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Gap junctions are specialized intercellular communication channels that are formed by
two hexameric connexin hemichannels, one provided by each of the two adjacent cells.
Gap junctions and hemichannels play an important role in regulating cellular metabolism,
signaling, and functions in both normal and pathological conditions. Following spinal cord
injury (SCI), there is damage and disturbance to the neuronal elements of the spinal cord
including severing of axon tracts and rapid cell death. The initial mechanical disruption is
followed by multiple secondary cascades that cause further tissue loss and dysfunction.
Recent studies have implicated connexin proteins as playing a critical role in the secondary
phase of SCI by propagating death signals through extensive glial networks. In this review,
we bring together past and current studies to outline the distribution, changes and roles
of various connexins found in neurons and glial cells, before and in response to SCI. We
discuss the contribution of pathologically activated connexin proteins, in particular connexin
43, to functional recovery and neuropathic pain, as well as providing an update on potential
connexin specific pharmacological agents to treat SCI.
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INTRODUCTION
Gap junctions are specialized intercellular connections that allow
direct electrical and metabolic communication between two adja-
cent cells; they are therefore vital to many physiological processes.
By controlling the movement of amino acids, second messengers,
ions, and other metabolites, gap junctions are able to coordi-
nate cellular signaling and propagate electrical signals (Hertzberg
et al., 1981; Söhl et al., 2005). In vertebrates, gap junctions are
formed by two hemichannels (or connexons), one provided by
each of two cells. Each hemichannel consists of six oligomer-
ized connexin proteins (abbreviated as Cx), which can be either
homomeric or heteromeric (two or more different connexins
in a connexon) and form homotypic or heterotypic (differ-
ent connexons) gap junction channels (Orthmann-Murphy et al.,
2008). Connexins are named according to their estimated molec-
ular weights and have been shown to be expressed in almost
all mammalian tissues (Söhl and Willecke, 2003; Söhl et al.,
2005). The structure of these connexin proteins is described in
Figures 1A,B.

While two hemichannels form gap junctions that directly con-
nect the interiors of two adjacent cells without facing the external
milieu, increasing evidence indicates that unopposed hemichan-
nels can open to the extracellular space in response to various
physiological and pathological stimuli (Bennett et al., 2003). In
such contexts, connexin hemichannels may become activated
in response to various intracellular signals including changes in
pH, phosphorylation status, extracellular signals such as a low
Ca2+ environment, and mechanical, oxidative, metabolic, and
ischemic stresses (Contreras et al., 2002; Retamal et al., 2007;
Shintani-Ishida et al., 2007). Indeed, studies using dye uptake

measurements, recording of hemichannel activity in single cells,
and pharmacological blockade of hemichannels in transfected cells
have demonstrated that connexins form unopposed hemichan-
nels that can open to the exterior (Contreras et al., 2003; Li et al.,
2004). Opened hemichannels lead to the release of molecules such
as potassium, ATP, and glutamate into the extracellular space,
that under physiological conditions may modulate neuronal activ-
ity and under pathological conditions may ultimately induce cell
death (Evans et al., 2006; Chever et al., 2014). In addition, gap
junctional communication can be likewise regulated by numerous
signals, such as connexin phosphorylation and post-translational
modification at the C-terminal tail, intracellular acidification,
intracellular pH, and inflammatory mediators (Lampe and Lau,
2000; Faustmann et al., 2003; Hinkerohe et al., 2005; Haghikia
et al., 2008; Iyyathurai et al., 2013).

In this review, we discuss the expression and function of gap
junction/hemichannel proteins in the intact and injured spinal
cord, their role in neuropathic pain following spinal cord injury
(SCI), and the therapeutic implications.

DISTRIBUTION AND ROLES OF CONNEXINS IN THE SPINAL
CORD
In the normal functioning central nervous system (CNS), gap
junctions are formed by fully docked connexons, which play a
vital physiological role in the development of communicative
pathways in glial and neuronal cells. Studies examining the dis-
tribution and functional role of connexins in the spinal cord
indicate that connexin-formed gap junctions undergo cell-to-
cell coupling between neurons, adjacent astrocytes, and astro-
cytes/oligodendrocytes (Figure 1C; Chang et al., 1999; Chang and

Frontiers in Molecular Neuroscience www.frontiersin.org January 2015 | Volume 7 | Article 102 | 1

http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fnmol.2014.00102/abstract
http://community.frontiersin.org/people/u/188249
http://community.frontiersin.org/people/u/200395
http://community.frontiersin.org/people/u/89662
http://community.frontiersin.org/people/u/73018
mailto:gila@unsw.edu.au
http://www.frontiersin.org/Frontiers_in_Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Frontiers_in_Molecular_Neuroscience/archive


Tonkin et al. Connexins and spinal cord injury

FIGURE 1 | Structure and distribution of the main connexin proteins in

the spinal cord before and after SCI. (A) Gap junction channels are
produced by the conjoining of two hemichannels, with one hemichannel
provided by each cell. Compared to the closed state (∼1.8 nm), opened
channels (∼2.5 nm) allow the transfer of substances less than 1 kDa between
the cytoplasms of two cells, including nutrients, metabolites, K+, ATP, cAMP,
and Ca2+. (B) Each hemichannel is composed of six individual connexin
proteins, which contain four transmembrane domains. The cytoplasmic loop
(CL), amino (N), and carboxy (C) terminals are located on the cytoplasmic side,
with multiple regulatory phosphorylation sites located on the C termini. There
are two extracellular loops (E1 and E2) which contain three highly conserved

cysteine bonds that play a role in the docking of hemichannels from opposing
cells via intramolecular cysteine/cysteine bonds. (C) In the spinal cord, there
is a large distribution of connexins. Neuron/neuron gap junctions contain
Cx36, astrocyte/astrocyte junctions contain Cx30 and Cx43 and
oligodendrocyte/astrocyte gap junctions contain Cx29, Cx32, and Cx47 with
the major heterotypic channels composed of Cx43–Cx47 and Cx30–Cx32.
(D) Following SCI, Cx43 expression is increased in astrocytes. This causes an
uncontrolled release of the small molecule ATP from the perilesion region.
ATP release leads to the activation of a destructive inflammatory response
including recruitment of microglia and macrophages to the site of injury,
which causes an increased secondary expansion of the lesion.
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Balice-Gordon, 2000; Rash et al., 2000; Kleopa et al., 2004; Lee
et al., 2005; Orthmann-Murphy et al., 2008).

In neurons, gap junctional coupling is widespread during neu-
ral development but declines during the first postnatal week. Gap
junctional communication in the developing spinal cord is vital
in synchronizing neuronal cells and providing electrical synapses,
which act as support frameworks for neuronal activity prior to the
development of chemical synapses (Chang et al., 1999; Kiehn et al.,
2000; Altevogt et al., 2002; Kiehn and Tresch, 2002; Wilson et al.,
2007). Developing motor neurons in the spinal cord express Cx36,
Cx37, Cx40, Cx43, and Cx45 mRNA. While electrical and dye
coupling decrease at about 1 week postnatal along with Cx40 and
Cx45 expression, the remaining connexins persist into adulthood
(Chang et al., 1999; Chang and Balice-Gordon, 2000). Although
earlier studies by Chang et al. (1999) were unable to demonstrate
Cx36 and Cx37 protein by immunohistochemistry, more recent
studies using sensitive techniques such as in situ hybridization and
freeze-fracture replica immunogold labeling (FRIL) were able to
detect Cx36 mRNA and protein, respectively. Cx36 mRNA was
found to be confined to the cytoplasm of spinal neurons but
was more strongly expressed in developing neurons compared
to adult rodent spinal cord neurons (Lee et al., 2005). A recent
study using transgenic mice expressing Cx36 protein tagged with
enhanced green florescent protein, showed a substantial num-
ber of florescent clusters in the white matter of the spinal cord
providing further evidence for the presence of Cx36 in the adult
spinal cord (Meyer et al., 2014). Using FRIL, there was no evi-
dence for the presence of Cx26 in neuronal gap junctions in the
perinatal or adult spinal cord (Nagy et al., 2001). While it may
be possible that there are as yet unidentified connexins in neu-
ronal gap junctions, more recent studies have implicated Cx36
as the major connexin in mediating electrical synapses in neu-
rons of the spinal cord (Bautista et al., 2014). In adults, neuronal
gap junction channels are proposed to contribute to a number
of different cognitive processes such as perception, memory, and
learning (Buzsáki and Chrobak, 1995; Fricker and Miles, 2001).
These gap junction channels are able to sharpen neuronal activity
by enhancing the efficacy and precision of synchronous oscil-
latory activity in neurons (Hormuzdi et al., 2004; Gibson et al.,
2005).

In astrocytes, Cx43 and Cx30 are abundantly expressed and
are found densely populated around the ependymal and lep-
tomeningeal membranes of the neonatal rodent spinal cord,
roughly 4 weeks postnatal (Dahl et al., 1996; Kunzelmann et al.,
1999; Lee et al., 2005). It has also been shown using FRIL analysis
that leptomeningeal cells in the rats midthoracic spinal cord are
highly labeled for Cx26, and that most astrocyte gap junctions in
the parenchyma of adult spinal cord are labeled for both Cx26 and
Cx30 or Cx26 alone (Nagy et al., 2001). However, recent evidence
has suggested a degree of uncertainty over the presence of Cx26 in
astrocytes. In postnatal day 4 rats, regions of spinal leptomeningeal
cells were found to be largely unlabeled for Cx26 using immuno-
histochemistry (Nagy et al., 2001). While it is possible that this
result reflects the low labeling efficiency for Cx26 at postnatal day 4,
recent evidence has shown that the Cx26 antibody may cross-react
with Cx30 (Altevogt and Paul, 2004; Orthmann-Murphy et al.,
2008). Furthermore, a study using mice with genetically altered

Cx26 allele that allows visualization of Cx26 expression has shown
that in both the embryonic and mature CNS, Cx26 was restricted
to meningeal cells and could not be detected by either neurons or
glia, including astrocytes (Filippov et al., 2003). The importance
of these astrocytic connexins to normal physiology appears to be
linked to their ability to regulate synaptic function. For example,
blockade and deletion of astrocytic Cx43 has been shown to impair
fear memory consolidation and cause alterations in synaptic trans-
mission and plasticity in rats (Pannasch et al., 2011; Stehberg et al.,
2012).

There are limited studies on microglial connexins in the spinal
cord. A study by Lee et al. (2005) using immunohistochemistry
and triple labeling of Cx43, glial fibrillary acidic protein (GFAP; a
marker of astrocytes) and OX-42 (a marker of microglia) showed
that 1 week following SCI, Cx43 was colocalized with GFAP,
rather than OX-42, suggesting that resting (ramified) and reac-
tive (rounded phagocytic) microglia rarely express Cx43 in the
spinal cord.

In oligodendrocytes, Cx29, Cx32, and Cx47 are expressed in
regions of the corticospinal tract and are localized to oligoden-
drocytic cell bodies as well as abaxonal membranes of myeli-
nated fibers, and these three connexins have been shown to
participate in astrocytic/oligodendritic gap junctions (Kleopa
et al., 2004; Li et al., 2004; Kamasawa et al., 2005). In exam-
ining astrocytic/oligodendritic interfaces, Nagy et al. (2001)
observed astrocytic Cx43 and Cx30 staining at apposed oligo-
dendrocyte somata in wild type mice. When Cx32 in oligo-
dendrotcyes was knocked out, Cx30 disappeared, while Cx43
levels remain active, furthering the notion of a Cx43–Cx47
and a Cx30–Cx32 heterotypic astrocytic/oligodendritic coupling
(Nagy et al., 2001). Similarly, Kamasawa et al. (2005) showed
that on the oligodendrocytic side, a greater abundance of
Cx47 compared to Cx32 corresponded to a greater level of
Cx43 on the astrocytic side, further supporting the notion
of Cx43–Cx47 and Cx30–Cx32 heterotypic channels as being
the major components of astrocytic/oligodendritic gap junc-
tions.

The most likely role of coupling between glial cells is the cre-
ation of the glial syncytium, which amongst other processes such
as the propagation of Ca2+ waves and transfer of metabolites, plays
a crucial role in spatially buffering increases in extracellular K+. In
the CNS, a low extracellular K+ concentration is required for nor-
mal neuronal activity and thus pathological changes to connexin
expressions are able to have a great impact on the balance of this
system (Nagy and Rash, 2003; Rash, 2010). In addition, gap junc-
tion communication in glial cells is essential for normal central
myelination. Indeed, mice deficient in both Cx32 and Cx47, which
are expressed by oligodendrocytes, showed severe demyelinating
phenotypes (Menichella et al., 2003; Odermatt et al., 2003). These
double knockout mice developed gross tremors and tonic seizures,
and died by the sixth postnatal week from profound abnormal-
ities in central myelination. Abnormal changes included axons
with thinly or absent myelinated sheaths, myelinated axons with
markedly enlarged extracellular spaces separating the axon from
its myelin sheath and occasional myelinated axons with enlarged
collars of periaxonal oligodendrocyte cytoplasm (Menichella et al.,
2003).
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ROLE OF GAP JUNCTIONS IN SPINAL CORD INJURY
Following a SCI, the initial impact leads to immediate hemor-
rhage and damage or disturbance to the neuronal elements of
the spinal cord including severing of axon tracts and rapid cell
death. The initial mechanical disruption is followed by multiple
secondary cascades that cause further tissue loss and dysfunction.
This secondary phase takes place during the first hours, days, or
even months after the initial trauma. During this secondary phase,
damage spreads to surrounding neuronal tissue, destroying gray
and white matter in a process called the ‘bystander’ effect (Noren-
berg et al., 2004; Profyris et al., 2004). This encompasses glial cell
responses such as astrogliosis and inflammatory cell activation,
which can not only prevent neuronal repair, but also cause neu-
ronal cell death. Cell death occurs via processes such as apoptosis,
oxidative damage, and cytotoxic edema in astrocytes due to the
buildup of glutamate and K+ (Del Bigio and Johnson, 1989; Crowe
et al., 1997; Springer et al., 1999; Norenberg et al., 2004; Fitch and
Silver, 2008).

In terms of specific connexins, an early study showed that
following a mechanically induced SCI in rodents, alterations in
astrocytic Cx43 occurred in gray and white matter of the spinal
cord (Theriault et al., 1997). Reactive astrocytes displaying GFAP
appeared within 1 day and reached maximum levels at 3 days in
the area of injury and areas that were both adjacent to and farther
away from the lesion epicenter. The authors concluded that dur-
ing their transformation to reactive states, spinal cord astrocytes
experience altered Cx43 expression as a direct result of traumatic
SCI (Theriault et al., 1997). These results were replicated by Lee
et al. (2005), who used a model of transected adult spinal injury
and in situ hybridization showing that astrocytic Cx43 protein
and mRNA levels were largely increased 4 h after injury, while
there were no changes in Cx32 or Cx36. After 4 weeks, levels of
astrocytic Cx43 were three times higher in the caudal stump than
the rostral stump, especially adjacent to the injury site, suggest-
ing that increases in Cx43 are related to glial responses to injured
tissue (Lee et al., 2005). Several studies that used selective inhibi-
tion of Cx43 channels in ex vivo and in vivo models of SCI have
shown that Cx43 plays a role in the spread of injury and its block-
age leads to improved recovery (Cronin et al., 2008; Zhang et al.,
2010).

While increases in Cx43 protein have been widely reported fol-
lowing SCI, this does not appear to be the case with all connexins.
Following up on reports that Cx36 mRNA was down regulated
at the site of injury during the first week after SCI (Lee et al.,
2005), Yates et al. (2008) observed that 7 days after a complete
T10 transection in rats, Cx36 protein levels decreased in the lum-
bar enlargement distant to the site of injury in association with
decreased electrical coupling. While this downregulation lasted
14 days post-injury, Cx36 returned to control levels over 2–4 weeks.
This coincided with the onset of hyperreflexia and was normal-
ized following oral administration of the eugeroic agent, Modafinil
(Yates et al., 2008). The changes in neuronal gap junction protein
Cx36 below the level of the lesion suggest that disruption to electri-
cal coupling contributes to hyperreflexia and spasticity following
SCI (Yates et al., 2011).

Recently, studies have shifted attention from gap junctional
activity to the role of undocked hemichannels following SCI. While

it was previously thought that these unopposed hemichannels
occurred in closed states, recent evidence shows that contrastingly,
hemichannels are able to open independent of channel docking,
in a regulated manner during specialized physiological events as
well as unregulated opening during pathological events (Contreras
et al., 2004; Retamal et al., 2006, 2007). These hemichannels form
large cell pores in the cell membrane which, upon opening, allow
the exchange of ions and small molecules between intra and extra-
cellular environments. It was found that in addition to playing a
traditional role in gap junctions, hexamers of Cx43 are inserted at
astroglial membranes as large pore single hemichannels that are
able to mediate direct cytosolic exchange with the extracellular
space (Giaume et al., 2013).

Of the small molecule substances released by opened undocked
hemichannels following SCI,particular attention has been directed
at ATP (Figure 1D). ATP release following increased hemichan-
nel expression has been demonstrated both in vitro and in vivo.
The application of an acidic fibroblast growth factor-1 (FGF-1)
is able to activate spinal astrocytes in culture, causing increased
levels of ATP and the opening of connexin channels, in partic-
ular, Cx43 (Garré et al., 2010). FGF-1 acts on the FGF receptor,
and its activation causes increased levels of cytoplasmic Ca2+
and the release of ATP from vesicles through the activation of
phospholipase C (Bennett et al., 2012). When a FGF-1 inhibitor
was applied following a weight drop SCI, this caused reduced
ATP levels, accompanied by a reduction in inflammatory cell
recruitment and lesion expansion (Bennett et al., 2012). A recent
study using Cx43 KO mice specific for astrocytes showed that
there was a reduction in ATP-induced inflammation, decreased
macrophage and microglial recruitment, and an increased func-
tional recovery following SCI (Huang et al., 2012). This study
followed past observations that rats subjected to cord contusion
have abnormally high and sustained levels of ATP release. By
using bioluminescence imaging, levels of ATP in peritraumatic
zones were found to be significantly higher than the center of
injury, and this elevated ATP release persisted for up to 6 h fol-
lowing SCI. In addition, secondary enlargement of the lesion
occurred with signs of inflammation that included increased
expression of GFAP, and recruitment of activated microglia and
macrophages (Wang et al., 2004). The link between ATP sig-
naling and Cx43 was further strengthened in a recent study
by Chever et al. (2014). It was found that when hippocam-
pal CA1 pyramidal slices were treated with Gap26, a Cx43
hemichannel blocking peptide, there was a fivefold decrease in
extracellular ATP concentration. However, when the slices were
pretreated with ATP P2 receptor antagonists, Gap26 failed to
induce changes in ATP concentration suggesting that basal exci-
tatory synaptic transmissions are regulated by astroglial Cx43
hemichannels through ATP signaling (Chever et al., 2014). While
there is still a need for further research to elucidate the exact
mechanisms, past studies have been able to provide a frame-
work by which Cx43 hemichannels contribute to SCI. Following
SCI, increased opening of astrocytic Cx43 channels causes the
uncontrolled release of ATP into the perilesion region and inflam-
matory cell recruitment such as macrophage and microglia,
which in turn causes the increased secondary expansion of the
lesion.
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ROLE OF GAP JUNCTIONS IN NEUROPATHIC PAIN
FOLLOWING SPINAL CORD INJURY
As many as 80% of SCI patients will suffer some form of chronic
pain; nociceptive (e.g., musculoskeletal pain, visceral pain), neu-
ropathic pain (at-level SCI pain, below-level SCI pain), or other
pain (Finnerup and Baastrup, 2012). Neuropathic pain is the more
debilitating and difficult to treat. It is important to note that
neuropathic pain represents a series of heterogeneous conditions
including various painful peripheral neuropathies (e.g., traumatic
nerve injury, chemotherapy-induced peripheral neuropathy, post-
herpetic neuralgia) and central neuropathic pain, such as that
occurring after SCI. However, despite the different etiologies and
underlying mechanisms, the clinical manifestation of the pain
is somewhat similar across the different neuropathic syndromes.
Symptoms of both types of neuropathic pain include spontaneous
pain presenting as burning, stinging, stabbing, or shooting sensa-
tions that is ongoing or intermittent; stimulus-evoked pain, which
occurs in response to normally non-noxious (e.g., light touch) or
noxious (e.g., cold, punctuate) stimuli; and abnormal sensations
(e.g., paresthesia and dysesthesia). Neuropathic pain after SCI
results from injury-induced neurochemical and neuroanatomi-
cal changes that contribute to maladaptive synaptic circuits and
neuronal hyperexcitability in the spinal dorsal horn (Gwak and
Hulsebosch, 2011). This pain has been reported as an impor-
tant factor in decreased quality of life and has been shown to
adversely impact function and daily routines in persons with SCI
(Cairns et al., 1996; Siddall et al., 1999; Woolf and Mannion, 1999;
Norenberg et al., 2004).

The conceptual basis of glial cells including astrocytes and
microglia contributing to neuropathic pain is relatively new. The
involvement of glial activation has been demonstrated in several
chronic pain conditions, including inflammatory pain, peripheral,
and central neuropathic pain (Wu et al., 2012). Activated glia can
release ATP, excitatory amino acids, proinflammatory cytokines,
and reactive oxygen species that in turn promote neuronal hyper-
excitability in the dorsal horn of the spinal cord and contribute to
neuropathic pain (Austin et al., 2012).

Glial activation has also been demonstrated in neuropathic
pain following SCI (Hulsebosch et al., 2009). Several studies have
demonstrated that rodents with SCI develop mechanical allody-
nia and thermal hyperalgesia, in association with astrocytic and
microglial activation in segments that are uninjured and rostral to
the initial injury site (Hains and Waxman, 2006; Peng et al., 2006;
Carlton et al., 2009). Moreover, treatment with glial inhibitors,
such as minocycline and propentofylline, reduced both mechan-
ical allodynia and thermal hyperalgesia in the hind limbs of rats
with below-level pain following SCI (Gwak et al., 2008; Gwak and
Hulsebosch, 2009; Marchand et al., 2009).

Gap junctional activation via connexin channels has been pro-
posed to play a role in glial cell activation, and thus neuropathic
pain following SCI. Indeed, Roh et al. (2010) showed that in rats
with T13 spinal cord hemisection the development of below-level
neuropathic pain, including thermal hyperalgesia and mechani-
cal allodynia, was attenuated following an intrathecal injection of
carbenoxolone, a gap junction decoupler. In addition, daily treat-
ment with carbenoxolone significantly reduced the SCI-induced
increases in GFAP immunoreactivity and the phosphorylated

NMDA receptor NR1 immunoreactivity in the dorsal horn of the
spinal cord. These effects were observed when carbenoxolone was
administered during the induction phase (0–5 days after SCI), but
not during the maintenance phase (15–20 days after SCI), when
pain is already established (Roh et al., 2010). This suggests there
is a critical time window in which a treatment to block astrocytic
gap junctions could be effective in stopping the development of
SCI pain.

A recent study using a targeted deletion approach has shown
that Cx43 is linked to the development of neuropathic pain fol-
lowing acute SCI (Chen et al., 2012). After a weight drop SCI,
control wild type and Cx30 deleted mice developed persistent
neuropathic pain lasting from 4 to 8 weeks, which presented as
heat hyperalgesia and mechanical allodynia in the presence of
increased levels of GFAP positive cells. However, in Cx43/Cx30
deleted mice, both the heat hyperalgesia and mechanical allody-
nia were prevented in addition to reduced levels of astrogliosis
that continued up to 4 weeks. These findings indicate that
Cx43 plays a significant role in the development of neuropathic
pain following SCI.

THERAPEUTIC APPLICATIONS
During the past two decades, intercellular communication via gap
junctions has provided a novel pharmacological target for treat-
ing SCI. The proposed mechanism of gap junction inhibitors is
to induce a conformational change in the gap junction protein to
control the intercellular and metabolic signaling cascades, such as
ATP, glutamate, and reactive oxygen species (Takeuchi et al., 2006;
Ramachandran et al., 2007; Clarke et al., 2009). Currently, there
are a number of non-specific gap junction blockers such as car-
benoxolone, and the antimalarial mefloquine that blocks Cx36 gap
junctions at low concentrations (3 uM), while at higher concen-
trations (30 uM), completely inhibits Cx43 as well as Cx26 and
Cx32 in neuroblastoma cells (Cruikshank et al., 2004). In addi-
tion, there are novel gap junction hemichannel blockers, such
as INI-0602, which can penetrate the blood–brain barrier, and
is a proven and effective treatment in mice models of neurode-
generative diseases (Takeuchi et al., 2011). It was recently shown
that administration of INI-0602 in mice with SCI resulted in
reduced glutamate excitotoxicity by inhibiting microglial acti-
vation. This subsequently promoted locomotor recovery and
suppressed glial scar formation by reducing secondary degenera-
tion. Further, INI-0602 treatment blocked neutrophil infiltration,
stimulated increase in anti-inflammatory cytokines and elevated
brain-derived neurotrophic factor levels (Umebayashi et al., 2014).
Although such non-specific connexin blockers may be promising
therapeutic strategies in SCI, a problem with these drugs is that
it is very difficult to control their actions on specific hemichan-
nels and thus establish effective regulation. For instance, a recent
study has demonstrated that intrathecal injection of carbenox-
olone up to 5 days post-hemisection SCI attenuated the induction
of neuropathic pain and the astrogliosis at the lesion edge, but
did not significantly improve hindlimb locomotor function (Roh
et al., 2010). These global inhibitors non-specifically block all types
of gap junctions, affecting physiological functions, such as ther-
moregulation and angiogenesis (Betageri and Rogers, 1987; Hong
et al., 2009). While the global gap junction blockers have confining
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or questionable control of lesion spread and astrogliosis follow-
ing traumatic CNS injury, other tissues containing connexin gap
junctions may also be adversely affected.

A more targeted approach using antisense oligodeoxynu-
cleotides (AS-ODN) and connexin mimetic peptides has been
developed to prevent connexin signaling. Mimetic peptides are
short peptides designed to mimic sequences on extracellular loops
of connexin proteins. They prevent connexin hemichannel dock-
ing, thus blocking gap junctional intercellular communication
(Warner et al., 1995; Kwak and Jongsma, 1999; Boitano and Evans,
2000; Martin et al., 2005). Although the mechanism of action for
connexin mimetic peptides has not been fully elucidated, it has
been proposed that they may induce a conformational change
in connexin hemichannels via connexin phosphorylation, leading
to the closure of the uncoupled hemichannels without blocking
existing gap junctions (Chaytor et al., 1997). In cultured rodent
spinal cords, when a Cx43-mimetic peptide, peptide 5, was given
at doses between 5 and 500 μm for 24 h, swelling was reduced
by 50% and neuronal loss was prevented. Furthermore, peptide 5
was able to reduce GFAP levels for up to 4 days in ex vivo spinal
cord segments following SCI (O’Carroll et al., 2008). This was fur-
ther supported by a study that used an AS-ODN to suppress Cx43
following a compression SCI in rodents, showing that treatment
with Cx43-ODN resulted in less swelling, structural distortion and
decreased GFAP positive cells in spinal cord segments (Cronin
et al., 2008). In a follow-up study, peptide 5 administered after
a spinal cord contusion injury in rats showed reduced levels of
proinflammatory cytokines tumor necrosis factor (TNF)-α and
interleukin (IL)-1β, reduced GFAP staining in the area adjacent to
the lesion epicenter, a reduction of neuronal loss 7 mm from the
lesion epicenter as well as improved locomotor function (O’Carroll
et al., 2013).

The application of connexin mimetic peptides has been widely
studied in depressing immune responses (Neijssen et al., 2005;
Matsue et al., 2006; Bopp et al., 2007), limiting cardiovascu-
lar damage (Wong et al., 2006; Shintani-Ishida et al., 2007),
and inhibiting osteoclastic differentiation (Ilvesaro et al., 2001).
Importantly, connexin mimetic peptides have the potential to be
systemically delivered to target the lesion area of spinal cord in
human patients, and offer a new hope to spinal cord-injured
patients as an acute intervention. The regulation of Cx43 by
AS-ODNs has been shown to not only protect neural cells after
traumatic CNS injury, but also improve wound healing in many
tissues, including cornea (Ratkay-Traub et al., 2001; Cursiefen
et al., 2009; Grupcheva et al., 2012), skin (Coutinho et al., 2003;
Qiu et al., 2003; Becker et al., 2012), skeletal muscle (Gorbe et al.,
2006), cardiac muscle (Yasui et al., 2000), smooth muscle (Yeh
et al., 1997; Liao and Duling, 2000), and vascular endothelium
(Yeh et al., 2000; Kwak et al., 2001; Ormonde et al., 2012). Cx43
is upregulated at the wound edge of chronic wounds (Coutinho
et al., 2003; Wang et al., 2007), and treatment with Cx43 AS-
ODNs dampens the inflammatory response and decreases wound
spread, resulting in reduced swelling and scarring and acceler-
ated healing (Qiu et al., 2003; Coutinho et al., 2005; Mori et al.,
2006). Significantly, several phase 1 or phase 2 clinical trials by
CoDa Therapeutics, Inc. using the topical gel of Cx43 AS-ODNs
(Nexagon®) have shown the treatment to be safe and tolerable in

skin wounds (NCT00736593), venous leg ulcers (NCT00820196
and NCT01199588), diabetic foot ulcer (NCT01490879), and
acute corneal wounds (NCT00654550). Thus, based on animal
studies and the clinical use of connexin inhibitors in various condi-
tions, drugs that inhibit specific connexins, such as Cx43 AS-ODNs
or Cx43 mimetic peptides, hold great promise for the treatment
of SCI.
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