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N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) in the
lateral nucleus of the amygdala (LA) is a form of synaptic plasticity thought to be a cellular
substrate for the extinction of fear memory. The LA receives converging inputs from the
sensory thalamus and neocortex that are weakened following fear extinction. Combining
field and patch-clamp electrophysiological recordings in mice, we show that paired-pulse
low-frequency stimulation can induce a robust LTD at thalamic and cortical inputs to LA,
and we identify different underlying molecular components at these pathways. We show
that while LTD depends on NMDARs and activation of the protein phosphatases PP2B and
PP1 at both pathways, it requires NR2B-containing NMDARs at the thalamic pathway,
but NR2C/D-containing NMDARs at the cortical pathway. LTD appears to be induced
post-synaptically at the thalamic input but presynaptically at the cortical input, since post-
synaptic calcium chelation and NMDAR blockade prevent thalamic but not cortical LTD.
These results highlight distinct molecular features of LTD in LA that may be relevant
for traumatic memory and its erasure, and for pathologies such as post-traumatic stress

disorder (PTSD).
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INTRODUCTION

Synaptic plasticity, a property of neuronal connections character-
ized by a change in synaptic strength following neuron activation,
is essential for memory formation but also for forgetting. Whether
presynaptic stimulation increases or decreases synaptic strength
depends on the magnitude of post-synaptic calcium elevation
(Citri and Malenka, 2008). Long-term potentiation (LTP), a form
of synaptic strengthening, is induced by a high rise in intracellular
calcium concentration leading to activation of protein kinases. In
contrast, long-term depression (LTD), a form of synaptic weaken-
ing, requires a moderate rise of intracellular calcium concentration
that activates protein phosphatases including PP2B (calcineurin)
and subsequently PP1 (Mulkey et al., 1993, 1994; Jouvenceau et al.,
2003, 2006; Pi and Lisman, 2008). Once activated, PP1 dephos-
phorylates some of its targets in synaptic terminals (Morishita
etal.,, 2001), in particular, post-synaptic NMDAR and AMPAR
subunits, leading to NMDAR downregulation and AMPAR endo-
cytosis, ultimately resulting in synaptic depression [for review, see
(Mansuy and Shenolikar, 2006)].

In the lateral amygdala (LA), LTP is associated with the forma-
tion of fear memory (McKernan and Shinnick-Gallagher, 1997;
Rogan etal., 1997; Tsvetkov etal., 2002), while LTD is thought to
underlie the extinction of fear memory (Kim etal., 2007; Hong
etal., 2009; Park etal., 2012). Molecular manipulations that inter-
fere with fear extinction do indeed impair LTD (Lin et al., 2003a,b;
Dalton etal., 2008, 2012; Ryu etal.,, 2008). The LA is a complex
limbic structure that integrates sensory information from corti-
cal and thalamic afferents. These afferents are highly plastic (Pape
and Pare, 2010; Johansen etal., 2011) and converge onto single
neurons in LA (Humeau etal., 2005). To date, LTD in LA has

been mostly studied at the thalamic pathway, essentially because
it is easier to induce than at the cortical pathway (Heinbockel and
Pape, 2000; Albrecht, 2007; Tchekalarova and Albrecht, 2007).
Similar to fear extinction (Falls etal., 1992; Sotres-Bayon etal.,
2007; Liu etal., 2009; Dalton etal., 2012), LTP at the thalamic
pathway depends on NMDARs and is primarily associated with
the NR2B subunit (Wang and Gean, 1999; Sotres-Bayon etal,,
2007; Miiller etal., 2009; Yu etal., 2010; Dalton etal., 2012). In
contrast, the mechanisms of LTD at the cortical pathway remain
unknown, but are postulated to be different from those at the
thalamic pathway (Doyere etal., 2003; Humeau etal., 2003). We
investigated these mechanisms in adult mouse LA and examined
whether they involve the phosphatases PP2B and PP1, and which
NMDAR subunits they recruit. Here we show that both PP2B
and PP1 are involved in LTD in the amygdala, but that distinct
NMDAR subunits are implicated at thalamic and cortical path-
ways. While LTD depends on NR2B-containing NMDARSs at the
thalamic pathway, it requires NR2C/D-containing NMDARs at
the cortical pathway. We also show that LTD is induced post-
synaptically at the thalamic pathway, but not at the cortical
pathway.

MATERIAL AND METHODS

ANIMALS

For all experiments, adult male mice C57Bl/6 (8—12 weeks old)
were used. Animals were housed in standard housing conditions
in a temperature- and humidity-controlled facility on a 12 h
reversed light/dark cycle. Mice had free access to food and water.
All procedures were carried out in accordance with the guidelines
of the Veterinary Office of the Canton of Zurich, Switzerland,
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and approved by its Commission for Animal Research (License
numbers 150/2006 and 105/2008).

SLICES PREPARATION

Mice were anesthetized with isoflurane 99.9% (AttaneTM) and
rapidly decapitated. Immediately after decapitation, the brain
was extracted and sectioned in coronal slices (400 pm thick
for extracellular field recordings, 300 wm for whole-cell patch
clamp recordings) in ice-cold modified artificial cerebrospinal
fluid (aCSF) containing 175 mM sucrose, 20 mM NaCl, 3.5 mM
KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 1.3 mM MgCl,,
and 11 mM D-(+4)-glucose, and gassed with 95% O,/5% CO,
using a vibratome (VT 1000S; Leica Microsystems, Bannockburn,
IL, USA). Coronal slices were placed in a holding chamber at
34°C and incubated in normal aCSF containing 119 mM NaCl,
2.5 mM KCl, 1.3 mM NaH,PO4, 26 mM NaHCO3, 1.3 mM
MgCl,, 2.5 mM CaClp, and 11 mM D-(+)-glucose, and con-
tinuously bubbled with 95% 0,/5% CO; at 34°C for at least
2.5 h, prior to recording. For recording, slices were transferred
to a superfusion (1.5-2.5 ml/min flow rate) chamber (Warner
Instruments) heated at 33.5-34°C and held below a platinum
wire.

ELECTROPHYSIOLOGY

The recording electrode was placed in the dorsal part of the LA,
and the stimulation electrodes were placed close to the internal
capsule and externally to the capsule to stimulate fibers origi-
nating from the thalamus or auditory cortex, respectively (see
Figure 1A). Extracellular field excitatory post-synaptic poten-
tials (fEPSPs) were recorded from the dorsal part of the LA,
while basal single-electrical stimuli at 0.05 Hz were applied at
both pathways. After 10 min of stable baseline fEPSPs record-
ing, paired pulse low-frequency stimulation [ppLFS, 900 pulses at
1 Hz, interstimuli interval (ITI) of 40 ms] was used to induce
LTD (Miiller etal., 2009). To test input specificity, ppLFS was
induced at only one pathway (ppLFS pathway) whereas the other
pathway was used as control and was stimulated with 0.05 Hz
baseline stimulation. fEPSPs were recorded using a glass pipette
(2—4 M2 of resistance) filled with normal aCSF. An input/output
(I/0) response curve was established by varying the intensity of
single-pulse stimulation. The stimulus intensity that evoked a
fEPSP equal to 50% of the maximum response was used for all
stimulations. fEPSPs were amplified (Multiclamp 700B), filtered
(low-pass filter 1 kHz, high-pass filter 1 Hz) and digitized at 10 kHz
(Axoclamp 10.2). Whole-cell recordings were performed in a blind
approach (Castaneda-Castellanos etal., 2006). The patch pipette
(4-8 MQ resistance) was filled with a solution containing (in mM):
potassium gluconate 126, NaCl 4, MgSO4 1, BAPTA-free 0.1,
BAPTA-Ca?t 0.05, glucose 15, ATP 3, HEPES 5 (pH was adjusted
to 7.2 with KOH) and GTP 0.1. Membrane potential was measured
relative to an agar-bridge reference electrode. Reported mem-
brane potential values were adjusted off-line for liquid-junction
potentials (usually <5 mV). Voltage-clamp mode was used to
record evoked excitatory post-synaptic currents (eEPSCs) from
thalamic and cortical pathways. After stable baseline recording
for at least 10 min, ppLFS stimulation was delivered in current-
clamp configuration. Before and after ppLFS, series resistance was

monitored by measuring the passive current transients induced
by 10 mV hyperpolarizing voltage steps from a holding potential
of —60 mV. Accepted deviations from this parameter in current
transients recorded over the time-windows used for statistical
analysis were <10% (Brandalise etal., 2012). Data were recorded
using an Axopatch 200B amplifier, sampled with a Digidata-
1440 interface (sampling time = 250 msec for current-clamp
recording, 10 ms for voltage-clamp recordings) and analyzed with
P-CLAMP software (Axon Instruments, Foster City, CA, USA)
and Origin software (Microcal Software, Northhampton, MA,
USA).

DRUG APPLICATION

All drugs were bath applied at the indicated concentration
starting at least 45 min before ppLFS and throughout record-
ing, except D-(—)-2-Amino-5-phosphonopentanoic acid (D-APV,
50 wM, Tocris), which was perfused for 10 min, starting 5 min
prior to ppLES delivery. To block specific NMDAR subunits,
the NR2B antagonists ifenprodil hemitartrate (10 wM, Tocris)
and Col101244 (1 wM, Tocris) were used, and the NR2C/D-
antagonist [+£]-cis-1-[phenanthren-2yl-carbonyl]piperazine-2,3-
dicarboxylic acid (PPDA, Tocris, 0.25 uM to preferentially
block NR2C/D-containing receptors and 1 uM to block NR2
subunits nonspecifically). FK-506 (100 wM, Tocris) and tauto-
mycetin (4 nM, Tocris) were used to antagonize PP2B and PP1
activity, respectively (Mitsuhashi etal., 2001; Jouvenceau etal.,
2003). The calcium chelator 1,2-bis(o-aminophenoxy)ethane-
N,N,N’,N’-tetraacetic acid (BAPTA, 100 mM, Tocris) and the
NMDAR open-channel blocker MK-801 (Dizocilpine, 40 pm,
Tocris) were dialysed in individual post-synaptic LA neurons
for >10 min through the patch pipette. To specifically and fully
block activated NMDARs during MK-801 dialysis, cells were pro-
gressively depolarized from the holding potential of —70 mV
to +30 mV, while thalamic or cortical pathways were stimulated
about 200-300 times to allow irreversible binding of MK-801
to activated post-synaptic NMDARs (Humeau etal., 2003; Yang
etal., 2008). Consequently, the post-synaptic NMDAR compo-
nent of EPSC activity was reduced after MK801 dialysis (charge
transfer reduced by 28.6 + 9.5% n = 3 for the thalamic path-
way, and 17.2 & 6.7% n = 3 for the cortical pathway). Cells
were clamped again at —70 mV for another 10 min showing
no significant change in the peak amplitude of AMPAR-mediated
responses.

DATA ANALYSIS

Data analysis was performed using Clampfit software (v10.2,
Molecular Devices, Sunnyvale, DA, USA), GraphPad Prism
(GraphPad Software Inc., San Diego, CA, USA), and Excel
(Microsoft). For all recordings, fEPSP slope, and EPSP and EPSC
amplitude were normalized to the average of baseline slope and
amplitude, respectively. To improve the signal-to-noise ratio, data
were averaged into 1 min bins. For each experiment, two to three
slices per animal were recorded, one was always used as control
slice and one or two slices received drug-treatment. For statistical
analyses, individual animals (not slices) were considered biological
replicates. For both extracellular field and whole-cell recordings,
data are expressed as mean £ SEM. Statistical comparisons were
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FIGURE 1 | Input-specific NMDAR-dependent LTD at the thalamic and averaged across 10 min before ppLFS (black line) and the last 10 min of
cortical pathways in the lateral amygdala. (A) Schematic illustration of recording after ppLFS (gray line). (C) D-APV (50 M) prevents LTD at thalamic
electrode placement for ppLFS and control pathway recording of the thalamic  afferents (control: n = 6; D-APV: n = 9) and at cortical afferents (control:
pathway (left) and the cortical pathway (right). (B) Robust, long-lasting LTD n=>5; D-APV: n = 9). Insets show |/O curves on top and below
was specifically induced at the pathway receiving ppLFS (thalamic, n = 18; representative traces of extracellular field potentials averaged across 10 min
cortical, n = 18) but not at the control pathway (thalamic: n = 11; cortical: before ppLFS (black line) and the last 10 min of recording after ppLFS (gray
n = 14). Insets show representative traces of extracellular field potentials line). Data represent mean + SEM. ***p < 0.001.
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performed using Student’s unpaired #-tests when two groups were
compared. One-way ANOVAs were used when more than two
groups were compared. If significant, ANOVAs were followed
using Duncan’s post hoc test. Significance was set to p < 0.05.

RESULTS

PATHWAY-SPECIFIC LTD IN LA

Using extracellular field recording, we first assessed whether a
paired-pulse low frequency stimulation protocol (ppLFS) induces
stable and input-specific LTD at thalamic and cortical afferents to
the LA in slices from adult mouse (for electrode placement see
Figure 1A). A robust LTD that lasted over 1hr was specifically
induced at the pathway receiving ppLFES but not at a control path-
way, both at thalamic (ppLFS pathway: 53.3 & 4.3%, n = 18 vs.
control pathway: 106.2 &= 10.9%, n = 11, p < 0.001, Figure 1B)
and cortical input (ppLFES pathway: 52.7 + 3.6%, n = 18 vs. con-
trol pathway: 108.6 £ 12.2%, n = 14, p < 0.001, Figure 1B). The
magnitude of fEPSP suppression was comparable between tha-
lamic and cortical ppLES (p > 0.9). These results indicate that
the ppLFS protocol leads to a strong and input-specific induc-
tion of ITD (LA-LTD) at both thalamic and cortical pathways
to LA.

NMDAR-DEPENDENT LTD IN LA DEPENDS ON PROTEIN
PHOSPHATASES

In the hippocampus, the most common form of LTD requires
post-synaptic rise in calcium that depends on NMDARs, and
is associated with activation of a PP2B/PP1 signaling cascade
(Collingridge etal.,, 2010). Both PP2B and PP1 are known
to be negative regulators of plasticity that further, can act
as memory suppressors (Mansuy etal., 1998; Malleret etal,
2001; Genoux etal., 2002). We thus first tested whether LA-
LTD is NMDAR-dependent at both pathways using extracel-
lular field recordings. LTD was fully blocked by the NMDAR
antagonist D-APV (50 wM) at both, the thalamic (control:
50.6 £ 5.6%, n = 6; D-APV: 103.0 + 10.4%, n = 9,
p < 0.001, Figure 1C) and cortical (control: 53.7 £+ 2.9%,
n = 5; D-APV: 114.8 &+ 9.9%, n = 9, p < 0.001, Figure 1C)
pathway, demonstrating that LA-LTD depends on NMDARs at
both pathways. Input/output (I/O) curves were not affected by
D-APV, suggesting that basal synaptic transmission was not altered
(Figure 1C, insets). Next, we examined whether PP2B and PP1
are involved in LA-LTD. Perfusion of the selective PP2B inhibitor
FK-506 (100 wM) abolished LTD at both, thalamic (control:
54.9 £+ 1.9%, n = 5; FK-506: 102.4 £ 10.9%, n =5, p < 0.01,
Figure 2A) and cortical (control: 48.3 £ 2.5%, n = 5; FK-
506: 96.0 & 5.0%, n = 5, p < 0.001, Figure 2A) pathways.
Similarly, bath application of the specific PP1 inhibitor tauto-
mycetin (4 nM) abolished LA-LTD at both pathways (Thalamic,
control: 57.5 £ 5.2%, n = 5; tautomycetin: 101.4 £ 5.9%,
n = 10, p < 0.001. Cortical, control: 52.4 + 6.7%, n = 7;
tautomycetin: 118.2 £ 20.8%, n = 8, p < 0.05, Figure 2B).
I/O curves were not affected by FK-506 (Figure 2A, insets) or
tautomycetin (Figure 2B, insets), suggesting that basal synaptic
transmission was not altered. These results show that LA-LTD
requires PP2B and PP1 at both thalamic and cortical path-
ways.

LA-LTD DEPENDS ON ACTIVATION OF DIFFERENT NR2 SUBUNITS AT
THALAMIC AND CORTICAL AFFERENTS

We next investigated the NMDAR subunit composition implicated
in LA-LTD at both inputs. While NR2A-containing receptors
have previously been suggested to be involved in LTP in differ-
ent brain structures, NR2B-containing receptors are thought to
be involved in LTD (Liu etal., 2004; Massey etal., 2004; Bartlett
etal., 2007; Banerjee etal., 2009; Dalton etal., 2012), particu-
larly in LA-LTD at the thalamic input (Yu etal., 2010; Dalton
etal., 2012). At the cortical pathway, however, the NMDAR sub-
unit composition is still unclear (Weisskopf and LeDoux, 1999;
Miiller etal., 2009). To test whether NR2B is required for LTD
at both pathways, we used the selective NR2B antagonists ifen-
prodil (10 wM) and Co101244 (1 wM). While both antagonists
fully blocked LTD at the thalamic pathway (control: 54.7 + 5.7%,
n=>5; ifenprodil: 118.0 & 16.0%, n = 8; Co101244: 98.0 & 10.5%,
n=>5, p < 0.05 in both cases, Figure 3), they had no effect on LTD
at the cortical pathway (control: 55.2 &+ 5.9%, n = 5; ifenprodil:
48.2 £ 5.2%, n = 6; Co101244: 52.5 £ 12.2%, n =5, p > 0.8,
Figure 3). Ifenprodil and Co101244 did not affect I/O curves,
suggesting no effect on basal synaptic transmission (Figure 3A,
insets). These results demonstrate that LTD at the thalamic path-
way is NR2B-dependent, while LTD at the cortical pathway is
not.

To determine which other NR2 subunits may be implicated
in LTD at the cortical pathway, we next tested the contribution
of NR2C/D subunits [NR2A was previously reported not to be
involved in LA-LTD (Dalton etal., 2012)]. We used PPDA, a
potent and dose-dependent selective NR2C/D antagonist (Hra-
betova etal., 2000; Feng etal., 2004). We used PPDA at low
concentration (0.25 pM) to preferentially antagonize NR2C/D
subunits, and at high concentration (1 wM) to antagonize all NR2
subunits (Feng etal., 2004). At 0.25 uM, PPDA fully blocked LA-
LTD specifically at the cortical input, but had no effect at the
thalamic pathway (Figure 4). In contrast, 1 uM of PPDA abol-
ished LA-LTD at both pathways (thalamic, control: 45.2 & 8.5%,
n = 7; PPDA 0.25 uM: 44.3 & 9.1%, n = 5; PPDA 1 pM:
113.6 £ 20.6%, n = 6, p < 0.01. Cortical, control: 41.6 &+ 9.8%,
n = 6; PPDA 0.25 pM: 113.3 £ 14.1%, n = 6, PPDA 1 pM:
107.1 + 22.2%, n = 6, p < 0.05, Figure 4). I/O curves
were not affected by PPDA at either concentration (Figure 4A,
insets). Overall, these results indicate that LTD at the thala-
mic pathway depends on NR2B-containing NMDARs, whereas
LTD at the cortical pathway depends on NR2C/D-containing
NMDARSs.

DISTINCT LOCI OF LTD INDUCTION AT THALAMIC AND CORTICAL
PATHWAYS

Although LTD is generally thought to be induced post-synaptically,
it is known that NMDAR-dependent LTD can also occur presy-
naptically in several brain regions (Casado etal., 2002; Sjostrom
etal., 2003; Rodriguez-Moreno and Paulsen, 2008; Rodriguez-
Moreno etal., 2010). NR2B-containing NMDARs are mostly
localized post-synaptically (Loftis and Janowsky, 2003; Mameli
etal., 2005; Miwa etal., 2008; Yu etal., 2010) and NR2C/D-
containing NMDARs are mostly presynaptic (Thompson etal.,
2002; Mameli etal., 2005; Grilli etal.,, 2009) and have been
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representative traces of extracellular field potentials averaged across

10 mins before ppLFS (black line) and the last 10 min of recording after
ppLFS (gray line). Data represent mean + SEM. ***p < 0.001,

**p < 0.001, *p < 0.05.

implicated in presynaptic LTD in the somatosensory cortex
(Banerjee etal., 2009). Because NR2B and NR2C/D subunits
are differentially involved in LTD at thalamic and cortical path-
ways, we hypothesized that ITD may have different loci of
induction at thalamic and cortical pathways. We tested this
hypothesis using whole-cell patch clamp recording in LA pyra-
midal neurons. The recorded cells (n = 32) showed a firing
pattern and spike frequency adaptation characteristic of LA

pyramidal neurons (Figure 5A; Weisskopf and LeDoux, 1999;
Faber etal., 2001). The average resting potential of these neurons
was —67.6 &= 4.3 mV. We observed a mono-exponential relation-
ship between current transients and voltage steps, indicating that
excitatory cells in LA behave as single electrical compartments
(t1 = 40.65 £ 0.1 ms). Transients were also used to estimate series
resistance (15.3 £ 4.23 M), input resistance (235 =+ 42.47 MQ)
and membrane capacitance (67.7 £ 16.8 pF), all typical values
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over the last 20 min of recording after ppLFS. Insets show I/O curves on top
and below representative traces of extracellular field potentials averaged
across 10 min before ppLFS (black line) and the last 10 min of recording after
ppLFS (gray line). Data represent mean + SEM. *p < 0.05, ns = non
significant.

for LA excitatory cells (Weisskopf and LeDoux, 1999; Faber etal.,
2001).

Before assessing the locus of LTD induction, we examined
whether LTD can be induced in individual excitatory LA neu-
rons with the ppLES protocol in current clamp configuration,
and whether it depends on NMDARs. ppLFS induced a robust
and persistent LTD in LA neurons, which was similar at tha-
lamic and cortical inputs (thalamic: 47.38 £ 9.74%, n = 4;
cortical: 56.2 £ 4.6% n = 5, p > 0.3, Figure 5B). LTD was
blocked by D-APV, confirming that it is NMDAR-dependent
(thalamic: D-APV: 112.5 £ 3.0%, n = 3, p < 0.001; cortical:
D-APV: 108.1 &+ 6.2%, n = 3, p < 0.01, Figure 5B). Because
post-synaptic plasticity depends on changes in post-synaptic
intracellular calcium concentration, we examined whether LTD

is post-synaptic by preventing calcium increase at the post-
synaptic site using the membrane impermeable calcium chela-
tor BAPTA (100 mM, dialyzed for 20 min before ppLES).
LTD at the thalamic pathway was fully blocked by BAPTA
(control: 47.6 &+ 6.7%, n = 4; BAPTA: 98.9 £+ 5.7%, n = 4,
p < 0.01) but it was not affected at the cortical path-
way (control: 52.0 £ 6.6%, n = 5, BAPTA: 46.9 £ 6.1%,
n =5, p > 0.5, Figure 6A). These results suggest that the
induction of LTD requires a post-synaptic rise in calcium at
thalamo-LA synapses but not at cortico-LA synapses. To fur-
ther assess the synaptic locus of LTD at thalamic and cortical
synapses, we selectively blocked post-synaptic NMDARs before
LTD induction by intracellular dialysis of the activity-dependent
NMDAR antagonist MK-801 (40 pM) into the pyramidal-like
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dose: n = 6). (B) Summary of the average fEPSP slope over the last 20 min of
recording after ppLFS. Insets show I/O curves on top and below
representative traces of extracellular field potentials averaged across 10 min
before ppLFS (black line) and the last 10 min of recording after ppLFS (gray
line). Data represent the mean + SEM. **p < 0.01, *p < 0.05, ns = non
significant.

LA neuron. In the presence of MK-801, LTD was fully blocked
at thalamo-LA synapses (control: 37.9 £ 13.5%, n = 3, MK-
801: 104.3 + 54%, n = 3, p < 0.05) but was not affected
at cortico-LA synapses (control: 52.5 £ 14.2%, n = 3, MK-
801: 54.8 £+ 11.6%, n = 3, p > 0.9, Figure 6B), suggesting
that LTD requires the activation of post-synaptic NMDARs
at thalamic but not cortical synapses. Together, these results
support a post-synaptic locus of LA-LTD at the thalamic path-
way that likely depends on post-synaptic NMDARs, but a
mechanism independent of post-synaptic NMDARs and inde-
pendent of changes in post-synaptic calcium at the cortical
pathway.

DISCUSSION

The protein phosphatases PP2B and PP1 are key players in the
regulation of synaptic strength, and in the formation and the
maintenance of memory traces (Lisman and Zhabotinsky, 2001;
Mansuy and Shenolikar, 2006; Baumgirtel and Mansuy, 2012).
Activation of PP2B/PP1 signaling is known to be necessary for
LTD in different brain regions (Kirkwood et al., 1993; Mulkey et al.,
1994; Morishita etal., 2001; Lin et al., 2003b; Yasuda et al., 2003).
This study provides novel evidence that these phosphatases are also
involved in the induction of LTD in LA at both thalamic and corti-
cal pathways. This finding is in line with previous results showing
that depotentiation at the cortical pathway in LA requires PP2B
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(Lin etal., 2003a), and that PP2B and PP1 play an important role
in memory tasks that depend on the amygdala including condi-
tioned taste aversion and extinction of fear memory (Lin etal.,
2003b; Baumgirtel etal., 2008; Oberbeck etal., 2010; Koshibu
etal., 2011). They also complement findings in the hippocam-
pus that PP2B or PP1 inhibition enhances hippocampal LTP and
memory performance in hippocampus-dependent tasks (Malleret
etal.,, 2001; Genoux etal., 2002) but impairs LTD (Jouvenceau
etal., 2006). Taken together, these findings support the concept
that PP2B/PP1 are key regulators of synaptic plasticity, and that
their inhibition favors LTP and memory acquisition, but impairs
LTD and memory extinction in both hippocampus and amygdala.

Our finding that LTD at the thalamic LA pathway is NR2B-
dependent is consistent with previous studies (Miiller et al., 2009;
Dalton etal., 2012; Park etal., 2012). NR2B is present in post-
synaptic densities (PSD) in LA (Miwa etal.,, 2008), and LTD
at the thalamic pathway depends on NR2B-dependent post-
synaptic AMPAR endocytosis (Yu etal., 2010). Surprisingly, we
observed that LTD induced at the cortical pathway is independent
of NR2B signaling, since NR2B antagonists do not block LTD

induction. Instead, we observed that blocking NR2C/D subunits
fully prevents LTD at the cortical pathway, but does not affect LTD
at the thalamic pathway. The observation that LTD at the cortical
pathway is NR2B-independent contrasts with a previous report
showing that antagonizing NR2B blocks LTD at both pathways in
horizontal slices from adult mice (Miiller et al., 2009). This appar-
ent discrepancy likely results from a different orientation of the
slicesleading to different sites of stimulation and recording. Specif-
ically, placing the stimulating electrode laterally to the internal
capsule in coronal slices primarily activates cortical afferents to LA,
but in horizontal slices, it also activates afferents from the entorhi-
nal and perirhinal cortex (von Bohlen und Halbach and Albrecht,
2002; Miiller etal., 2009). The spatial organization of excitatory
and inhibitory connections within the LA depends as well on slice
orientation (Samson etal., 2003; Samson and Pare, 2006). It thus
needs to be determined whether LTD differentially relies on NR2B
or NR2C/D-containing receptors in the cortical pathway depend-
ing on the slice orientation. Given our clear finding that thalamic
and cortical input to LA rely on different molecular and post-
synaptic mechanisms, we postulate that projections to LA from
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the perirhinal and entorhinal cortex likely engage different mech-
anisms as well. Notably, most electrophysiological studies in the
amygdala are conducted in coronal sections rather than horizon-
tal sections (Huang and Kandel, 1998; Heinbockel and Pape, 2000;
Tsvetkov et al., 2002; Humeau etal., 2003; Hong et al., 2009; Dal-
ton etal., 2012). To our knowledge, this is the first report showing
in coronal slices, a strong and reproducible induction of LTD at
cortical afferents to LA by low-frequency stimulation, without the
need of prior potentiation (Hong etal., 2009). As highlighted by
Miiller etal. (2009) this demonstrates that previous lack of LTD
at cortical afferents (Tchekalarova and Albrecht, 2007; Pape and
Pare, 2010) may be due to inadequate protocols for that specific
pathway rather than an intrinsic failure to decrease synaptic trans-
mission at cortical inputs to the LA. The availability of a robust
LTD induction protocol at both input pathways to the amygdala
in coronal slices shall allow further analyses of the mechanisms of
LTD regulation in the amygdala.

Our observation that different NR2 subunits mediate the effects
of ppLFS-induced LTD at both input pathways to the LA are
in agreement with previous studies reporting differences in the
molecular cascades at these pathways in LTP and depotentiation
(Humeau etal., 2003, 2005; Hong etal., 2009; Jung etal., 2010;
Meis etal., 2012). Although the distribution of NMDAR sub-
units in the amygdala remains largely unknown, the receptor
kinetics at resting membrane potential is known to be differ-
ent at cortical and thalamic pathways (Weisskopf and LeDoux,
1999). NMDARs at cortical inputs are less sensitive to magne-
sium blockade than at thalamic inputs, and the kinetic properties
are akin to NR2C/D-containing NMDARs at the cortical path-
way, but resemble NR2A/B-containing NMDARs at the thalamic
pathway (Monyer etal., 1994; Weisskopf and LeDoux, 1999;
Cull-Candy etal., 2001). This is in agreement with our observation
that NR2C/D-containing receptors seem to mediate LTD at the
cortical pathway, but not at the thalamic pathway.
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Presynaptic NR2C/D-containing NMDARs are believed to be
involved in spike-timing dependent LTD in the cortex (Baner-
jee etal., 2009). This prompted us to investigate the site of LTD
induction at both LA pathways by whole cell patch-clamp record-
ing. We observed that LTD induction occurs post-synaptically at
the thalamic pathway, but is independent of post-synaptic cal-
cium influx or post-synaptic NMDARs at the cortical pathway.
These findings for LTD complement previous reports for LTP in
the amygdala showing that LTP engages different pre- and post-
synaptic mechanisms at thalamic and cortical pathways (Huang
and Kandel, 1998; Humeau et al., 2003, 2005, 2007; Tsvetkov et al.,
2004; Rumpel et al., 2005; Shaban et al., 2006).

Although distinct NMDAR subunits and post-synaptic mech-
anisms are involved at thalamic and cortical afferents to the LA,
both pathways converge onto a PP2B/PP1 signaling cascade. In
the hippocampus, calcium influx through NMDARSs, rather than
other calcium channels, is specifically required for PP2B and
PP1 activation (Unoki etal., 2012). It is possible that presynaptic
calcium influx through NR2C/D-containing NMDARs, and post-
synaptic calcium influx through NR2B-containing NMDARs, lead
to the activation of PP2B/PP1 at the cortical and thalamic path-
way, respectively, a possibility that will need to be tested in
future experiments. Whether NR2C or NR2D subunits are local-
ized presynaptically at cortical but not at thalamic afferents to
LA will also need to be determined, as well as the molecular
mechanisms downstream of PP2B/PP1 activation at both path-
ways. In the hippocampus, PP2B and PP1 have presynaptic and
post-synaptic targets (Strack et al., 1999; Nakano-Kobayashi et al.,
2007; Baumgirtel and Mansuy, 2012). In hippocampal and cor-
tical neurons, PP1 can dephosphorylate NR2B (Farinelli etal.,
2012; Prabhu Ramya etal., 2012), resulting in a downregulation
of NMDAR activity (Farinelli etal., 2012). Similarly, in cerebel-
lar granule cells, PP2B downregulates NR2C expression (Suzuki
etal., 2005), thus it is possible that PP2B/PP1 dephosphorylate
NR2B and NR2C subunits differentially in LA in response to LTD
induction. Finally, the contribution of other receptors such as
metabotropic glutamate receptors (mGluRs) in LA LTD cannot
be excluded. Group I mGluRs have previously been shown to
contribute to ppLFS-induced depotentiation at the thalamic path-
way (Kim etal., 2007), while presynaptic group II mGluRs seem
to be involved at cortical afferents (Hong etal., 2009). Although
mGluR-dependent LTD appears to involve tyrosine phosphatases
rather than serine/threonine phosphatases such as PP2B and PP1
(Linetal.,2005; Collingridge et al., 2010), they may also contribute
to the differential molecular effects of ppLFS-induced LTD at both
pathways.

LA-LTD is associated with the extinction of fear memory (Kim
etal., 2007; Hong etal., 2009; Park etal., 2012). Since weaken-
ing and erasure of traumatic memory traces is critical for the
management of anxiety disorders including PTSD (Kindt etal,,
2009; Monfils etal., 2009; Quirk etal., 2010; Holzschneider and
Mulert, 2011; Pitman etal., 2012), understanding the molecular
mechanisms of LTD in the amygdala has important clinical impli-
cations. Our findings highlight the potential of therapeutically
targeting PP2B/PP1 signaling to facilitate fear extinction learning
in anxiety-related disorders (Baumgirtel etal., 2008; Bahi etal.,
2009; Koshibu etal., 2011).
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