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Thus far, three related natriuretic peptides (NPs) and three distinct sub-types of cognate
NP receptors have been identified and characterized based on the specific ligand binding
affinities, guanylyl cyclase activity, and generation of intracellular cGMP. Atrial and brain
natriuretic peptides (ANP and BNP) specifically bind and activate guanylyl cyclase/natriuretic
peptide receptor-A (GC-A/NPRA), and C-type natriuretic peptide (CNP) shows specificity
to activate guanylyl cyclase/natriuretic peptide receptor-B (GC-B/NPRB). All three NPs
bind to natriuretic peptide receptor-C (NPRC), which is also known as clearance or silent
receptor. The NPRA is considered the principal biologically active receptor of NP family;
however, the molecular signaling mechanisms of NP receptors are not well understood.The
activation of NPRA and NPRB produces the intracellular second messenger cGMP, which
serves as the major signaling molecule of all three NPs.The activation of NPRB in response
to CNP also produces the intracellular cGMP; however, at lower magnitude than that
of NPRA, which is activated by ANP and BNP. In addition to enhanced accumulation of
intracellular cGMP in response to all three NPs, the levels of cAMP, Ca2+ and inositol
triphosphate (IP3) have also been reported to be altered in different cells and tissue types.
Interestingly, ANP has been found to lower the concentrations of cAMP, Ca2+, and IP3;
however, NPRC has been proposed to increase the levels of these metabolic signaling
molecules. The mechanistic studies of decreased and/or increased levels of cAMP, Ca2+,
and IP3 in response to NPs and their receptors have not yet been clearly established. This
review focuses on the signaling mechanisms of ANP/NPRA and their biological effects
involving an increased level of intracellular accumulation of cGMP and a decreased level of
cAMP, Ca2+, and IP3 in different cells and tissue systems.
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INTRODUCTION
Atrial natriuretic factor/peptide (ANF/ANP) is produced and
secreted in the specific granules of cardiac atrial myocytes, which
participates in the control of extracellular fluid volume, electrolyte
balance, and mean arterial pressure, thus, it plays a central role
in the maintenance and regulation of cardiovascular homeostasis
(de Bold et al., 1981; de Bold, 1985; Brenner et al., 1990; Anand-
Srivastava and Trachte, 1993; Pandey, 2005, 2011). In addition
to its natriuretic, diuretic, vasorelaxant, antimitogenic, antihy-
pertrophic, and anti-inflammatory activities, ANP inhibits the
release of renin from the kidneys, aldosterone from the adrenal
glands, vasopressin from posterior pituitary, and progesterone
from Leydig tumor (MA-10) cells, while stimulating the synthe-
sis and release of testosterone from normal Leydig cells in the
testes, progesterone from granulosa-leuteal cells, and luteinizing
hormone from anterior pituitary gland (Inagami, 1989; Brenner
et al., 1990; Levin et al., 1998; Pandey, 2005). A number of stud-
ies have documented that ANP has always been found to increase
the intracellular accumulation of cGMP, however, to decrease the
levels of cAMP; Ca2+, and inositol triphosphate (IP3) in agonist

hormone-treated cells and tissues (Waldman et al., 1984; Pandey
et al., 1985, 1988; Khurana and Pandey, 1993, 1996; Pandey,
2005; Turovsky et al., 2013). It has also been suggested that ANP
decreases the cAMP levels by stimulating the cGMP-specific phos-
phodiesterases; however, in certain cells and tissue types, ANP did
not decrease or change the cAMP concentrations. Several studies
have indicated that ANP diminishes the Ca2+ signals probably
by activating the Ca2+ extrusion processes by protein kinase-
G (PKG) specifically in endothelial and vascular smooth muscle
cells (VSMCs; Rashatwar et al., 1987; Zolle et al., 2000; Pandey,
2005).

Among the natriuretic peptides (NPs) hormone family, ANP
is the first described member, later, two other members of NP
family; brain natriuretic peptide (BNP) and C-type natriuretic
peptide (CNP) were identified and characterized, which also
exhibited biochemical and structural properties similar to ANP;
however, each prepro NP hormone is encoded from a separate gene
(Rosenzweig and Seidman, 1991; Levin et al., 1998). Although, all
three NPs (ANP, BNP, and CNP) have highly homologous struc-
ture, they bind to specific NP receptors and elicit discrete biological
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and physiological functions (Brenner et al., 1990). There have
been three subtypes of NP receptors, namely; NP receptor-A,
NP receptor-B, and NP peptide receptor-C (NPRA, NPRB, and
NPRC, respectively), which were identified and characterized by
molecular cloning (Pandey and Singh, 1990; Garbers, 1992). Inter-
estingly, both ANP and BNP bind to NPRA, which produces
the intracellular second messenger cGMP; however, CNP binds
NPRB, which also generates cGMP, but all three NPs indiscrimi-
nately bind and activate NPRC, which lacks GC catalytic domain
(Fuller et al., 1988; Drewett and Garbers, 1994; Lucas et al., 2000;
Sharma, 2002; Pandey, 2005). The cellular, biochemical, and
pharmacological aspects of NPs and their cognate receptors have
revealed classic hallmark of physiological and pathophysiological
functional significance, including; renal, cardiac, vascular, neu-
ronal, and immunological aspects in health and disease (Pandey,
2005, 2011; Kishimoto et al., 2011). It has been suggested that
ANP suppresses Na+-reabsorption at the collecting duct of the
kidneys, inhibits renin synthesis and release, and stimulates natri-
uresis and diuresis, thereby, lowers blood pressure and blood
volume and maintains cardiovascular homeostasis (de Bold, 1985;
Brenner et al., 1990; Levin et al., 1998; Pandey, 2005). In the
vasculature, ANP relaxes VSMCs thus causing the immediate
vasorelaxant effect in the vascular bed (Levin et al., 1998; Pandey,
2005).

The expression and activity of NPRA is regulated by various
hormonal agents, including its ligand ANP (Pandey, 1993, 2005;
Cao et al., 1995; Pandey et al., 2002). The studies detailing the
Npr1 (coding for NPRA) gene-disruption in mice have revealed
the functional significance of NPRA in the control of blood pres-
sure and cardiovascular disease states (Oliver et al., 1997; Shi et al.,
2001; Holtwick et al., 2002; Vellaichamy et al., 2005; Kishimoto
et al., 2011; Pandey, 2011; Yoshihara et al., 2014). Mice lacking
NPRA develop high blood pressure and severe cardiac hypertro-
phy, fibrosis, and disorders that are reminiscent of heart disease as
seen in untreated human hypertensive patients (Vellaichamy et al.,
2007, 2014; Zhao et al., 2013). The regulated expression of CNP
is derived from endothelial cells, which targets NPRB on the adja-
cent smooth muscle cells (Suga et al., 1992). Thus, the principal
role of CNP is considered as a direct vasodilator involved in the
regulation of vascular tone through activation of GC-B/NPRB on
smooth muscle cells in the vascular beds (Hama et al., 1994). The
objective of this current review is to summarize and document
the findings and discoveries with particular emphasis of cellu-
lar signaling and physiological and pathological significance of
ANP/NPRA in relation to the increased production of intracellular
second messenger cGMP and inhibition of the phosphoinositide
(IP3) hydrolysis, Ca2+ release, and protein kinase C (PKC) activity
in target cells.

HISTORICAL BACKGROUND
Thirty-three years ago, the pioneer discovery by de Bold and his
coworkers established that atrial extracts contained natriuretic and
diuretic activity which led to the isolation and nomenclature of
ANF, usually referred to as ANP (de Bold et al., 1981; de Bold,
1985). Now, it is considered that ANP is primarily synthesized
and secreted in the granules of heart atrium and BNP is largely
synthesized in the heart ventricle and displays most variability

in the primary structure. Although, the atrium is the primary
site of synthesis for ANP, however, ventricle also produces ANP
but at the levels of 100-fold to 1000-fold lower than that of the
atrium, respectively (Kojima et al., 1989). CNP was isolated from
the porcine brain, however, is mostly present in the endothelial
cells of the vasculature and is highly conserved among the mam-
malian species (Rosenzweig and Seidman, 1991). The primary
structure deduced from the cDNA synthesis, suggested that ANP
is synthesized first as the 152-amino acid prepro-ANP molecule
that contains sequences of active peptide in its carboxyl-terminal
region (Maki et al., 1984). The biologically active ANP is released
by proteolytic cleavage of pro-ANP molecule into predominantly
28-amino acid active (residues 99–126) and the 98 amino acid
inactive (residues 1–98) molecules. The active form of ANP has a
disulfide-bonded loop between cysteine 105 and 121, which seems
to be essential for the biological activity (Brenner et al., 1990). Ini-
tially, different lengths of sequences of ANP were identified and
synthesized for the studies of structure-activity relationship, and
it was suggested that the ring structure of ANP with a disulfide-
bonded loop is essential for its biological activities (Rosenzweig
and Seidman, 1991). All three NPs contain highly conserved amino
acid sequences with a 17-residues disulfide-bonded ring but devi-
ate from each other in the N-terminal and C-terminal flanking
amino acid sequences. Furthermore, the C-terminal sequence
extending from the ring structure to Asn-Phe-Arg-Tyr is essen-
tial for the biological activity of ANP. The amino acid sequence
of ANP is almost identical across the mammalian species, except
at the position 10, which is substituted with isoleucine in rat,
mouse, and rabbit, however, in human, dog, and bovine, ANPs
have methionine in this position (Misono et al., 1984). Subse-
quently, BNP and CNP were both isolated and characterized from
the porcine brain extracts (Sudoh et al., 1988, 1990). BNP is pre-
dominantly synthesized and secreted from the heart ventricle
(Phillips et al., 1991). Similarly, CNP is predominantly local-
ized in the central nervous system and endothelial cells and is
considered as a non-circulatory peptide hormone (Suga et al.,
1992).

NATRIURETIC PEPTIDES SYNTHESIS AND SECRETION
It has been suggested that the processing of preprohormone to pro-
hormone molecule and the cleavage and secretion of biologically
active mature 28-residue ANP molecule occurs predominantly
in response to atrial distension (de Bold, 1985; Brenner et al.,
1990). Usually, ANP concentration ranges from 50 to 100-fold
higher than BNP; however, the expression of both ANP and BNP
increases dramatically in the atrium and ventricle in the con-
dition of cardiac disorders and heart failure (Mukoyama et al.,
1991). During the disease states, the ventricle becomes the primary
site of synthesis and release for BNP. In congestive heart failure
(CHF) patients, the concentrations of both ANP and BNP increase
greater than the control values, however, the BNP concentration
increases 10-fold to 50-fold higher than a comparative increases
in the ANP levels (Mukoyama et al., 1991). Those previous find-
ings indicated that ANP and BNP elicit distinct physiological
and pathophysiological effects, nevertheless, both hormones show
similar hemodynamic responses, but BNP exerts a longer duration
of action and causes enhanced natriuretic responses as compared

Frontiers in Molecular Neuroscience www.frontiersin.org August 2014 | Volume 7 | Article 75 | 2

http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive


Pandey Signaling mechanisms of GC-A/NPRA

with ANP (Yoshimura et al., 1991; Omland et al., 1996). It has been
suggested that the cardiac atrium expresses almost 50-fold to 100-
fold or even higher levels of ANP mRNA as compared with extra
-cardiac tissues (Gardner et al., 1986). Interestingly, higher ventric-
ular ANP levels have been found in the developing embryos and
fetuses; however, both mRNA and peptide levels of ANP decline
rapidly during the prenatal period (Cameron et al., 1996). On
the other hand, CNP does not seem to behave as a cardiac hor-
mone and its concentration is extremely low in the circulation
(Igaki et al., 1996). It is believed that CNP is largely localized in
the central nervous system and in the vascular endothelial cells
(Ogawa et al., 1992; Suga et al., 1992, 1993; Tamura et al., 1996;
Chen and Burnett, 1998). Another class of NPs is the D-type natri-
uretic peptide (DNP) that represents an additional member in the
NP hormone family and is largely present in the venom of the
green mamba (Dendroaspis angusticeps) as a 38-amino acid pep-
tide molecule (Schweitz et al., 1992; Lisy et al., 1999). In addition, a
32-amino acid peptide termed as urodilatin (URO) is identical to
C-terminal sequence of pro-ANP, which is largely present only in
the urine (Schulz-Knappe et al., 1988). Initially, URO was purified
from the human urine and is considered to be synthesized only
in the kidneys (Saxenhofer et al., 1990). The immunohistochem-
ical staining indicated that URO is largely present in the cortical
tubules around the collecting ducts of the kidneys (Meyer et al.,
1996; Doust et al., 2005).

In the circulation, the half-life of BNP is greater than ANP,
thus the evaluation of the diagnostic importance of the NPs have
mostly favored BNP. The inactive N-terminal fragment of BNP
(NT-proBNP) has even a greater half-life than the BNP. The plasma
levels of both BNP and NT-proBNP are markedly elevated under
the pathophysiological conditions of cardiac dysfunction, includ-
ing diastolic dysfunction, CHF, and pulmonary embolism (Felker
et al., 2006; Jaffe et al., 2006). The basal plasma levels of BNP
vary from 5 to 50 pg/ml and NT-proBNP levels range from 10 to
150 pg/ml. An abnormal range is considered as 100 pg/ml for BNP
and 125 pg/ml for NT-proBNP (Felker et al., 2006). Nevertheless,
the secretion of both ANP and BNP from the ventricular myocytes
increases proportionally in relation to the magnitude of cardiac

dysfunction or heart failure condition (Yoshimura et al., 1993).
It has been suggested that BNP acts as an important prognostic
indicator in the CHF patients, however, NT-proBNP is consid-
ered to be a stronger risk bio-indicator for cardiovascular events
(Doust et al., 2005). Both BNP and NT-proBNP seem to provide
an ideal tool to be utilized as blood tests to diagnose cardiac dis-
orders in patients with high risk of heart failure, diabetes, chronic
kidney disease, and coronary artery disease (Khan et al., 2006;
Freestone et al., 2008; Czucz et al., 2011; Ganem et al., 2011). The
BNP level is increased to almost 200 pg/ml and NT-proBNP lev-
els reaches to approximately 1200 pg/ml in patients with reduced
creatinin clearance (McCullough et al., 2003; Anwaruddin et al.,
2006).

IDENTIFICATION AND CHARACTERIZATION OF RECEPTOR
MEMBRANE GUANYLYL CYCLASE
The previous studies using cross-linking and photoaffinity label-
ing procedures, have shown the existence of NP receptors with a
wide range of molecular weight (Mr) of the 60–180 kDa (Misono
et al., 1985; Schenk et al., 1985; Vandlen et al., 1985; Meloche et al.,
1986; Pandey et al., 1986). Initially, NP receptors were identified
with varying receptor density in different cells and tissue types
(Table 1). Subsequently, high affinity ANP binding sites were
with GC activity were co-purified (Kuno et al., 1986; Paul et al.,
1987; Takayanagi et al., 1987; Meloche et al., 1988) On the basis
of biological activity of different ANP analogs, NP receptors were
classified and characterized as biologically active and clearance or
silent receptors (Maack et al., 1987). Subsequently, three distinct
subtypes of NP receptors were identified, which appeared to be
specific to different cells and tissues (Pandey et al., 1988). Based
on the cellular, biochemical, and molecular biological studies, the
NPs and their receptors are quite widespread in cell and tissue
distributions (Leitman et al., 1988; Pandey et al., 1988; Brenner
et al., 1990; Marala et al., 1992; Levin et al., 1998; Pandey, 2005).
Molecular cloning and expression of cDNA from mouse, rate, and
human, led to identify and characterize the primary structure of
three distinct subtypes of NP receptors, which are currently des-
ignated as GC-A/NPRA, GC-B/NPRB, and NPRC (Fuller et al.,

Table 1 | ANP-dependent binding parameters of GC-A/NPRA and intracellular accumulation of cGMP in different cell types.

Cell type ANP-dependent Intracellular

cGMP (fold stimulation)

Ligand binding parameters of NPRA

kd value (Molar) Bmax (receptor site/cell)

Endothelial cells 15 10–100 pM 0.5 × 105

Granulosa cells 30 10–100 pM 0.5 × 105

Glomerulosa cells 50 100–1 pM 2 × 105

MA-10 cells 1,500 100–1 nM 1 × 106

MDCK cells 50 10–100 pM 0.5 × 105

N4TG1 cells 30 1–100 pM 0.5 × 105

Primary Ledig cells 60 10–100 pM 0. 5 × 105

RTASM cells 10 1–100 pM 0.2 × 105

HEK-293 cells, human embryonic Kidney-293 cells; kd, dissociation constant; Bmax , receptor density; MA-10 cells, Leydig tumor cells; MDCK cells, Maiden-Darby
kidney epithelial cells; N4TG1 cells, neuroblastoma cells; RTASM, rat thoracic aortic smooth muscle cells.
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1988; Chinkers et al., 1989; Schulz et al., 1989; Pandey and Singh,
1990; Duda et al., 1991). The general topological structures of
GC-A/NPRA and GC-B/NPRB are consistent with at least four
distinct domains, including extracellular ligand-binding domain,
a single transmembrane spanning region, and intracellular protein
kinase-like homology domain (protein-KHD), and GC catalytic
domain. The transmembrane GC receptors contain a single cyclase
catalytic site per protein molecule, however, based on the struc-
tural modeling data two polypeptide chains seem to be required
to activate GC-A/NPRA (Wilson and Chinkers, 1995; Labrecque
et al., 1999; van den Akker et al., 2000). It has been indicated
that the dimerization region of the receptor is located between
the KHD and GC catalytic domain that has been predicted to
form an amphipathic alpha helix structure. The GC-B/NPRB has
the overall domain structure similar to that of GC-A/NPRA with
binding affinity to CNP also produces the intracellular second
messenger cGMP (Schulz et al., 1989; Koller et al., 1991; Lucas
et al., 2000). NPRA is considered as the dominant subtype of the
NP receptors found in peripheral organs and mediates most of
the known functions of ANP and BNP hormones. Nevertheless,
NPRB is localized mainly in the central nervous system and vas-
cular tissues, which is thought to mediate the actions of CNP in
the brain and also in the vascular bed. There are increasing num-
bers of other GC receptors; however, the specific ligands for these
receptors are still being identified (Table 2). The third member
of the NP receptor family, NPRC, constitutes a large extracellu-
lar domain of 496-amino acids, a single transmembrane domain,

and a very short 37-amino acid cytoplasmic tail that contains no
sequence homology with any other known membrane receptor
proteins and has been given the name by default as clearance
receptor (Fuller et al., 1988). The extracellular region of NPRC
is approximately 30% identical to both GC-A/NPRA and GC-
B/NPRB. Studies using the ligand receptor binding as a criterion,
have shown that NPRC has much less stringent specificity and
affinity for structural variants of ANP than does NPRA (Bovy,
1990). The extracellular domain of NPRC possesses two pairs
of cysteine residues along with one isolated cysteine near the
transmembrane domain of the receptor. However, three poten-
tial signals for N-glycosylation and several serine and threonine
for O-linked glycosylation sites are known to be present in the
extracellular domain of NPRC (Fuller et al., 1988). Previously, it
has been suggested that NPRC may function as a clearance receptor
to remove and clear NPs from the circulation, however, a num-
ber of studies have provided the evidence that NPRC plays roles
in the biological actions of NPs (Anand-Srivastava and Trachte,
1993; Matsukawa et al., 1999; Zhou and Murthy, 2003). Thus,
it is evident that the clearance name carries only by a default
nomenclature to NPRC.

INTERNALIZATION AND DOWN-REGULATION OF GC-A/NPRA
The ligand-dependent internalization plays important role in the
receptor down-regulation and signaling process. Down-regulation
of GC-A/NPRA has been reported in a number of cells, includ-
ing PC-12 cells containing endogenous receptors and transfected

Table 2 |The distribution of natriuretic peptide receptors (NPRA, NPRB, and NPRC) and their gene-knockout phenotype.

Receptor Ligand Tissue-specific distribution Cell-specific distribution Gene-knockout phenotype

NPRA (Npr1) ANP/BNP Kidney, adrenal glands, brain,

heart, liver, lung, olfactory,

ovary, pituitary gland, placenta,

testis, thymus, vascular beds,

liver, ileum

Renal epithelial and mesangial

cells, vascular smooth muscle

cells, endothelial cells, Leydig

cells, granulosa cells,

fibroblasts, Neuroblastoma,

LLCPk-1, MDCK cells

High blood pressure,

hypertension, cardiac

hypertrophy and fibrosis,

inflammation, volume overload,

reduced testosterone

NPRB (Npr2) CNP Adrenal glands, brain, cartilage,

fibroblast, heart, lung, ovary,

pituitary gland, placenta, testis,

thymus, vascular beds

Vascular smooth muscle cells,

fibroblasts, chondrocytes

Dwarfism, decreased adiposity,

female sterility, seizures,

vascular complication

NPRC (Npr3) ANP, BNP, CNP Kidney, heart, brain liver,

vascular bed, intestine

Vascular smooth muscle cells,

endothelial cells, mesangial

cells, fibroblasts

Bone deformation, skeletal

over-growth, long bone

overgrowth

GC-D Guanylyn/uroguanylyn Olfactory neuroepithelium

GC-E/(ROS-GC-1) Ca2+-binding proteins Retina, pineal gland

GC-F/(ROS-GC-2) Ca2+-binding proteins Retina, rod outer segment

GC-G Orphan Skeletal muscle, lung, intestine,

and kidney

GC-Y-X1 Orphan Sensory neurons of C. elegans

NPRA, natriuretic peptide receptor-A; Npr1, coding for guanylyl cyclase/natriuretic peptide receptor-A; NPRB, natriuretic peptide receptor-B; Npr2, coding for guanylyl
cyclase/natriuretic peptide receptor-B; NPRC, natriuretic peptide receptor-C; Npr3, coding for natriuretic peptide clearance receptor.
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COS-7 and HEK-293 cells harboring recombinant receptors
(Rathinavelu and Isom, 1991; Pandey, 1993; Pandey et al., 2000a,
2002). The carboxyl-terminal deletion mutation has shown that
the specific sites in the GC catalytic domain and KHD of NPRA,
play critical roles in the endocytosis and sequestration of the recep-
tor (Pandey et al., 2000a). Previous studies have also indicated that
after prolonged treatment of cultured cells with ANP, both the
receptor density and GC activity were decreased with simultaneous
reduction in mRNA of levels NPRA (Fujio et al., 1994; Cao et al.,
1995, 1998; Hum et al., 2004). In addition, transforming growth
factor-β1 (TGF-β1), angiotensin II (ANG II), and endothelin (ET-
1) have also been shown to reduce mRNA levels of NPRA in various
types of cultured cells (Fujio et al., 1994; Chen and Gardner, 2003;
Garg and Pandey, 2003; Arise and Pandey, 2006). Those pre-
vious studies demonstrated that a decrease in mRNA levels of
GC-A/NPRA correlated with the repressed transcriptional activity
of the receptor. On the other hand, mRNA levels of NPRA are
greatly increased by retinoic acid and histonedeacetylase inhibitor
treatments (Kumar et al., 2010, 2014a,b). It has been suggested
that NPRA exists in the phosphorylated state and the addition
of ANP causes a decrease in the phosphate contents as well as
reduction or desensitization of the ANP-dependent GC catalytic
activity of NPRA Potter and Garbers, 1992). The apparent mech-
anism of desensitization of NPRA is in contrast to many other
cell-surface hormone receptors, which appear to be desensitized by
phosphorylation (Sibley et al., 1987; Hugnir and Greengard, 1990;
Lefkowitz et al., 1998; Sorkin and von Zastrow, 2002). The initial
findings have also indicated that ANP stimulates phosphorylation
of NPRA (Ballerman et al., 1988; Pandey, 1989; Duda and Sharma,
1990; Larose et al., 1992). Later, it was suggested that cGMP-
dependent PKG, a serine/threonine kinase is also phosphorylates
NPRA (Airhart et al., 2003).

The down-regulation of NPRC also seems to be associated
with increased internalization of the ligand-receptor complexes
involving receptor-mediated endocytosis and trafficking mecha-
nisms of this receptor protein (Pandey, 1992). The phenomenon
of down-regulation of NPRC has been largely documented in cul-
tured VSMCs, which predominantly contain a high density of
NPRC (Neuser and Bellermann, 1986; Hirata et al., 1987; Hughes
et al., 1987; Pandey, 1992; Anand-Srivastava, 2000). The metabolic
processing of ANP involving NPRC has been reported by several
investigators utilizing VSMCs (Hirata et al., 1985; Napier et al.,
1986; Murthy et al., 1989; Nussenzveig et al., 1990; Pandey, 1992,
2005; Cohen et al., 1996; Anand-Srivastava, 2000). It has been sug-
gested that a population of the internalized NPRC also recycles
back to the plasma membrane (Pandey, 1992).

ACTIVATION OF GC-A/NPRA GENERATES INTRACELLULAR
SECOND MESSENGER cGMP
It is believed that cGMP is generated as a result of ANP bind-
ing to the extracellular domain of GC-A/NPRA, which probably
allosterically regulates an increased activity of the receptor protein
(Pandey, 1993, 2005, 2011; Drewett and Garbers, 1994; Pandey
et al., 2002; Sharma, 2002; Sharma and Duda, 2010). The initial
findings showed that ANP markedly increases cGMP in target tis-
sues in a dose-related manner (Hamet et al., 1984; Waldman et al.,
1984; Pandey et al., 1985). Previous studies have also indicated

that the binding of ANP to GC-A/NPRA by itself is probably not
sufficient to stimulate GC catalytic activity and the production
of cGMP, however, it requires ATP (Kurose et al., 1987; Chinkers
et al., 1991; Goraczniak et al., 1992). Because the non-hydrolyzable
analogs of ATP mimicked ANP effect, it was suggested that ATP
acts directly by allosteric regulation of GC catalytic activity of
NPRA. Both the ligand binding and the interaction of ATP with
the KHD of the receptor increase the cGMP production with-
out affecting the affinity for the substrate (Kurose et al., 1987;
Chang et al., 1990; Duda et al., 1991). Molecular cloning and
overexpression of NPRA demonstrated that GC catalytic domain
cannot be activated by ANP alone without ATP-binding to KHD
region of the receptor (Chinkers et al., 1991; Larose et al., 1991;
Wong et al., 1995). Further studies provided the evidence that
ATP binding to KHD of NPRA is important for the effectors cou-
pling of GC family of receptors (Goraczniak et al., 1992; Sharma,
2002).

Deletion of the KHD of GC-A/NPRA and GC-B/NPRB has
been suggested that KHD represses the GC catalytic activity of
these receptors (Chinkers et al., 1989). At the same time, another
model was proposed indicating that KHD was not a repressor;
however, ATP was required to activate the catalytic domain of
NPRA (Goraczniak et al., 1992; Sharma, 2002). Both NPRA and
NPRB contain a glycine-rich ATP binding motif within the KHD,
which is known as glycine-rich consensus sequence (Duda et al.,
1991, 1993; Goraczniak et al., 1992). The juxtamembrane hinge
structure of NPRA undergoes a significant conformational change
in response to ligand binding, and it may play an important
role in transmembrane signaling process (Huo et al., 1999). The
amino acid sequence near the transmembrane region is well con-
served in GC-A/NPRA that contains several closely located proline
residues and a pair of cysteine residues. The mutation of one of
the proline in this region renders the receptor to bind the lig-
and but blocks GC catalytic activity (Huo et al., 1999). Similarly,
in the juxtamembrane hinge region, the elimination of disul-
fide bond of cysteine residues resulted in constitutive activation
of NPRA. Those previous findings suggested that juxtamem-
brane hinge region of NPRA may play a critical role in receptor
activation and signal transduction mechanisms of GC-coupled
receptors.

The glycosylation of the receptor seems to be essential for ligand
binding activity of GC-A/NPRA (Lowe and Fendly, 1992; Fenrick
et al., 1997). However, it has also been suggested that glycosyla-
tion may not be required for ligand binding of NPRA (Miyagi
et al., 2000). The mutational analyses of N-linked glycosylation
consensus sites in guanylyl cyclase-C (GC-C) have indicated that
certain amino acid residues might be important for receptor sta-
bility (Hesegawa et al., 1999). The glycosylation sites onto the
GC-A/NPRA binding domain have been found to be scattered
on the surface of the receptor with the exception of the hormone
binding site and dimer interface (van den Akker, 2001). The gly-
cosylation sites have been implicated to function in proper folding
and stability of NPRA (Lowe and Fendly, 1992; Koller et al., 1993;
Heim et al., 1996). Nevertheless, the glycosylation of the extracel-
lular domain of NPRA can be considered of significant importance
for receptor orientation and packaging on the cell surface similar
to that of other plasma membrane receptor proteins (Wormald
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and Dwek, 1999). Nevertheless, it should be noted that there is no
appreciable conservation of the precise position of the glycosyla-
tion sites within the members of GC-receptor family. Clearly, more
studies are needed to confirm the functional roles of glycosylation
in the transmembrane signaling processes of both GC-A/NPRA
and GC-B/NPRB protein molecules.

ANP/NPRA SIGNALING INHIBITS PHOSPHOINOSITIDE
HYDROLYSIS, Ca2+ RELEASE, AND PKC ACTIVITY
Previous studies have demonstrated that ANP significantly
decreased the hydrolysis of phosphoinositide in murine Leydig
tumor (MA-10) cells in a dose-dependent manner and the H-
8, a specific inhibitor of PKG, reversed the inhibitory effect of
ANP on the generation of inositol phosphates, supporting the
involvement of PKG in this process (Khurana and Pandey, 1995).
ANP has also been shown to inhibit both autophosphorylation
and enzymatic activity of PKC in different cell systems (Pandey,
1989, 1994a,b; Kumar et al., 1997). It is not yet clear if the ANP-
dependent inhibitory effects on the phosphoinositide metabolism
and PKC autophosphorylation and/or enzyme activity are exerted
in a composite manner to negatively regulate the phosphoinosi-
tide, Ca2+, and PKC involving ANP/NPRA/cGMP/PKG cascade.
It is also possible that the effect of ANP is transmitted to block
the IP3 and Ca2+ signaling pathways independently in response
to particular agonist stimulation. It has been suggested that potas-
sium channels can be stimulated by ANP through the activation
of PKGs, which require ATP and G-proteins (White et al., 1993).
However, the possible involvements of potassium channels in the
ANP-dependent inhibitory responses on the generation of inosi-
tol phosphates are not yet clearly understood. ANP has also been
shown to stimulate the formation of inositol phosphates in cul-
tured VSMCs, however, in the inner medullary collecting duct cells
and smooth muscle tissues, ANP stimulated the production of
inositol phosphates at lower dosages, and inhibited the formation
of these metabolites at higher dosages, which increase intracel-
lular generation of cGMP (Resink et al., 1988; Hirata et al., 1989;
Teitelbaum et al., 1990; Berl et al., 1991). Thus the heterogeneity
of NP receptors and their diverse cellular distribution suggest that
different mechanisms might be involved in the cellular action of
ANP/NPRA/cGMP (Anand-Srivastava and Trachte, 1993; Pandey,
2001, 2002, 2011). It has also been shown that ANP inhibits
the thrombin-induced synthesis and release of endothelin in cul-
tured rat aortic endothelial cells by blocking the phosphoinositide
breakdown (Emori et al., 1993).

In addition to the stimulatory effect of ANP on GC activity,
it has also been shown to reduce adenylyl cyclase and phos-
pholipase C activities, sodium influx, and Ca2+ concentrations
(Brenner et al., 1990; Anand-Srivastava and Trachte, 1993; Pandey,
2005). The increased production of cGMP in response to ANP
correlates with the effects of dibutyryl-cGMP. The most com-
pelling evidence supporting a role for cGMP effects was obtained
with selective NPRA antagonists, A71915 and HS-121-1 in the
kidneys (von Geldern et al., 1990; Sano et al., 1992). Those pre-
vious studies established that ANP effect is largely mediated by
cGMP through the activation of GC-A/NPRA. In general, evidence
suggests that biological activity of ANP/NPRA enhances the gen-
eration of the intracellular second messenger cGMP and decreases

the levels of cAMP, Ca2+, and IP3 along with the antagonistic
effects on PKC and mitogen-activated protein kinases (MAPKs)
in target cells (Figure 1). ANP has been reported to induce
cGMP-dependent acrosomal reaction in both capacitated and
non-capacitated spermatozoa (Anderson et al., 1994). Further-
more, the acrosome reaction was essentially equal in magnitude
when induced with ANP or Ca2+ ionophore A23187. However,
higher concentrations of ANP were required to induce acrosomal
reaction in capacitated as compared with non-capacitated sper-
matozoa. Those previous findings indicated that ANP-induced
human acrosomal reaction does not require physiological concen-
trations of extracellular Ca2+. Acrosomal reaction is known to
involve various extracellular signals, including cAMP (Anderson
et al., 1992), cGMP (Komatsu et al., 1990), prostaglandins, Ca2+
and IP3 (Thomas and Meizel, 1989), and diacylglycerol (Breitbart
et al., 1992).

The established biochemical and cellular effects of ANP in
the adrenal glomerulosa cells showed the activation of GC activ-
ity and K+ channel conductance; whereas T-type Ca2+ channels
conductance and adenylyl cyclase activity are suppressed (Anand-
Srivastava and Trachte, 1993). The correlative evidence between
ANP-induced cGMP accumulation and vasodilation has suggested
the role of cGMP as the intracellular second messenger of dila-
tor responses to ANP (Brenner et al., 1990; Anand-Srivastava and
Trachte, 1993; Cao et al., 1995; Pandey, 2005). ANP as well as
cGMP analogs have been found to reduce the agonist-induced
increases in cytosolic Ca2+ concentrations (Hassid, 1986; Lincoln
et al., 1994; Pandey, 2005). It has been suggested that cGMP acti-
vates sarcolemmal Ca2+-ATPase, and this mechanism seems to
be important in the ANP-induced decreases in cytosolic Ca2+ in
VSMCs (Rashatwar et al., 1987; Cornwell and Lincoln, 1989; Levin
et al., 1998; Pandey, 2005). Nevertheless, it is anticipated that the
ultimate effect of ANP in VSMCs could be due to production of
cGMP and the activation of PKG (Lincoln et al., 1994; Kumar et al.,
1997). However, more studies are needed to define the biochem-
ical and molecular basis of NP actions in vasculature, including
VSMCs and endothelial cells.

Initial studies from our laboratory and data published from
others have also shown that both ANP and cGMP inhibited the
autophosphorylation and enzymatic activity of PKC in the plasma
membrane preparations of various target cells (Rogers et al., 1988;
Sauro and Fitzpatrick, 1990; Pandey, 1994a,b; Kumar et al., 1997).
The activation of PKC triggers the agonist-dependent phosphory-
lation and activity of numerous cellular proteins causing alteration
in many physiological and pathophysiological conditions, includ-
ing hypertension, cardiac hypertrophy, ischemia, atherosclerosis,
stroke, and neurological disorders (Louis et al., 1988; Turla et al.,
1990; Komuro et al., 1991; Kumar et al., 1997). PKC is believed
to be a multigene family, consisting of at least 12 isoenzymes
that can be classified into classical, novel, and atypical forms
(Hug and Sarre, 1993; Dekker and Parker, 1994). These PKC
isoenzymes are multifunctional serine/threonine kinases that are
largely activated by Ca2+/phospholipids and phorbol esters. How-
ever, some of these isoforms (e, δ, ή, and ϕ) do not require
Ca2+, while other isoforms (ζ and ε) do not require Ca2+ or
phospholipid for PKC enzymatic activity. Previous studies have
indicated that vasoconstrictive agents, including ANG II and
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FIGURE 1 | Diagram represents the ligand specificity and physiological

function(s) of GC-A/NPRA. The ligand-binding to NPRA generates second
messenger cGMP from the hydrolysis of GTP. An increased level of
intracellular cGMP is produced, which activates three known cGMP
effecter molecules namely; cGMP-dependent protein kinases (PKGs),
cGMP-dependent phosphodiesterases (PDEs), and cGMP-dependent
ion-gated channels (CNGs). The ANP/NPRA/cGMP signaling may antagonize
a number of pathways including; intracellular formation of cAMP, Ca2+, IP3;

cytokine expression; and the activation of protein kinase C (PKC) and
mitogen-activated protein kinases (MAPKs). The resulting signaling cascade
can mimic the physiological responses of ANP/NPRA. LBD, ligand binding
domain; TM transmembrane region; protein-KHD, protein kinase-like
homology domain; and GCD, guanylyl cyclase catalytic domain; DD,
dimerization domain of NPRA and NPRB. The ligand binding region,
transmembrane domain, and small intracellular tail region of NPRC are
indicated.

ET-1, were able to activate several-fold PKC activity in cultured
VSMCs, however, ANP potently antagonized the ANG II- and ET-
1-stimulated PKC activity in the ANP/NPRA-dependent manner
(Kumar et al., 1997; Pandey, 2005). The inhibitory effect of ANP
was greatly amplified if cell were transfected with both PKC-α
and NPRA cDNAs. The pretreatment of cells with NPRA antago-
nist A-71915, significantly blocked the production of cGMP as
well as the inhibitory effect of ANP on PKC activity (Kumar
et al., 1997). The results of those previous studies provided strong
evidence that ANP antagonizes the PKC activation involving
ANP/NPRA/cGMP signaling cascade. Agonists that activate PKC
also produce two distinct second messengers, IP3, which acti-
vates cytosolic free Ca2+ and diacylglycesol, which stimulates PKC
activity (Berridge and Irvine, 1989; Exton, 1990; Rasmussen et al.,
1995; Kumar et al., 1997). Our previous studies have suggested
that ANP inhibits the formation of IP3 in a cGMP-dependent
manner in the intact cells, suggesting that the inhibitory effect
of ANP on PKC activity might be linked with its antagonistic
action on IP3 formation, however, more studies are needed to
support these observations in various ANP-responsive cell and
tissues systems.

EFFECT OF NPRA ON THE INHIBITION OF MAPKs ACTIVITY
AND CELL PROLIFERATION
It has been shown that cGMP analogs mimicked the antiprolif-
erative action of ANP, indicating that it exerts the antimitogenic
effects largely through the intracellular second messenger cGMP
(Lincoln et al., 1994; Hutchinson et al., 1997; Pandey et al., 2000b;
Sharma et al., 2002). ANP has been shown to inhibit collagen
synthesis in cardiac fibroblasts and also it inhibits hypertro-
phy of cardiac myocytes (Calderone et al., 1998; Masciotra et al.,
1999; Silberbach et al., 1999; Horio et al., 2000; Gopi et al., 2013).
Similarly, PKG has been shown to suppress extracellular matrix
production in VSMCs (Dey et al., 1998). Both NPRA and NPRC,
have been suggested to play a role in ANP-dependent antim-
itogenic responses (Prins et al., 1996; Hutchinson et al., 1997;
Pandey et al., 2000b; Sharma et al., 2002; Tripathi and Pandey,
2012). ANP has been shown to act as a growth suppressor in a
variety of cell types including; kidney, heart, neurons, thymus,
vasculature, and fibroblasts (Levin et al., 1998; Pandey, 2005). Pre-
vious studies have demonstrated that ANP inhibits ANGII- and
platelet-derived growth factor (PDGF) -dependent MAPK activ-
ity in different tissues and cell types (Sugimoto et al., 1993; Prins
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et al., 1996; Pandey et al., 2000b; Sharma et al., 2002; Tripathi and
Pandey, 2012). However, in astroglial cells, ANP was shown to
inhibit extracellular-regulated MAPK (Erk1/2) activity through
NPRC (Prins et al., 1996). In contrast, recent findings have indi-
cated that des- (Cys105–Cys121) -ANP, a ligand selective to NPRC,
did not inhibit basal or serum-stimulated MAPK, however, CNP,
which acts through NPRB, potently inhibited MAPK activity in
fibroblasts in a cGMP-dependent manner (Chrisman and Garbers,
1999).

It has been postulated that cGMP-dependent signaling mech-
anisms of GC-A/NPRA are initiated probably at the level of gene
transcription; however, the exact mechanism of this activation
remains to be elucidated. A previous report also indicated that
cGMP/PKG signaling was able to increase the MAPK activity in
contractile rat VSMCs (Komalavilas et al., 1999). However, the
process by which cGMP/PKG leads to the activation of MAPKs is
unclear. Similarly, cAMP- and PKG have also been shown to inhibit
as well as to activate MAPKs pathways, depending on the cell
types and culture conditions (Bornfildt and Krebs, 1999). How-
ever, the involvement of specific ANP receptor subtypes in the
inhibitory effects of ANP on the agonist-stimulated MAPKs activ-
ity is controversial. Indeed, more studies are needed to establish
the underlying mechanisms of the antiproliferative effect of ANP
in target cells. ANP has also been shown to induce apoptosis in
cultured VSMCs and in neonatal rat cardiac myocytes (Trindade
et al., 1995; Wu et al., 1997). The apoptotic effect of ANP was
mimicked by 8-bromo-cGMP, a membrane-permeable analog of
cGMP, and also by nitroprusside, an activator of soluble guanylyl
cyclase. Furthermore, the effect of ANP was greatly potentiated
by a cGMP-specific phosphodiesterase inhibitor zaprinast. It has
been indicated that norepinephrine, a myocyte growth and pro-
liferative effector molecule, inhibited ANP-induced apoptosis via
activation of β-adrenergic receptor and elevation of cAMP (Wu
et al., 1997). The existence of a complementary ANP-mediated
mechanism to inhibit cell growth and proliferation is not antic-
ipated. Nevertheless, the inhibition of cell proliferation is often
accompanied by an increased probability of apoptosis, whereas,
growth-promoting agents and agonist hormones tend to promote
cell growth and proliferation. For instance, ANG II inhibits apop-
tosis, in contrast, ANP and nitric oxide, both potently inhibit
cell growth and proliferation and induce apoptosis (Pollman et al.,
1996; Wu et al., 1997). It has been suggested that the anti-apoptotic
molecule Bcl-2 homolog Mcl-1 might serve as an important tar-
get in ANP-induced apoptosis. Intriguing was the finding that the
Bcl-2 homolog Mcl-1 was initially identified as a protein marker,
which was up-regulated during the differentiation of the mono-
cytoid cell line ML-1 cells (Kozopas et al., 1993; Kiefer et al., 1995;
Wu et al., 1997).

GENE-TARGETING OF Nppa AND Npr1
Genetic-targeting strategies in mice have provided novel
approaches to study the physiological responses corresponding
to gene-dosage in vivo (Takahashi and Smithies, 1999; Kim et al.,
2002). Genetically modified mice carrying Npr1 gene-disruption
or gene-duplication have provided strong support for the phys-
iological roles of NPs and their receptors in the intact animals
(John et al., 1995; Lopez et al., 1995; Kishimoto et al., 1996; Oliver

et al., 1997, 1998; Matsukawa et al., 1999; Pandey et al., 1999;
Shi et al., 2001, 2003; Holtwick et al., 2002; Vellaichamy et al.,
2005; Das et al., 2012; Zhao et al., 2013). Numerous studies have
examined the quantitative contributions and possible mechanisms
mediating the responses of Npr1 gene copies by determining the
renal plasma flow (RPF), glomerular filtration rate (GFR), urine
flow, and sodium excretion following blood volume expansion
in Npr1 homozygous null mutant (Npr1−/−; 0-copy), wild-type
(Npr1+/+; 2-copy), and gene-duplicated (Npr1++/++; 4-copy)
mice in a Npr1 gene-dose-dependent manner (Shi et al., 2003).
Although, the blood volume expansion stimulated the release
of ANP in all three Npr1 genotypes of mice, significant func-
tional responses (RPF, GFR, and sodium excretion) occurred only
in Npr1−/− and Npr1++/++ mice but not in Npr1−/− mice.
These findings demonstrated that the ANP/NPRA axis is pri-
marily responsible for mediating the renal hemodynamic and
sodium excretory responses to intravascular blood volume expan-
sion. ANP responses to volume expansion led to the significantly
lesser excretion of Na+ and water in 0-copy null mutant mice
and significantly greater excretory responses along with reduced
tubular reabsorption in 4-copy mice as compared with 2-copy
wild-type mice. Similarly, during the volume expansion, uri-
nary cGMP concentration was significantly lower in null mutant
mice and greater in gene-duplicated mice. Our previous findings
have established that NPRA is a hallmark receptor, which plays a
critical role in mediating the natriuresis, diuresis, and renal hemo-
dynamic responses to acute blood volume expansion (Shi et al.,
2003).

Genetic mouse models with disruption of both Nppa and
Npr1 genes have provided strong support for the role of this
hormone-receptor system in the regulation of blood pressure, car-
diac hypertrophy, and other physiological functions (John et al.,
1995; Lopez et al., 1995; Oliver et al., 1997, 1998; Melo et al., 1999;
Pandey et al., 1999; Shi et al., 2001, 2003; Holtwick et al., 2002;
Vellaichamy et al., 2005; Kishimoto et al., 2011; Pandey, 2011).
Therefore, the genetic defects that reduce the activity of ANP and
its receptor system can be considered as candidate contributors to
essential hypertension and CHF (John et al., 1995; Pandey et al.,
1999; Zhao et al., 1999; Knowles et al., 2001; Holtwick et al., 2002;
Shi et al., 2003; Vellaichamy et al., 2005). Interestingly, complete
absence of NPRA causes hypertension in mice and leads to altered
renin and ANG II levels, cardiac hypertrophy, and lethal vascu-
lar events similar to those seen in untreated human hypertensive
patients (Oliver et al., 1997; Shi et al., 2001, 2003; Zhao et al., 2007).
In contrast, increased expression of Npr1 reduces the blood pres-
sures and inflammatory responses, protects heart, and increases
the intracellular second messenger cGMP concentrations corre-
sponding to the increasing number of Npr1 gene copies (Oliver
et al., 1998; Pandey et al., 1999; Shi et al., 2003; Vellaichamy et al.,
2007, 2014; Zhao et al., 2013). Recent evidence also indicates that
CNP and its receptor NPRB can play important role in regulating
the cardiac hypertrophy and remodeling as a potential drug target
for the treatment of cardiovascular diseases (Del Ry, 2013).

CONCLUSION
The field of NPs has been advanced to examine the function
and signaling mechanisms of their receptors and the role of
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second messenger cGMP in physiology and pathophysiology of
hypertension, renal hemodynamics, cardiovascular functions,
and neural plasticity. The development of gene-knockout and
gene-duplication mouse models along with transgenic mice have
provided a framework for understanding both the physiological
and pathophysiological functions of NPs and their receptors in
the intact animals in vivo. Although, a considerable progress has
been made, the transmembrane signal transduction mechanisms
of NPs and their receptors remain unresolved. Future investiga-
tions should include; the identification and characterization of
cellular targets of intracellular second messenger cGMP produced
by NPs, including cytosolic and nuclear proteins, role in gene
transcription, cell growth and proliferation, apoptosis, and dif-
ferentiation. A more vigorous studies of the crosstalk with other
signaling mechanisms namely, PKC, MAPKs, cAMP, Ca2+, and IP3

needs to be pursued systematically. NPs are considered as circulat-
ing markers of CHF, however, their therapeutic potential for the
treatment of cardiovascular diseases such as hypertension, renal
insufficiency, cardiac hypertrophy, CHF, and stroke is still lack-
ing. The ultimate goal of the investigations is this field is to fully
appreciate the mechanisms of cGMP generation after ligand bind-
ing to GC-coupled receptors and the pathways leading to elicit
cellular and physiological functions in relation to other signaling
molecules with special emphasis to Ca2+, IP3, and cAMP levels.
Identification of the discrete switch points in signal transmission
of NPs and their cognate receptors that specify unique directional
responses need to be vigorously pursued.
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