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Adverse early life experience decreases adult hippocampal neurogenesis and results in
increased vulnerability to neuropsychiatric disorders. Despite that the effects of postnatal
stress on neurogenesis have been widely studied in adult individuals, few efforts have been
done to evaluate its immediate effects on the developing hippocampus. Moreover, it is not
clear whether postnatal stress causes a differential impact in hippocampus development
in male and female neonates that could be related to emotional deficits in adulthood. It has
been proposed that the long term effects of early stress exposure rise from a persistent
HPA axis activation during sensitive time windows; nevertheless the exact mechanisms
and mediators remain unknown. Here, we summarize the immediate and late effects of
early life stress on hippocampal neurogenesis in male and female rat pups, compare its
later consequences in emotionality, and highlight some relevant mediator peptides that
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INTRODUCTION

Early life stress influences behavioral and physiological functions
in the individuals, and results in long term changes in neuronal
function increasing the vulnerability to suffer a psychiatric diseases
(Felitti etal., 1998; Heim and Nemeroff, 2001). The hippocampus
is involved in cognitive functions, and is an important regulator
of emotional responses to stress, as it is one of the brain structures
involved in glucocorticoid (GC) mediated HPA axis negative feed-
back. Itis also one of the two niches where new neurons are actively
produced throughout life. Early exposure to adverse experiences
induces permanent changes in brain development that include
alterations of the hippocampal formation and a reduced or altered
neural plasticity. Since the hippocampus is especially vulnerable to
GC induced toxicity, it has been hypothesized that stress exposure
during sensitive time windows causes alterations on hippocampal
development leading to a vicious circle, which perpetuates and
exacerbates the long term consequences of early life stress (Sapol-
sky and Meaney, 1986). However, it is not totally clarified whether
changes in neurogenesis originate as a result of many alterations
in the hippocampal structure along the time line, or are an imme-
diate consequence of stress exposure. Also, it is unclear whether
neural plasticity is equally affected in male and female subjects at
early ages. In the present work we will discuss the effects of early
life stress on hippocampal developmental neurogenesis and will
include a short summary of some possible mediators of stressful
effects.

THE STRESS RESPONSE
Stress involves the activation of the autonomic nervous and neu-
roendocrine systems to release a cascade of neurotransmitters,

could be potentially involved in programming.

Keywords: hippocampus, stress, neuroplasticity, stress mediators, gender differences

hormones, and other chemical messengers that induce behavioral
and metabolic changes in the organism. A fast response is conveyed
by the autonomic nervous system. A delayed response activates
the hypothalamic paraventricular nucleus (PVN) to release cor-
ticotropin releasing hormone (CRH) to the portal vasculature of
the anterior pituitary gland; CRH stimulates the release of adreno-
corticotropin hormone (ACTH) which triggers the release of GCs
from the adrenal cortex. GCs exert a negative feedback regulating
HPA axis activity via its own receptors [glucocorticoid receptors
(GRs) and mineralocorticoid receptors (MRs)] in anterior pitu-
itary, hypothalamus (de Kloet etal., 2005a), hippocampus and
prefrontal cortex. In adults, the effects of allostatic load dissipate
following the removal of the stressor; however, the effects of early
life stress are persistent far beyond the period of stress exposure.

ANIMAL MODELS OF EARLY LIFE ADVERSITY

Animal models that reproduce many of the features of chronic
stress or adverse experiences during early life include prenatal
stress (PS) exposure (Lemaire et al., 2000), acute maternal depriva-
tion (MD) procedures (de Kloet et al., 2005b), chronic or periodic
maternal separation (MS) models (Sanchez et al.,2001; Huot et al.,
2002; Plotsky etal., 2005), chronic early life stress (CES; Ivy etal.,
2008), and early weaning of the pups (Kikusui and Mori, 2009).
During late pregnancy, maternal GC mediate changes in fetal HPA
responsiveness that is already functional. Infant rodents spend
their first weeks of life in the maternal nest; hence, interactions
of the pups with their mother and littermates are essential for
optimal brain development and social skills (Sanchez etal., 2001;
Huot etal., 2002). Separation from the dam for prolonged periods
(>2 h) is perceived as a threat by the offspring, and activates
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the neonate’s HPA axis, causing elevated basal and/or stress-
induced corticosterone levels in the adult (Lajud etal., 2012a).
MD is an acute traumatic event that consists on separating the
offspring from the dam for a 24 h period, and involves both nutri-
tional and sensory (stimulation) factors (Suchecki etal., 1993),
while MS is a chronic moderate stressor that involves daily sep-
arations from the dam during the first 2 or 3 weeks of life. It
has been proposed that adult phenotype induced by MS is pro-
grammed by the pup’s stressful experience during prolonged MS,
rather than by prolonged maternal absence per se (Daskalakis
etal., 2014). Variations in the MS model include daily separa-
tions of 3 h (MS180) or more (MS360), once or twice a day,
from days 1-14, 2-21, or 15-21, etc. (Nishi etal., 2014). The
CESs model, interferes with the mother infant interaction through
the induction of a reduced maternal care, due to poor housing
conditions (scarce material to build a nest) from PN2 to PN9,
and resembles maternal anxiety and neglect (Ivy etal., 2008).
These models reproduce many of the consequences observed in
humans subjected to adverse early experiences, such as infant
maltreatment or abuse, low socio economic status, etc., (Sanchez
etal., 2001; Huot etal., 2002; Plotsky etal., 2005), in terms of
a chronic exposure to adverse situations. Since effects of PS on
neurogenesis have been more studied, we will review the studies
on early neurogenesis focusing more on the effects of postnatal
stress.

DEVELOPMENT OF THE HIPPOCAMPUS

The development of the rodent dentate gyrus (DG) can be sub-
divided into two major phases. First, the granule cells of the
outer shell (Figure 1, blue) originate prenatally from the neu-
roepithelium (NE) located near the fimbria and migrate from the
progressively receding secondary dentate matrix to the subpial
zone (SPZ; Figure 1, blue). The first dentate migration (dgml) is
the source of the earliest generated granule cells that will constitute
the outer shell of the granular layer (Altman and Bayer, 1990a,b;
Lietal., 2009). During the second postnatal phase (Figure 1, red),
the precursor cells build up a new proliferation zone distributed
within the hilus, and the early embryonic radial glial scaffold from
the ventricular zone (VZ) is replaced by a secondary glial scaf-
fold that traverses the hilus (Figure 1, green). Most radial glial
cells, support migrating neurons and serve as precursor cells for
both neurogenesis and gliogenesis (Brunne etal., 2013). This ter-
tiary dentate matrix peaks its proliferation rate between PND3
and PNDI10 and is responsible for the great increase in granule
cell population during the neonatal period (Bayer, 1980). The
granule cells (Figure 1, red) colonize either the outer shell or the
inner core of the granule cell layer (GCL) in a symmetrical man-
ner (Martin etal., 2002), and neurogenesis follows a characteristic
dorso — ventral maturation gradient (Schlessinger etal., 1975).
During the third and fourth weeks of life, the tertiary dentate
matrix disappears and henceforth the neurogenic niche becomes

Prénatal

FIGURE 1 | Schematic diagram of dentate gyrus development in
postnatally stressed pups. During prenatal development (E17-22), the
granule cells of the outer shell (blue) originate from the neuroepithelium
(NE), and migrate to the subpial zone (SPZ), or traverse the hilus.
Throughout the first postnatal week, the precursor cells build up a new
proliferation zone distributed within the hilus (light red), and granule cells

Postnatal

Maternal Separation

of the GCL inner core migrate, following the arrangement of the
secondary radial glial scaffold (green). During the second week of life, the
neurogenic niche is confined to the subgranular zone (SGZ). Maternal
separation decreases both proliferation and survival of new neurons,
generated in the hilar tertiary dentate matrix, probably through stress —
mediated mechanisms.
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largely confined to the subgranular zone (SGZ; Altman and Bayer,
1990b). This SGZ is the main source of granule cells produced
during early life and adulthood. For lifelong neurogenesis to occur,
the DG must maintain the appropriate precursor cell niche in the
SGZ, which is likely to be dependent on the developmental mech-
anisms at play during the DG formation. Stress exposure during
the first weeks of life may have a significant impact on the matu-
ration of the DG, as it disrupts the organization of the secondary
and/or tertiary dentate matrix, altering permanently the struc-
ture and function of the hippocampus immediately after stress
exposure.

EARLY LIFE STRESS AND HIPPOCAMPAL NEUROGENESIS
Differences in neurogenesis between male and female pups have
been recognized. More new BrdU+ cells were found in the DG
of male rat pups compared to females at PN1 and PN4 (Zhang
etal., 2008). Control males showed a higher proliferation rate,
and increased survival of newborn cells, compared to control
females. In addition, a larger granular cell layer volume and
more young neurons (DCX) was found in males (Oomen etal.,
2009). However, other group reported no differences on neuro-
genesis rates between male and female pups at PN15 (Lajud etal.,
2013).

Early life adverse effects on adult hippocampal neurogenesis
have been widely evaluated (Korosi etal., 2012), however the early
effects during stress exposure period remain unclear. Immediate
effects of stress exposure on hippocampal developmental neuroge-
nesis, were initially addressed by Tanapat etal. (1998) who showed
areduced proliferation in the DG of male rat pups 24 h after a sin-
gle stress exposure. MS also decreased the granular cell number in
juvenile rats (Oreland etal., 2010). Early weaning in mice at PN15
induced fewer BrdU+ cells in the DG of male, but not female mice
(Kikusui and Mori, 2009). MS (6 h/day) followed by early wean-
ing (PN15) decreased cell proliferation in the DG of juvenile male
rats (Baek etal., 2011, 2012). We showed that MS180 decreased
the number and the density of BrdU+ cells in the DG of male
pups, at PN15 (Lajud etal., 2012a). In contrast, increased cell pro-
liferation and differentiation in the DG was found in male pups
using the CES model (PND2 to PND9; Naninck et al., 2014). Since
increased basal corticosterone levels were observed in CES pups
(Naninck etal., 2014) but not after MS180 (Lajud etal., 2012a),
we cannot exclude the possibility that the etiology of the adverse
stimulus could exert differential effects. Maternally deprived pups
(24 h PN3), showed decreased cell proliferation but not cell sur-
vival at PN21 (Oomen et al., 2009). In opposition to the studies in
male pups, there are fewer reports concerning females. The num-
ber of BrdU+ cells was unchanged in the DG of female mice in
response to early weaning (Kikusui and Mori, 2009). Naninck et al.
(2014) showed an increased cell proliferation and differentiation
in the DG of female CES pups. Preliminary studies from our group
showed a decrease of cell survival in the DG of rat female pups at
PN15, after MS180 (Lajud etal., 2012b). MD at PN3 found no
changes in cell proliferation or survival in the DG of female pups
at PN21, but only a decrease in the number of immature neurons
(Oomen etal., 2009; Table 1).

In adults, SGZ neurogenesis has been studied with divergent
results. For instance, Mirescu et al. (2004) reported that male adult

rats subjected to MS180 exhibited decreased cell proliferation and
survival with inadequate responses to stress; while Hulshof etal.
(2011) observed that cell proliferation in the DG was decreased in
adult MS180 rats but not cell survival. Other studies found that
adult MS mice had similar rates of proliferating cells in the DG as
control groups, but presented a lower survival rate and differenti-
ation (Leslie etal., 2011). Additionally, male adult mice that were
early weaned showed a reduced number of BrdU+ cells in the
DG (Kikusui and Mori, 2009). In contrast, several studies found
an increase in cell proliferation in adult animals, previously sub-
jected to MS180 (Suri etal., 2013; Feng etal., 2014). In a subset
of experiments, adult MS mice (8 h/day) exhibited an enhanced
hippocampal neurogenesis in adulthood (Hays etal., 2012). Very
few studies are done in adult females. Adult MD females showed
reduced granule cell number and density in the DG (Oomen et al.,
2010,2011) or presented no effect. Despite a reduced neurogenesis
before puberty (Loi etal., 2014) females subjected to limited nest-
ing showed no effect in adulthood (Naninck etal., 2014). These
results suggest that protective factors could take place in the female
brain.

In summary, most of the studies show a trend of a decreased
proliferation and/or a decreased cell survival in the DG of male
and female rodents immediately after stress exposure, which could
affect mainly the tertiary dentate matrix neurogenic niche. In
adulthood, direction of changes is variable. In males, initial
changes are sometimes followed by an increase, or by a perma-
nent decrease in these parameters. In females, it seems that early
effects of stress on neurogenesis subside in adulthood. In spite
of the variety and direction of the changes that take place in the
DG, it is assumed that early life stress induces such alterations to
enable the individual to cope with future adversity in life (Bagot
etal., 2009).

LONG TERM CONSEQUENCES IN EMOTIONALITY

Early adversity has been linked to the development of psy-
chiatric illness. A neurogenic hypothesis of depression was
formulated, after findings of reduced hippocampal volumes in
depressed patients, and the fact that chronic stress decreases
hippocampal neurogenesis, and increases the risk to develop
depression (Jun etal., 2012). Further, antidepressants were found
to enhance hippocampal neurogenesis (Santarelli etal., 2003).
However, the correlation of long term behavioral changes with
hippocampal neurogenesis changes is still controversial due to
several observations that neurogenesis and emotionality are inde-
pendently regulated (Petrik etal., 2012). Proposals to recon-
cile the different results have been adressed (Eisch and Petrik,
2012).

Practically all the reports in animal models of long term con-
sequences of early adversity in emotionality use adults. Studies
vary, from no effects, to increases in anxiety and/or in depressive —
like behavior in males (Newport etal., 2002; Daniels etal., 2004;
Lee etal., 2007; Lajud etal., 2012a; Girardi et al., 2014; Nishi etal.,
2014). In females, results are scarce but point to a lack of effect
on contextual fear conditioning (Oomen etal., 2011), or anxiety
(screened in the elevated plus maze; Grissom etal., 2012), but
increase social anxiety (Tsuda and Ogawa, 2012). Fewer studies
report changes in neurogenesis (Table 1) together with effects on
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emotionality (Fabricius etal., 2008; Hulshof etal., 2011; Oomen
etal.,2011; Lajud et al., 2012a; Naninck et al., 2014). Thus, it seems
that in rodents, males are more vulnerable to the effects of early
adversity than females.

EARLY LIFE STRESS EFFECTS ON DG DEVELOPMENT AND
SOME POSSIBLE MEDIATORS

We highlight two well-known factors mediating the stress
response, and two peptide messengers as potential mediators.

GLUCOCORTICOIDS

During the first 2 weeks of life, rat pups experience a stress hypore-
sponsive period (SHRP) due to a markedly reduced adrenocortical
response to stress (Sapolsky and Meaney, 1986). GC administra-
tion during the first postnatal week decreases granule cell survival,
and results in a significant increase in the density of both cell pro-
liferation and death, within the hilus neurogenic niche (Gould
etal,, 1991). Since then, increased circulating GC levels have been
proposed as the main mediators of early life stress effects on
hippocampus developmental neurogenesis (Gould and Tanapat,
1999). GCR gene expression is present within the developing brain
since early fetal development (Yi and Baram, 1994), and is maxi-
mally expressed in the DG between PND10 and 16 (Yi and Baram,
1994); however, other mediators could be involved in the psy-
chopathology of early life stress (Schmidt etal., 2009; Lajud et al.,
2012a; Horii-Hayashi etal., 2013; Liao etal., 2014). GCR regulate
CRH gene promoter in the mature brain. In the neonate, second
messenger cascades are not yet functional, and GC levels fail to
modify CRH expression. Thus, GCR may mediate different func-
tions in the developing neurons, possibly mediated by trophic
effects (Yi and Baram, 1994).

CORTICOTROPIN RELEASING HORMONE

The CRH is considered the link between early life adversity and
adult vulnerability (Brunson etal., 2003). CES and MS perma-
nently increase CRH expression within the hippocampus (Ivy
etal.,, 2010; Wang etal., 2014). Administration of CRH into the
brains of infant rats recapitulates some of the long term effects
associated with early life stress, even when GC levels are clamped at
physiological levels (Brunson et al.,2001; Wanget al.,2012). Block-
ade of CRHR1 signaling during adulthood significantly attenuated
the hippocampal synaptic dysfunction, and memory defects in
maternally separated rats (Wang et al., 2014), and treatment block-
ing CRHRI from PN10-17 prevented ELS — induced augmentation
of hippocampal in middle-aged rats (Ivy etal., 2010). Notably
CRHRI, but not GCR, antagonism during the developmental criti-
cal period attenuated ES — induced endocrine alterations (Ivy et al.,
2010; Liao etal., 2014). Moreover, a specific population of Cajal-
Retzius-like CRH-expressing neurons was characterized during
early postnatal hippocampus and these cells seem to contribute
to the establishment of hippocampal connectivity (Chen etal.,
2001).

PROLACTIN

Prolactin (PRL) is a pleiotropic hormone promoting a vast array of
effects (Freeman etal., 2000). PRL is released in response to stress,
regulates hippocampal and SVZ neurogenesis, and modulates

anxiety and HPA axis reactivity (Torner etal., 2001, 2009; Shingo
etal., 2003). PRL enters the brain through its receptors, located
in the choroid plexus cells (Walsh etal., 1987). Daily PRL admin-
istration (PN1 to PN14) induced a decrease of DG neurogenesis
of PN15 pups (Lajud etal., 2013), and increased depressive — like
behavior, in adult male and female rats (Lajud etal., 2013). Stud-
ies showed that PRL enhances CRH (Blume et al., 2009) and AVP
expression (Donner and Neumann, 2009; Vega etal., 2010). Addi-
tionally PRL is cleaved to produce vasoinhibin, which has opposite
actions of the native hormone (Zamorano et al., 2014). Thus, PRL
could contribute to stress programming.

CITOKINES

Prenatal maternal infections increase the risk of develop-
ing schizophrenia or autism in the offspring (Kofman, 2002;
Musaelyan etal., 2014). Immune activation during the perinatal
period increases cytokine production, particularly of Interleukin
1 beta (IL-1b) and tumor necrosis factor-a, in the hippocampus
(Diz-Chaves et al., 2012). Treatment of hippocampal neurospheres
with IL-1b showed an antiproliferative, antineurogenic and pro-
gliogenic effects (Green etal., 2012). Further, IL-1b reduced the
serotonergic differentiation of cultured neurospheres in a dose-
dependent manner (Zhang etal., 2013). Several studies reported
either increases or decreases in cell proliferation or cell survival
in the hippocampus offspring depending on the time of exposure
and the time of neurogenesis assessment (Musaelyan etal., 2014).
Further, mice pups given an immune challenge at PN9, showed
reduced cell proliferation, and reduced cell number of neural pro-
genitors at PN41 (Jéirlestedt etal., 2013). Thus, cytokines play an
important role during brain development.

CONCLUDING REMARKS

Early adversity disrupts the normal concentrations of important
neurotransmitters, peptides, hormones, cytokines or their recep-
tors, which are either expressed in the brain or enter the brain
compartment during development. These alterations influence
the local milieu in the DG, possibly affecting the tertiary den-
tate matrix and producing a decrease of granular neurons, a
decreased cell survival and/or differentiation (Figure 1). Com-
pensatory mechanisms, such as differential expression of neu-
rotrophic factors, might, or not, induce a secondary increase
of granular neuron synthesis at adult ages, in both male and
female rodents. In any case, the alteration of the development
of the structure and compensatory mechanisms induce perma-
nent changes in hippocampal function, which are sometimes
accompanied by increased anxiety or depressive-like behavior in
males.
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