metalloproteases, such as MMP-
2 and MMP-9, identified in the context of breast or prostate
cancer models. Therefore, in an attempt to identify more neu-
rologically relevant targets of Pea3, we have initially started
investigating genes that are correlated with neuronal differen-
tiation and whose promoters contained putative Pea3-binding
motifs.

Upon initial bioinformatic analysis, two neuron-specific pro-
moters were particularly striking with respect to their puta-
tive binding motifs: neurofilament-L and neurofilament-M. The
promoter sequences for these genes were obtained through
the Transcriptional Regulatory Element Database (TRED) Cold
Spring Harbor Laboratory3, and thereafter analyzed by ALGGEN
PROMO4, a virtual laboratory for the study of transcription factor
binding sites in DNA sequences, to identify potential Pea3 binding
motifs. Human Neurofilament-L (NF-L) promoter contained only
two Pea3-specific ets motifs, with 6.6 and 3.9% dissimilarity scores
(Figure 4A; it should be noted that mouse NF-L promoter con-
tains 4 ets motifs, two with 0% and two with 1% dissimilarity
scores, and rat NF-L promoter contains 3 ets motifs, with 0, 1, and
6% dissimilarities; not shown). Human NF-M promoter, on the
other hand, contained four ets motifs, only one of which shared
significant homology to consensus Pea3-binding motif (1% dis-
similarity; Figure 4A). The other three ets motifs in the human
NF-M promoter indicated 3, 4, and 6 % dissimilarities; however
when mouse and rat promoters were analyzed, rat promoter was
found to have 4 ets motifs, with 0.4, 5, 5, and 1.7 % dissimilarities,
and mouse promoter was found to have again 4 ets motifs with

3http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=searchPromForm
4http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
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FIGURE 5 | Neurofilament-L as a potential target promoter for activation

by Pea3. (A) hNF-L promoter, which contains 2 major ets motifs, was cloned
upstream of a luciferase reporter gene; (B) luciferase assays in SH-SY5Y
human neuroblastoma cells transfected with or without mPea3, in the
presence or absence of NGF stimulation; (C) luciferase assays in SH-SY5Y
human neuroblastoma cells transfected with or without mPea3, in the
presence or absence of retinoic acid (RA) stimulation; (D,E) SH-SY5Y cells are

co-transfected with wild type NF-Lgene promoter driven luciferase reporter
plasmid or with NF-L gene promoter which lacks putative Pea3 binding sites
ets-1 (NFL�1-Luc) or ets-2 (NFL�2-Luc) or both (NFL �1�2-Luc). Relative
luciferase activities were monitored in the presence (D) or absence (E) of
200ng of wild type Pea3. Luciferase activities represent reproducible three or
four independent experiments, and data plotted for each condition were
average of relative luciferase activity of triplicate samples.

6, 5, 3, and 1.7 % dissimilarities, data not shown). The ets motifs
predicted on the Neurofilament-H promoter yielded much lower
similarities (not shown), hence not included in this study. We have
therefore proceeded with our analyses, focusing on the only 2 ets
motifs in the Neurofilament-L promoter, and the highest scoring
ets motif in the Neurofilament-M promoter, in order to estimate
whether these promoters indeed would respond to Pea3-induced
transcriptional regulation.

Our first approach was to confirm whether Pea3/ETV4 mes-
sage was indeed upregulated, albeit modestly, in human SH-SY5Y
cells in response to stimulation with IGF-1 treatment, since IGF-1
caused the most prominent neurite extension in the DRG stud-
ies. To that end, we have serum starved SH-SY5Y overnight, and
treated them with IGF-1 for 30 and 60 min. RT-PCR experi-
ments confirmed a modest increase in Pea3/ETV4 expression at
60 min, parallel to a comparable increase in hNF-L expression
(Figure 4B). In a complementary experiment, we have differen-
tiated SH-SY5Y cells in the presence of Retinoic Acid (RA) and
aphidicolin, as described in Materials and Methods, for 3 days
(Figure 4C). Pea3 expression levels gradually increase with retinoic
acid and aphidicolin treatment even at Day 1 (close to 2- and 2.5-
fold in the absence and presence of treatment, respectively; this
slight increase even in the absence of treatment can be due to

spontaneous differentiating cells due to crowding). This increase
went up to around threefold in the absence and around 3.5-fold
in the presence of treatment on day 3 (Figure 4C). When NF-L
levels were similarly analyzed, a modest increase (around 1.2-fold)
was detected upon stimulation with retinoic acid and aphidicolin
treatment on day 1, which went up to 1.7-fold in the absence and
2.2-fold in the presence of treatment on day 3. Yet, due to already
high basal levels of endogenous NF-L in cell lines, the most promi-
nent change was observed in the level of NF-M expression, with
twofold increase on day 1 and around fourfold increase on day 3
of treatment (Figure 4C).

In order to analyze whether this increase in NF-L and NF-M
expression was a direct consequence of transcriptional regulation
by Pea3, we have initially cloned the hNF-L promoter upstream
of a luciferase coding sequence, as described in Section “Materi-
als and Methods” (Figure 5A). When SH-SY5Y cells transfected
with hNFL-Luc reporter were cultured in the presence or absence
of NGF, a basal level of stimulation was observed; co-expression
of Pea3 in these cells in the absence of stimulation resulted in
modest increase in reporter activity, whereas stimulation with
NGF in the presence of exogenous Pea3 resulted in more than
twofold activation when compared to Pea3 alone (Figure 5B).
A similar upregulation was observed when cells were stimulated
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with retinoic acid in addition to exogenous Pea3 expression
(Figure 5C). To confirm that the ets motifs were indeed important
for this regulation, we have then constructed ets motif deletion
constructs, termed NFL�1, NFL�2, and NFL�1�2, referring to
deletion of ets1, deletion of ets2, or deletion of both ets1 and
ets2 motifs. In the absence of exogenous Pea3 transfection to
the cells, deletion of either or both ets motifs resulted in loss
of basal level activation from the hNF-L promoter (Figure 5D).
However when these deletion constructs were co-transfected to
SH-SY5Y cells together with Pea3 expression plasmid, deletion
of ets1 motif resulted in almost complete repression of reporter
activity (Figure 5E), indicating that this motif is important for
Pea3-induced transcription from this promoter, whereas deletion
of ets2 motif resulted in only a modest decrease, if at all; strangely,
deletion of both ets1 and ets2 resulted in almost restoration of
basal level activity, indicating that ets2 may in fact be a repressive
element of NF-L promoter.

FIGURE 6 | Neurofilament-M as a potential target promoter for

activation by Pea3. (A) hNF-M promoter, which contains 1 major ets motif,
was cloned upstream of a luciferase reporter gene; (B) luciferase reporter
gene expression assay with either wild type 200 ng of NFM promoter or
NFM-� with deletion of putative Pea3 transcription factor binding site, in
SH-SY5Y cells (luciferase activities represent reproducible three to four
independent experiments and data plotted for each condition were average
of relative luciferase activity of triplicate samples); (C) quantitative PCR
results of chromatin immunoprecipitation (ChIP) assay, where Flag-tagged
mPea3 expression plasmid was co-transfected into the HEK293 cells with
or without NFM wild type and NFM-� luciferase reporter, subjected to
chromatin precipitation with anti-Flag antibody and purified DNA material
was amplified with NF-M gene promoter primers.

When a similar analysis was carried out for the hNF-M pro-
moter, which contains a single ets motif with significant homology
to consensus Pea3 binding site (Figure 6A), it was observed
that hNF-M-Luc reporter showed a nearly twofold activitation in
response to Pea3 as compared to empty reporter, which was signif-
icantly repressed when ets motif was deleted (NFM�; Figure 6B).
Since this highest-scoring ets motif appeared to be important for
transcriptional activation, we have then analyzed Pea3 binding
through ChIP assay: essentially, we have co-transfected SH-
SY5Y cells with pCDNA3-Pea3-Flag expression plasmid along
with either pGL2-NFM or pGL2-NFM� reporter plasmid, and
immunoprecipitated Pea3 protein as described in Section“Materi-
als and Methods,” thereafter amplified the ets-containing promoter
region by PCR. A reaction was observed only when Pea3 and
hNFM-Luc were co-transfected to the cells, but not the deletion
reporter construct (Figure 6C), indicating Pea3 indeed could bind
to this ets motif on the hNFM promoter.

DISCUSSION
The expression profile of Pea3 family members in development is
quite diverse, with earliest appearance reportedly at embryonic day
E9.5 in brain regions, followed by Erm and Er81 expression in the
lung at E10.5, in thymus at E12.5, urogenital tract at E13.5, carti-
lage at E14.5, and mammary tissue at E15.5, with all three proteins
expressed in skeletal muscles, sensory, and motor neurons, and
even in the colon (Maroulakou and Bowe, 2000). It was shown that
Pea3 subfamily of ETS domain transcription factors are involved
in a temporally regulated manner at later stages of nervous system
development, in particular for normal sensory neuron differen-
tiation and during branching (Lin et al., 1998; Haase et al., 2002;
Hippenmeyer et al., 2005). Paratore et al. (2002) have shown that,
unlike Pea3 and Er81, which are more important at later stages of
development, Erm is involved at early neuronal differentiation of
neural crest stem cells.

Different growth factors were shown to regulate Pea3 family
members, for instance Fibroblast Growth Factor (FGF) was shown
to regulate Pea3 proteins during development at various brain
regions as well as retina (Weisinger et al., 2010), while GDNF,
Met, HGF receptor was shown to play a role for recruitment of
Pea3-positive neurons to motor neuron pools (Helmbacher et al.,
2003). As stated above, Pea3 and Erm proteins were found to be
expressed at late stages of lung development and is regulated by
FGF signaling, however whether this is correlated with innerva-
tion with neurons (Liu et al., 2003), possibly in a manner similar
to myogenic differentiation (although in myogenesis Pea3 was
shown to be expressed in undifferentiated myoblasts at earlier
stages of myogenic differentiation; Taylor et al., 1997), has not
been clearly shown. Fontanet et al. (2013) have recently shown
that Pea3 expression was induced in DRG neurons that are stim-
ulated by NGF at the axon, indicating that this neurotrophin may
indeed regulate Pea3 during target innervation.

In spite of many such studies emphasizing the importance of
Pea3 subfamily proteins in various neuronal systems, targets of
Pea3 transcriptional activity with respect to nervous system have
not been fully understood. In C. elegans system ETS protein Ast-1
(axon steering defect-1) was shown to be responsible for dopamin-
ergic neuron differentiation, and in the same system some of the
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major dopaminergic genes were shown to contain ets motifs as
important regulatory elements (Flames and Hobert, 2009). Similar
set of genes have not yet been identified for mammalian systems.
So far, cadherin-8, ephrin receptor 4 (Ephr4) and semaphorin-3E
were shown to be targets of Pea3 in neurons (Livet et al., 2002; Koo
and Pfaff, 2002).

In our study, we have shown that transfection of Pea3 into
various different neuronal model cells was sufficient to induce
axon-like outgrowths, indicating that Pea3 could indeed be directly
involved in regulation of neuronal maturation and/or differen-
tiation in embryonic-derived motor neurons, but also in adult
DRGs, implying it may have a role in neuroregeneration. We have
further identified two potential novel targets for Pea3, namely,
neurofilament-L and neurofilament-M. Furthermore, in a parallel
ongoing microarray study, NF-L expression was found to be upreg-
ulated 1.87-fold in mPea3-transfected SH-SY5Y cells (manuscript
in preparation). Our findings are supported by a study where FGF
was shown to regulate Pea3 expression in the developing chick
retina in a MAPK-dependent manner, with Pea3 being particularly
expressed throughout retinal epithelium from stage 23 (McCabe
et al., 2006). In this chick study, the authors have shown that Pea3
and neurofilament-M double-positive neurons were only present
at the newly generated ganglion cell layer, and that FGF recep-
tor inhibitor not only reduces Pea3 expression but also NF-M
expression, confirming our findings in rat and human cell line
models.

There are various different and parallel transcriptional, sig-
naling, and guidance-related events involved in different aspects
of neuronal development in the vertebrates (reviewed in Polleux
et al., 2007), therefore the genes identified in our study as novel
Pea3 targets are likely to be only the tip of an iceberg of transcrip-
tional targets, that need to be identified for each Pea3 subfamily
member separately in different neuronal systems. In this study we
have only demonstrated the capacity of Pea3 to regulate neuronal
axon formation, and have shown potential phosphorylation site
Serine 90 to play an important part in this function. More detailed
analyses are required for a detailed dynamics of Pea3-dependent
transcriptional regulation in various aspects of nervous system
components.
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