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Circadian rhythms, endogenous cycles of about 24 h in physiology, are generated by
a master clock located in the suprachiasmatic nucleus of the hypothalamus and other
clocks located in the brain and peripheral tissues. Circadian disruption is known to increase
the incidence of various illnesses, such as mental disorders, metabolic syndrome, and
cancer. At the molecular level, periodicity is established by a set of clock genes via
autoregulatory translation–transcription feedback loops.This clock mechanism is regulated
by post-translational modifications such as phosphorylation and ubiquitination, which set
the pace of the clock. Ubiquitination in particular has been found to regulate the stability
of core clock components but also other clock protein functions. Mutation of genes
encoding ubiquitin ligases can cause either elongation or shortening of the endogenous
circadian period. Recent research has also started to uncover roles for deubiquitination in
the molecular clockwork. Here, we review the role of the ubiquitin pathway in regulating
the circadian clock and we propose that ubiquitination is a key element in a clock protein
modification code that orchestrates clock mechanisms and circadian behavior over the daily
cycle.
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INTRODUCTION: THE MOLECULAR CIRCADIAN CLOCK
Circadian rhythms are endogenous ∼24 h cycles in physiology
and behavior generated by a master clock in the suprachias-
matic nucleus of the hypothalamus, and clocks located in most
other tissues. Circadian clocks enable organisms to anticipate pre-
dictable daily occurrences, such as changes in light, temperature,
or food availability (Dibner et al., 2010). The importance of circa-
dian clocks is illustrated by the impacts of circadian disruption in
humans. For example, shift work increases the risk of developing
various illnesses, such as mental disorders, metabolic syndrome,
and cancer (Evans and Davidson, 2013).

At the molecular level, the circadian clock relies on self-
sustained transcription-translation feedback loops involving
“clock genes” (Figure 1; Duguay and Cermakian, 2009). In mam-
mals, CLOCK and BMAL1 dimerize and activate Period (Per) 1
and 2 and Cryptochrome (Cry) 1 and 2 genes. The PER1/2 and
CRY1/2 proteins then enter the nucleus and inhibit the activity
of CLOCK/BMAL1, thereby repressing their own transcription.
However, the mechanism is more complex, with additional inter-
locking feedback loops, including one that involves the induction
of the Rev-erb and Ror genes, whose protein products regulate
Bmal1 gene transcription. One consequence of these feedback
loops is that the mRNAs and proteins of many clock genes present
circadian rhythms in their abundance. Moreover, hundreds of
clock-controlled genes, which do not participate in the clock
mechanism, but whose transcription is under the control of the
clock molecular machinery, also present rhythms at the RNA and
protein levels (Storch et al., 2002; Yan et al., 2008), thus linking the
circadian clock with cellular physiology.

The timing of these feedback loops is dictated by post-
translational modifications (PTMs; Gallego and Virshup, 2007;
Duguay and Cermakian, 2009). Indeed, clock proteins are subject
to phosphorylation, ubiquitination, acetylation, SUMOylation,
and other PTMs (Figure 1). Ubiquitination is of particular inter-
est due to the diversity of signals that it can generate. In particular,
its direct role in determining protein half-life is crucial for pro-
teins with a daily rhythm in abundance. In this article, we review
the current state of knowledge on ubiquitination of clock proteins
and their ubiquitin-modifying enzymes in animal models, with a
special focus on the mammalian clock (Table 1).

UBIQUITINATION IN THE CIRCADIAN CLOCK
UBIQUITINATION OF CRYPTOCHROMES BY FBXL UBIQUITIN LIGASES
N-Ethyl-N-nitrosourea screens led to the discovery of mice
exhibiting free-running periods of locomotor activity rhythms
∼2–3 h longer than normal (Godinho et al., 2007; Siepka et al.,
2007). These mice had loss-of-function mutations in the gene
encoding the F-box protein FBXL3. Loss of FBXL3 activity leads to
CRY protein stabilization due to decreased ubiquitination (Siepka
et al., 2007). Further work on FBXL3 revealed that ubiquitina-
tion of CRY1/2 by the FBXL3-containing SCF E3 ubiquitin ligase
complex was necessary for the timely degradation of the CRY
proteins and the reactivation of BMAL1/CLOCK (Busino et al.,
2007). A prolonged inhibition of BMAL1/CLOCK-mediated tran-
scription in the mutant mice leads to reduced peak levels and
delayed rhythms of the Per and Cry mRNAs in mutant mouse
SCN, cerebellum, and liver (Godinho et al., 2007; Siepka et al.,
2007).

Frontiers in Molecular Neuroscience www.frontiersin.org August 2014 | Volume 7 | Article 69 | 1

http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fnmol.2014.00069/abstract
http://community.frontiersin.org/people/u/172573
http://community.frontiersin.org/people/u/174207
http://community.frontiersin.org/people/u/131866
mailto:nicolas.cermakian@mcgill.ca
http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive


Stojkovic et al. Ubiquitin and the circadian clock

FIGURE 1 | Simplified molecular mechanism of the mammalian

circadian clock. The transcription factors CLOCK and BMAL1 activate
the expression of Per and Cry genes through E-box elements in their
promoters. PER and CRY proteins form complexes and feedback
negatively on CLOCK/BMAL1 activity, and thus, on their own
expression. CLOCK/BMAL1 also activate genes encoding nuclear
receptors of the REV-ERB and ROR families, which regulate the
expression of Bmal1 (and also Cry1 and Clock ). For each protein
or pair of proteins, the colored boxes list the post-translational

modifications (PTMs) that have been identified so far, as well as the
ubiquitin-modifying enzymes shown to be involved (HUWE1, PAM,
β-TRCP1/2 are also called ARF-BP1, MYCBP2, FBW1A/B, respectively).
For simplicity, a single box per protein is shown, irrespective of
the subcellular localization of the PTMs. P, phosphorylation; Ub,
ubiquitination; Ac, acetylation; SUMO, SUMOylation; O-GlcNAc,
addition of β-D-N -acetylglucosamine; S-Ni, S-nitrosylation; ADPrib,
ADP-ribosylation; PER, Period; CRY, Cryptochrome; ROR, Retinoic acid
receptor-related orphan receptor; DUB, deubiquitinating enzyme.

Interestingly, FBXL3 cannot undergo SCF complex formation
in the absence of its CRY substrates (Yumimoto et al., 2013). X-ray
crystallography revealed that FBXL3 binds to the FAD-binding
pocket of mammalian CRY, which may also be bound by FAD or
PER proteins (Czarna et al., 2013; Xing et al., 2013), which suggests
a mechanism for the protection of CRYs from degradation in the
presence of PER (Yagita et al., 2002).

An FBXL3 paralog, FBXL21, was identified in sheep, where it
was also found to bind to CRY1, thereby affecting transcriptional
activation by CLOCK/BMAL1 (Dardente et al., 2008). Despite the
high similarity between FBXL3 and FBXL21, they appear to have
non-redundant roles within the clock. Indeed, while Fbxl3 gene
mutant or knock-out (KO) mice display a long free-running period
of locomotor activity rhythms, Fbxl21-mutant or KO mice present
either a short (Yoo et al., 2013) or a normal (Hirano et al., 2013)
period. Moreover, when the mutant lines are crossed, the Fbxl21
mutation attenuates the long-period phenotype of Fbxl3-mutant
mice.

The distinct roles of the FBXL proteins may be based on the
timing of their expression and that of their substrates. While Fbxl3
is expressed at constant levels over the day, Fbxl21 expression has
a pronounced circadian rhythm in the mouse SCN, with a peak by
the end of the subjective day (Dardente et al., 2008), thus restrict-
ing its action to only part of the cycle. Interestingly, while FBXL3
protein levels do not vary over time, its action on CRYs is con-
ditional on their phosphorylation by AMPK, whose expression
and nuclear abundance vary over the day (Lamia et al., 2009).
Ligase intracellular localization also plays a role: while FBXL3
protein is restricted to the nucleus, FBXL21 is located both in
the nucleus and cytoplasm (Hirano et al., 2013; Yoo et al., 2013).
The work of both laboratories supports a two-step mode of action
of FBXL21. First, FBXL21 allows CRYs to accumulate in the cyto-
plasm. This occurs when CRY levels rise around the end of the
day or beginning of the night. Shortly thereafter, after CRYs have
entered the nucleus, FBXL21 might counteract FBXL3: FBXL21
binds CRYs more stably and with a higher affinity than FBXL3,
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Table 1 | Ubiquitin-modifying enzymes involved in the regulation of mammalian clock proteins.

Clock protein Mammalian

enzyme

Phenotype of mice, tissues, or cells upon loss-of-function mutation

or knock-down of ubiquitin-modifying enzyme

Drosophila

homolog

References

Ubiquitin ligases

CRY1/2 FBXL3 Long free-running period of locomotor activity rhythms, cultured

fibroblasts and SCN; stabilized CRYs; dampened and delayed rhythms of

Per and Cry mRNAs; phenotype partly rescued by Fbxl21

loss-of-function.

Godinho et al. (2007),

Siepka et al. (2007),

Hirano et al. (2013), Yoo

et al. (2013)

FBXL21 Normal or short free-running period of locomotor activity rhythms; short

period of cultured fibroblasts, SCN and pituitary; destabilized CRYs

(when subcellular fractions were studied, the mutation stabilized CRY1

in cytoplasm and destabilized it in the nucleus); mutation partly rescues

Fbxl3 loss-of-function.

Dardente et al. (2008),

Hirano et al. (2013), Yoo

et al. (2013)

PER1/2 β-TRCP1 (FBW1A),

β-TRCP2 (FBW1B)

Dampened or long-period rhythms in fibroblasts; stabilized PERs;

β-Trcp1 KO mice have no circadian-related phenotype.

SLIMB Eide et al. (2005),

Shirogane et al. (2005),

Reischl et al. (2007),

Ohsaki et al. (2008)

REV-ERBα HUWE1 (ARF-BP1) Stabilized REV-ERBα, decreased Bmal1/Cry1 expression (knock-down of

both HUWE1 and PAM together).

CG8184 Yin et al. (2010)

PAM (MYCBP2) Stabilized REV-ERBα, decreased Bmal1/Cry1 expression (knock-down of

both HUWE1 and PAM together).

Highwire Yin et al. (2010)

FBXL3? Long-period phenotype of Fbxl3 mutants rescued by Rev-erbα KO;

dampened but more sustained REV-ERBα levels in Fbxl3 mutants, and

prolonged REV-ERBα transcriptional activity.

Shi et al. (2013)

BMAL1 UBE3A Dampening and longer period of circadian rhythms in cultured

fibroblasts.

dUBE3A Gossan et al. (2014)

Deubiquitinating enzymes

CRY1 USP2 Decreased CRY1 protein levels in liver (with Usp2 knock-down). Tong et al. (2012)

PER1 USP2 Slightly elongated free-running period of locomotor activity rhythms;

altered response to light; altered clock gene expression and increased

levels of ubiquitinated PER1 in fibroblasts; no change in PER1 stability;

alteration in the timing of PER1 intracellular localization.

Yang et al. (2012, 2014)

BMAL1 USP2 Normal free-running period and slightly altered light response; reduced

BMAL1 levels in the SCN.

Lee et al. (2008),

Scoma et al. (2011)

suggesting that FBXL21 may in part stabilize CRYs by prevent-
ing FBXL3 binding (Yoo et al., 2013). Then, when FBXL21 levels
have decreased, FBXL3 can finally act on CRYs and target them
to degradation. It is interesting to note that if this model is fur-
ther confirmed, the roles of FBXL21 in the clock will turn out
to be partly non-degradative (regulation of nuclear entry, pro-
tection from the action of another F-box protein, FBXL3), in
contrast to other ubiquitin ligases involved in the clock, which
target clock proteins to proteasomal degradation. Finally, CRY
ubiquitination mechanisms might be even more complex, as it
was suggested that another ubiquitin ligase might be involved in
regulating CRY accumulation (Kurabayashi et al., 2010; Hirano
et al., 2013).

UBIQUITINATION OF PERIOD PROTEINS BY β-TRCP UBIQUITIN LIGASES
In Drosophila, the F-box component of an SCF ligase, SLIMB, was
shown to be critical for ubiquitination and degradation of PER
protein over the course of the circadian cycle (Grima et al., 2002;
Ko et al., 2002). SLIMB binds to PER after its phosphorylation by
Doubletime (DBT), in particular on serine 47 within the SLIMB
recognition site (Chiu et al., 2008).

SLIMB has two homologs in mammals, β-TRCP1/FBW1A and
β-TRCP2/FBW1B. Similarly to the action of DBT and SLIMB
on PER in the fly, β-TRCP1/2 are recruited to PER2 follow-
ing phosphorylation of this protein by the kinases CK1δ and
CK1ε (mammalian homologs of DBT), which leads to polyu-
biquitination and subsequent degradation of PER2 (Eide et al.,
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2005). Indeed, expression of a dominant negative form of β-TRCP
leads to the inhibition of PER2 ubiquitination and degradation.
β-TRCP1/2 also interact with PER1 in a CK1ε-dependent manner
and a knockdown of both β-TRCPs was found to stabilize PER1,
and reduce levels of transcriptional activation by CLOCK/BMAL1
(Shirogane et al., 2005). Accordingly, preventing the action of
β-TRCP1/2 on PER proteins leads to long-period or dampened cir-
cadian rhythms in cultured fibroblasts (Reischl et al., 2007; Ohsaki
et al., 2008). Surprisingly though, mice lacking β-TRCP1 neither
show alteration in circadian locomotor behavior nor differences
in SCN PER2 levels when compared to WT controls, suggesting
either that the SCN clock behaves differently from clocks in fibrob-
lasts or that there is redundancy at the level of the ubiquitin ligases
(Ohsaki et al., 2008). Finally, similarly to PER proteins protecting
CRYs (see Ubiquitination of Cryptochromes by FBXL Ubiqui-
tin Ligases), PER proteins are protected from ubiquitination and
degradation upon association with CRYs (Yagita et al., 2002).

UBIQUITINATION OF REV-ERBα

The stability of REV-ERBα is also regulated by a sequence of
phosphorylation, ubiquitination, and proteasomal degradation.
Indeed, REV-ERBα is stabilized following phosphorylation by
GSK3β (Yin et al., 2006). Treating cells with lithium, a GSK3β

inhibitor, leads to the quick degradation of REV-ERBα and there-
fore, to increased expression of Bmal1 (Figure 1). Subsequent
work identified HUWE1/ARF-BP1 and PAM/MYCBP2 as E3 lig-
ases involved in this lithium-induced REV-ERBα degradation
(Yin et al., 2010). Their depletion in cells stabilized REV-ERBα,
decreased Bmal1 gene expression, and disrupted oscillations of
other clock genes. HUWE1 and PAM may not be the only
ubiquitin ligases acting on REV-ERBα. In Fbxl3-mutant mice,
REV-ERBα levels are higher and consequently its repression of
Bmal1 and Cry1 genes is enhanced. Creation of double-mutant
Fbxl3/Rev-erbα−/− mice rescues the Fbxl3-mutant phenotype
(Shi et al., 2013) indicating that FBXL3, in addition to its role
on CLOCK/BMAL1-mediated transcription via destabilization of
CRYs, also has an effect on REV-ERBα-mediated repression of
target genes. Although this effect may be indirect, it does indicate
a role for this F-box protein as a coordinator of different clock
transcription factors.

UBIQUITINATION OF BMAL1
Many studies have indicated a tight regulation of BMAL1 stability.
Indeed, BMAL1 undergoes different phosphorylation events that
either target it for ubiquitination and degradation (e.g., GSK3β,
Sahar et al., 2010) or on the contrary for deubiquitination and sta-
bilization (e.g., PKCγ, Zhang et al., 2012). Importantly, BMAL1
ubiquitination and proteasome-mediated proteolysis appear to
coincide with the time of highest transcriptional activity (Kwon
et al., 2006; Lee et al., 2008; Stratmann et al., 2012), whereas in con-
ditions where CLOCK/BMAL1 activity is repressed (e.g., presence
of CRYs), BMAL1 is stabilized (Kondratov et al., 2006; Dardente
et al., 2007). However, no BMAL1-specific ubiquitin ligase had
been uncovered until a recent report, which described UBE3A as an
E3 ligase that binds and destabilizes BMAL1 (Gossan et al., 2014).
Knockdown of this ligase in mammalian cells and in Drosophila

clock neurons leads to a strong dampening of circadian oscillations
or even arrhythmicity.

SUMOylation IN THE CIRCADIAN CLOCK
The small ubiquitin-related modifier (SUMO) proteins also play a
role in the clock. Like other PTMs, SUMOylation is reversible and
the conjugation/deconjugation mechanisms are reminiscent of the
ubiquitin pathway (Muller et al., 2001). In contrast to ubiquitina-
tion though, SUMOylation does not directly target proteins for
degradation but rather regulates other functions such as nuclear
localization, protein–protein interactions, transcriptional activ-
ity and, interestingly, ubiquitination itself (Desterro et al., 1998;
Buschmann et al., 2000).

SUMOylation was first implicated in the clock following the
discovery of a SUMOylation consensus motif in BMAL1 (Cardone
et al., 2005). Co-expression of BMAL1 and SUMO showed that
BMAL1 could indeed be SUMOylated. In the liver, this occurs in
a rhythmic manner, with peak SUMOylation in the second half of
the light phase. This timing coincides with peak BMAL1 phospho-
rylation and activity, suggesting an interplay between these PTMs.
In further support of this, a functional CLOCK protein is required
for both BMAL1 SUMOylation and phosphorylation (Kondratov
et al., 2003; Cardone et al., 2005; Dardente et al., 2007). SUMOy-
lated BMAL1 is most abundant when the CLOCK/BMAL1 targets
Dbp and Rev-erbα show their highest mRNA levels, again support-
ing that SUMOylation of BMAL1 is involved in its transcriptional
activity (Lee et al., 2008). Indeed, BMAL1 binding to the Dbp
promoter was reduced when the lysine required for SUMOyla-
tion was mutated (Lee et al., 2008). Interestingly, SUMOylation
of BMAL1 is a prerequisite for its subsequent ubiquitination,
again highlighting the interplay of different PTMs in the circadian
clock.

DEUBIQUITINATION IN THE CIRCADIAN CLOCK
Given the importance of ubiquitination within the clock, it appears
reasonable to assume that deubiquitination plays a role as well.
Interestingly, the mRNA levels of a deubiquitinating enzyme
(DUB), ubiquitin-specific protease 2 (USP2), show rhythmicity
in most tissues examined (Kita et al., 2002; Storch et al., 2002;
Yan et al., 2008). This is notable, because among the hundreds of
clock-controlled transcripts, only a small minority cycles in mul-
tiple locations. The circadian rhythm of Usp2 is blunted in Clock
mutant and Bmal1 KO mice (Oishi et al., 2003; Molusky et al.,
2012b), and the Usp2 promoter is activated by CLOCK/BMAL1
(Molusky et al., 2012b), indicating that Usp2 is a direct target of
these transcription factors. In addition to its circadian regula-
tion, Usp2 expression is also induced by starvation and it was
therefore proposed that USP2 integrates nutritional and circadian
timing cues (Molusky et al., 2012b). In turn, liver USP2 appears
to be involved in the generation of a diurnal rhythm in glucose
metabolism (Molusky et al., 2012a).

However, the circadian role of USP2 is not limited to medi-
ating the rhythmic control of cellular processes by the molecular
clock. Since the short list of genes rhythmic in multiple tissues
is enriched for clock components, USP2 was hypothesized to
exert a role within the clock mechanism. To address this, Usp2
KO mice were generated by two laboratories. In one case, they
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revealed no alteration of the free-running period of locomotor
rhythms (Scoma et al., 2011). In contrast, our Usp2 KOs display
a period longer than WT littermates (Yang et al., 2012), imply-
ing a role within the clockwork. In line with this, the absence
of USP2 affects the mRNA levels of several clock genes (Scoma
et al., 2011; Yang et al., 2012, 2014), and USP2 interacts with
clock proteins. In our hands, whereas it forms a complex with
several clock proteins, USP2 directly binds only to PER1 (Yang
et al., 2012). Accordingly, PER1 is deubiquitinated in the presence
of USP2, but notably, this does not lead to PER1 stabilization.
Instead, USP2 appears to regulate PER1 intracellular localization
(Yang et al., 2014). Interestingly, the only other DUB that to our
knowledge has been implicated in clock mechanisms, Drosophila
USP8, also seems to act in a non-degradative manner: it deu-
biquitinates CLOCK, thereby inhibiting transcriptional activity of
CLOCK/CYCLE (CYCLE is the Drosophila homolog of BMAL1;
Luo et al., 2012).

In contrast, the work of other groups showed a stabi-
lization of other clock proteins due to deubiquitination by
USP2. BMAL1 levels are lower in the SCN of Usp2 KO mice
(Scoma et al., 2011), whereas in cultured cells, USP2 stabi-
lized BMAL1 (Scoma et al., 2011) and reduced its ubiquiti-
nation (Lee et al., 2008). Interestingly, a report suggested the
involvement of PKCγ-triggered deubiquitination of BMAL1 in
the resetting of peripheral clocks by feeding schedules, but
the DUB involved in this pathway remains unknown (Zhang
et al., 2012). In addition to PER1 and BMAL1, USP2 deu-
biquitinates CRY1 in cultured cells in response to a serum
shock, and in the mouse liver, Usp2 knockdown increases CRY
ubiquitination and decreases CRY1 protein levels (Tong et al.,
2012).

Data also support a role for USP2 in the response of the clock
to external cues. We found that Usp2 KO mice exhibit larger phase
delays than WT mice after light treatment in the first part of the
night, and reduced phase advances, upon light treatment later in
the night (Yang et al., 2012). Thus, USP2 appears to be involved in
the response of the SCN clock to light, which is also supported by
data of Scoma et al. (2011), which show increased phase-shifting
in response to low irradiance light in the early night. USP2 may
also mediate the response of the clock to inflammation, as the
expression of the gene is increased in response to TNFα treat-
ment, and CRY1 protein induction in response to this cytokine
is abrogated when Usp2 expression is knocked down (Tong et al.,
2012).

Together, these studies ascribe a pivotal role to USP2, and
deubiquitination in general, not only in the circadian clock mecha-
nism, but also as an integrator of environmental and physiological
signals, and in output pathways linking the molecular clockwork
to cellular and physiological functions.

A CLOCK PROTEIN MODIFICATION CODE?
Overall, the work described above underscores the impor-
tance of PTMs within the circadian timing mechanism. Given
that different modifications often converge on the same clock
protein, we propose the existence of a clock protein mod-
ification code whereby the fate/function of a given pro-
tein is determined by the precise combination and/or the

consecutive occurrence of different PTMs. This clock pro-
tein modification code is proposed to exist at different
levels:

1. Interplay of different PTMs: PTMs often occur sequentially. In
particular, there are numerous examples of phosphorylation
at specific sites being a pre-requisite for subsequent ubiquitina-
tion of the target protein (Cardozo and Pagano, 2004), as occurs
in many clock proteins. Another example of sequential mod-
ification is the SUMOylation of BMAL1 as a pre-requisite for
its ubiquitination (Lee et al., 2008). Moreover, different com-
binations of PTMs on a protein can lead to distinct outcomes.
For example, dual SUMOylation and ubiquitination of BMAL1
result in the BMAL1 localization to the nuclear bodies and active
transcription (Lee et al., 2008), whereas later in the circadian
cycle, additional events, possibly including further ubiquiti-
nation, lead to degradation of the protein. Combinations of
different phosphorylation events can also regulate protein fate
differentially: for example, in Drosophila, PER phosphorylation
by DBT is modulated by prior action of another kinase, NEMO,
and consequently, these kinases have opposing effects on PER
stability (Chiu et al., 2011).

2. Ubiquitin code: There is a large diversity in the ubiquitination
of proteins (Heride et al., 2014): they can be mono- or polyu-
biquitinated; in the latter case, ubiquitin chains can be linear or
branched, and the linkages between ubiquitin monomers can
be via different lysines. These different ubiquitination states
can be generated by various ligases/conjugating enzymes and
DUBs. This ubiquitin code can be read by proteins containing
ubiquitin-binding domains (UBDs). The effects of ubiqui-
tination can therefore be diverse depending on the type of
modifications and the presence of particular UBD-containing
proteins: not only targeting to the proteasome, but also reg-
ulation of intracellular localization, activity, protein–protein
interaction, etc. (Komander et al., 2009). As non-degradative
functions of clock protein ubiquitination have started to be
identified (see previous sections), it is now important to char-
acterize precisely the ubiquitin code (location and type of
ubiquitination) on clock proteins and identify the specific UBD-
containing proteins that recognize the code and translate it into
specific effects on clock proteins.

3. PTMs around the clock: PTMs of clock proteins are orches-
trated across the 24 h cycle. For example, BMAL1 undergoes
a series of PTMs associated with a variation in activity and
partner binding. Peak phosphorylation and SUMOylation of
BMAL1 occurs in the late subjective day in mouse peripheral
tissues (Cardone et al., 2005; Lee et al., 2008), and SUMOyla-
tion is a pre-requisite for ubiquitination (Lee et al., 2008). The
occurrence of these PTMs coincides with peak transcriptional
activity of the CLOCK/BMAL1 dimer (Ripperger and Schibler,
2006; Stratmann et al., 2012). Further, this appears to be reg-
ulated by another PTM, O-GlcNAcylation, which opposes the
ubiquitination of BMAL1 (Li et al., 2013). This maximal activity
of CLOCK/BMAL1 results in expression of CRY proteins that
then repress CLOCK/BMAL1, at a time that is synchronous with
the BMAL1 dephosphorylation and stabilization (Kwon et al.,
2006; Dardente et al., 2007). BMAL1 acetylation by CLOCK
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also occurs at this time and leads to increased recruitment
of CRY (Hirayama et al., 2007). CRYs themselves are good
examples of substrates for sequential PTMs over the 24 h day
and across the progression of the clock feedback loop (see
Ubiquitination of Cryptochromes by FBXL Ubiquitin Ligases).
Therefore, each clock protein undergoes a daily wave of PTMs,
in a sequential and often conditional manner, which determines
the expression, localization, and activity of the protein and its
partners.

CONCLUSION
In conclusion, ubiquitination and deubiquitination are involved in
the regulation of key core clock components. On one hand, ubiq-
uitin ligases are selectively acting on one or a few clock proteins. A
given clock protein can even be the target of two or three different
E3 ligases, depending on the time of day and cellular compart-
ment. On the other hand, DUBs seem less specific, and only one
was identified as a mammalian clock component so far: USP2.
This DUB regulates the stability and function of PER1, CRY1,
BMAL1 and perhaps other clock proteins, as well as components
of the input and output pathways of the clock. Moreover, there
is a complex interplay of ubiquitination with other PTMs. It will
be crucial in future years to precisely define ubiquitin chain con-
figurations and conjugation sites on clock proteins, to unravel the
precise regulation of their addition and removal and identify all the
actors involved. Furthermore, ubiquitination becomes an attrac-
tive drug target. Indeed, recent chemical screens of compounds
binding CRY proteins have identified molecules modulating their
ubiquitin-induced degradation (Hirota et al., 2012), suggesting
the possibility of therapeutic resetting of the circadian clock by
drug-mediated ubiquitin modulation of clock components.
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