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Animals prenatally exposed to valproic acid (VPA), an antiepileptic agent, have been

used as a model for autism spectrum disorders (ASDs). Previous studies have identified

enhanced NMDA receptor (NMDAR) function in the brain of VPA rats, and demonstrated

that pharmacological suppression of NMDAR function normalizes social deficits in these

animals. However, whether repetitive behavior, another key feature of ASDs, can be

rescued by NMDAR inhibition remains unknown. We report here that memantine, an

NMDAR antagonist, administered to VPA mice rescues both social deficits and repetitive

behaviors such as self-grooming and jumping. These results suggest that suppression

of elevated NMDAR function in VPA animals normalizes repetitive behaviors in addition

to social deficits.

Keywords: autism spectrum disorders, valproic acid, NMDA receptors, social interaction, repetitive behavior,

memantine

Introduction

Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by social
defects and repetitive behaviors. Recent genetic studies have identified a large number of genetic
variations associated with ASDs (Huguet et al., 2013; Jeste and Geschwind, 2014). In contrast, our
understanding of themechanisms underlying the development of diverse ASD symptoms is limited,
although recent studies have begun to suggest candidate mechanisms at the molecular, synaptic and
circuit levels, including altered transmission at excitatory and inhibitory synapses and the balance
between them (Spooren et al., 2012; Won et al., 2013; Krumm et al., 2014; Gao and Penzes, 2015).

Valproic acid (VPA), an antiepileptic agent, is well known for its teratogenic side effects,
including neural tube defects, facial abnormalities, reduced intelligence, and high risk of ASDs
(Christianson et al., 1994; Williams and Hersh, 1997; Moore et al., 2000; Williams et al., 2001;
Rasalam et al., 2005; Chomiak et al., 2013; Christensen et al., 2013). The causal relationship between
prenatal exposure to VPA and the development of ASD symptoms is supported by a large number
of animal studies (Ingram et al., 2000; Narita et al., 2002; Miyazaki et al., 2005; Schneider and
Przewlocki, 2005; Schneider et al., 2007, 2008; Markram et al., 2008; Snow et al., 2008; Dufour-
Rainfray et al., 2010; Gandal et al., 2010; Roullet et al., 2010, 2013; Kim et al., 2011; Roullet and
Crawley, 2011; Chomiak et al., 2013).

Several candidate mechanisms have been suggested to explain how VPA enhances the risk of
ASDs, including increased acetylation of histone proteins (Fukuchi et al., 2009; Marinova et al.,
2009; Foley et al., 2012; Kataoka et al., 2013; Moldrich et al., 2013); excessive proliferation of neural
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progenitor cells (Go et al., 2011, 2012); altered synaptic
development, transmission and plasticity (Rinaldi et al., 2007;
Kolozsi et al., 2009; Roullet et al., 2010; Walcott et al., 2011;
Sui and Chen, 2012; Banerjee et al., 2013; Bristot Silvestrin
et al., 2013; Kim et al., 2013, 2014g; Lin et al., 2013; Kumamaru
et al., 2014; Martin and Manzoni, 2014; Nicolini et al., 2015);
and disrupted neuronal excitability and neural network activity
or formation, such as local hyperconnectivity in the cortex
(Markram et al., 2007; Rinaldi et al., 2008a,b; Silva et al., 2009;
Chomiak et al., 2010; Chomiak and Hu, 2013).

Although, additional details relating to VPA-induced
development of ASDs remain to be investigated, a recent
study identified an abnormal increase in NMDA (N-methyl-
D-aspartate) receptor (NMDAR) function in the brains of rats
prenatally exposed to VPA, as evidenced by upregulation of
NMDAR subunits GluN2A and GluN2B, increased NMDAR-
mediated synaptic currents, and enhanced postsynaptic
long-term potentiation (Rinaldi et al., 2007). In addition,
pharmacological suppression of the enhanced NMDAR function
in VPA rats improves social deficits (Kim et al., 2014g).
These results collectively establish an association of NMDAR
hyperfunction with social deficits in VPA rats.

On the basis of previous reports that VPA rats and mice
display enhanced repetitive behaviors (Schneider and Przewlocki,
2005; Gandal et al., 2010; Mehta et al., 2011; Kim et al., 2014a),
and VPA rats show enhanced NMDAR function (Rinaldi et al.,
2007), we hypothesized that suppression of NMDAR function
in VPA animals might improve repetitive behaviors. We found
that memantine, an NMDAR antagonist, rescued enhanced self-
grooming and jumping in VPA mice, linking elevated NMDAR
function in VPA mice with repetitive behaviors.

Methods

Generation of VPA Mice
Pregnant C57BL6/J female mice were administered a single
subcutaneous injection of sodium valproate (Sigma) in saline
(600mg/kg), or saline alone (VPA-untreated controls), at
embryonic day 13.5 (E13.5). All behavioral tests were performed
on mice at 8–16 weeks of age. All mice were bred and maintained
according to the KAIST Animal Research Requirements, and all
procedures were approved by the Committee of Animal Research
at KAIST.

Drug Treatment
Memantine in saline (10mg/kg), or saline alone (control),
was administered to VPA or control (VPA-untreated) mice by
intraperitoneal (i.p.) injection 30min before the three-chamber
test or measurements of repetitive behaviors. Injected mice were
immediately moved to test positions.

Three Chamber Test
The three-chamber test of social interaction and social novelty
recognition was performed as described previously (Silverman
et al., 2010b) with a slight modification (see below for details) in
an apparatus with one center chamber (40 × 20 × 22 cm) and
two side chambers (40 × 20 × 22 cm) under a light intensity

of ∼120 lux. The task was composed of four 10-min sessions.
In the first session, a test mouse was habituated to the center
chamber. In the second session, a test mouse was allowed to
explore all three chambers. Before the third session, a stranger
mouse (S1; 129/Sv) was placed in a small plastic cage in the
left or right chamber, chosen randomly to avoid side preference.
In the third session, the subject mouse was allowed to explore
all three chambers and cages. Then, a new stranger mouse (S2)
was added to the empty cage, after which the subject mouse
was allowed to explore the environment. We added the first
session prior to the relatively well-known three following sessions
(session 2–4), reasoning that it might increase mouse exploration
of side chambers relative to center chamber in sessions 3 and 4.
Habituation in the center chamber prior to the whole-apparatus
habituation has been reported in original papers (Moy et al.,
2004; Nadler et al., 2004), which was to make the center chamber
a familiar “home base” of the test mouse (Crawley, 2004). In
addition, it has been reported that the time of habituations could
be flexible (5–30min)(Crawley, 2004). Lastly, this and similar
four-session three-chamber tests have been reported to work for
two independentmouse lines with social deficits (Guo et al., 2009;
Chung et al., 2015). Stranger mice (8–16-week-old 129/Sv strain
males) were habituated to the plastic cage in the three-chamber
apparatus for 30min 24 h before the test, as described previously
(Moy et al., 2004). We used the 129/Sv strain (not C57BL6/J) as a
stranger, reasoning that it might increase the social interaction,
although the lack of such difference has been reported for
certain mouse inbred lines (Nadler et al., 2004). Chamber
and sniffing time were measured using Ethovision software
(Noldus). The preference index (%) was calculated as (S1 −

E)/(S1 + E) × 100 for social interaction, and (S2 − S1)/(S2 +

S1) × 100 for social novelty recognition, where E denotes
empty cage.

Self-Grooming, Jumping, and Digging
Self-grooming, jumping, and digging behaviors were measured
for 10min in standard, freshly bedded home cages moved to a
novel environment (a soundproof room with a light intensity
of ∼120 lux) 30min before the test. Each subject mouse was
isolated to a home cage 72 h before measurements. Side cameras
were used to record all behaviors. Self-grooming was defined as
stroking, scratching, or licking head or body parts with any of
the forelimbs. Jumping was defined as simultaneous lifting of all
four limbs off the ground, excluding movements associated with
scrabbling up the cage wall. Digging was defined as movements
in which two fore or hind legs were used coordinately to dig out
or displace bedding materials. We also used marble burying as an
independent measure of digging (Gyertyan, 1995; Deacon, 2006;
Thomas et al., 2009). The marble burying test was performed
as described previously (Deacon, 2006), using home cages with
flattened bedding (∼120 lux). Marbles, stainless steel (2 cm in
diameter) or glass (1.5 cm in diameter), were placed in a 3 × 7
arrangement with the inter-marble distance of 4 cm. Each mouse
in a home cage was habituated to a soundproof behavior room
for 30min right before the test. At the beginning of the test, a
mouse was gently placed in a bedded home cage with marbles,
and allowed to explore the environment freely for 30min. After
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the test, the number of marbles buried to two-third of their depth
was counted.

Forty Eight-Hour Movements
For measurements of mouse movements in a familiar and
completely dark (light-off) environment, VPA mice were moved
to and singly isolated in a Laboras cage placed in a soundproof
room with a 12-h light on-off cycle 48 h before the test. Mouse
movements were monitored for the next 48 h using a vibration-
sensitive plate placed underneath the Laboras cage and analyzed
using Laboras software.

Statistics

Statistical details are described in Supplementary Table 1.

Results

Memantine Rescues Social Interaction in VPA
Mice
VPA mice were generated by subcutaneously injecting pregnant
C57B6/J mice on embryonic day 13.5 (E13.5) with a single dose
of VPA (600mg/kg). To determine whether memantine rescues
autistic-like phenotypes in VPA mice, we first tested the effect of
memantine treatment on social interaction in the three-chamber
test (Figure 1A), in which the relative preference of subject
mouse for exploration of a strangermouse trapped in a cage vs. an

inanimate object or empty cage was compared (Silverman et al.,
2010b).

We found that VPA mice (8–16 weeks) displayed significantly
reduced social interaction compared with VPA-untreated mice,
as indicated by the relative amount of time spent sniffing
a stranger mouse (S1) vs. an empty cage (E), and the
preference index derived from these parameters (see figure
legend for details) (Figures 1B–D; Supplementary Table 1).
When measured using the parameter, time spent in the chamber,
as an alternative to sniffing, the reduced social interaction in VPA
mice was evident but not as strong as that based on sniffing time
(Figures 1E,F), a difference that might be explained by the fact
that VPA mice often spent time in locations of the chamber away
from the small cage.

Administration of memantine (10mg/kg) to VPA mice
30min before the three-chamber test significantly attenuated the
reduction in social interaction, restoring this behavior to levels
comparable to those in saline-treated control (VPA-untreated)
mice (Figures 1B–F). In contrast, memantine treatment of
control (VPA-untreated) mice had no effect on social interaction
(Figures 1B–F). These results suggest that memantine rescues
social interaction in VPA mice, similar to previous findings in
VPA rats (Kim et al., 2014g).

We next tested social novelty recognition in VPA mice
in a subsequent three-chamber test session by adding a new
stranger mouse (S2) to the empty cage and allowing the subject
mouse to explore S2 or S1 (old stranger). VPA mice showed
a tendency for reduced social novelty recognition compared

FIGURE 1 | Memantine rescues social interaction in VPA mice. (A)

Experimental scheme for memantine-dependent rescue of social interaction

in VPA mice in the three-chamber test. Mice prenatally (E13.5) exposed to

VPA (600mg/kg) or VPA-untreated control mice (8–16 weeks), were given an

i.p. injection of memantine (10mg/kg) or saline (control) 30min before

encountering a social stranger (S1). E, empty cage; S1, first stranger mouse;

S2, second stranger mouse. (B) Representative heat map for the

movements of saline- or memantine-treated VPA and control (VPA-untreated)

mice during the first social interaction session (S1 vs. E). (C–F) Quantification

of the results in (B), based on the time spent sniffing S1 or E (C) and the

preference index ([S1 − E]/[S1 + E] × 100) derived from the sniffing

parameters (D), or the time spent in the chamber with S1 or E (E) and the

associated preference index (F). Ctrl, control; VPA, valproic acid; Mem,

memantine; Sal, saline. [s. e. m., n = 11 for control + Sal/Mem and 10 for

VPA + Sal/Mem, *P < 0.05, **P < 0.01, ***P < 0.001, ns, not significant;

Two-Way ANOVA for (C) and (E), and One-Way ANOVA for (D) and (F)].
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with VPA-untreated control mice, quantified by sniffing time
and preference index, although this difference did not reach
statistical significance (Figures 2A,B; Supplementary Table 1).
In addition, memantine treatment did not significantly change
social novelty recognition (Figures 2A,B). Similar results were
obtained using chamber time as the measured parameter
(Figures 2C,D). These results suggest that prenatal VPA
exposure does not alter social novelty recognition in mice and
memantine treatment has no effect on it. This is unlike results
obtained with VPA rats, in which VPA induces memantine-
sensitive impairment of social novelty recognition (Kim et al.,
2014g), a difference that likely reflects a difference between
species.

Memantine Rescues Repetitive Self-Grooming
and Jumping in VPA Mice
We next tested if memantine rescues repetitive behavior in
VPA mice. We first tested whether VPA mice display repetitive
behaviors by moving them in their home cages to a novel
soundproof roomwith a bright (∼120 lux) light 30min before the
test. We found that VPA mice (8–16 weeks) displayed increased
repetitive self-grooming and jumping in the novel environment
compared with control (VPA-untreated) mice (Figures 3A,B;
Supplementary Table 1). This result is similar to the enhanced
self-grooming observed in VPA mice in the same genetic
background (C57BL/6) (Gandal et al., 2010; Mehta et al., 2011),

FIGURE 2 | Memantine has no effect on social novelty recognition in

VPA mice. (A–D) Quantification of the social interactions of saline or

memantine-treated VPA and control (VPA-untreated) mice (8–16 weeks) during

the second social interaction session (S2 vs. S1), based on the time spent

sniffing S2 or S1 (A) and the preference index ([S2 − S1]/[S2 + S1] × 100)

derived from the sniffing parameters (B), or the time spent in the chamber with

the S2 or S1 cage (C) and the associated preference index (D). [s. e. m.,

n = 11 for control + Sal/Mem and 10 for VPA + Sal/Mem, ns, not significant;

Two-Way ANOVA for (A) and (C), and One-Way ANOVA for (B) and (D)].

but contrasts with the unaltered self-grooming in VPA mice in a
different genetic background (ICR) (Kim et al., 2014a).

In the next set of experiments, we treated VPA mice with
memantine (10mg/kg, i.p.) 30min before the test. We found
that memantine rescued self-grooming and jumping in these
mice, restoring these behaviors to levels comparable to those
in saline-treated control (VPA-untreated) mice (Figures 3E,F).
Memantine had no effect on self-grooming or jumping in control
(VPA-untreated) mice. These results suggest that memantine
rescues self-grooming and jumping in VPA mice.

VPA Mice do not Display Repetitive Digging, and
Memantine Strongly Suppresses Digging
Behavior
VPA mice on both C57BL/6 and ICR backgrounds have been
shown to display increased digging, as quantified by the number
of marbles buried (Mehta et al., 2011; Kim et al., 2014a), or
manual counts of digging episodes (Kim et al., 2014a). In our
study, however, VPA mice did not show enhanced digging, as
measured by manual counting of digging or the number of
marbles buried (Figures 3C,D; Supplementary Figure 1). Two
distinct types of marbles with different size and texture, stainless
steel (2 cm in diameter) and glass marbles (1.5 cm in diameter),
gave similar results.

Notably, treatment with memantine (10mg/kg, i.p.) 30min
before the test strongly suppressed digging behavior in both VPA
and control (VPA-untreated) mice (Figures 3G,H), similar to the
previously reported memantine (10mg/kg, i.p.; 30min prior to
the test)-induced strong suppression of marble burying in ICR
mice (Egashira et al., 2008). These results indicate that VPA mice
do not show increased repetitive digging under our experimental
conditions, and that memantine strongly suppresses digging
behavior regardless of VPA-treatment status.

VPA Mice do not Display Repetitive
Self-Grooming in a Familiar and Dark
Environment
Repetitive self-grooming and jumping in VPA mice described
above was measured in a novel and bright environment, which
might cause novelty-induced grooming (Spruijt et al., 1992; van
Erp et al., 1994). In order to test whether a familiar and dark
(light-off) environment could induce repetitive behavior in VPA
mice, we moved mice to recording cages in a soundproof room
and habituated them to the novel environment for 48 h. The mice
were maintained under a 12-h light on/off cycle, and their self-
grooming and other movements were recorded for 48 h using a
vibration-sensitive sensor placed beneath the cage.

We found that the overall level of self-grooming in VPA mice
during light-off periods was similar to that observed in control
(VPA-untreated) mice (Figures 4A,B; Supplementary Table 1).
In addition, levels of locomotor activity and rearing movements
were similar between VPA and control (VPA-untreated) mice
(Figures 4C–F). These results suggest that VPA mice do not
display enhanced repetitive self-grooming or other types of
abnormal behaviors in a familiar and dark environment, results
dissimilar to those obtained in a novel and bright environment.
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FIGURE 3 | Memantine rescues repetitive self-grooming and jumping

in VPA mice. (A–D) VPA mice (8–16 weeks) display enhanced self-grooming

and jumping, but normal digging in a novel and bright (∼120 lux)

environment, as measured by increased levels of self-grooming time, jumping

bouts, digging time, and number of marbles buried (stainless steel, 2 cm in

diameter) in VPA mice moved to a novel soundproof room 30min before the

test. (s. e. m., n = 11 for control (VPA-untreated) mice and 9 for VPA mice,

*P < 0.05, **P < 0.01, ns, not significant; unpaired Student’s t-test for

self-grooming and digging, Mann–Whitney test for jumping). (E–H)

Memantine (10mg/kg, i.p.) administered to VPA mice 30min before the test

rescues repetitive self-grooming and jumping in VPA mice, but has no effect

on control (VPA-untreated) mice. Note that memantine strongly suppresses

digging in both VPA and control (VPA-untreated) mice. (s. e. m., n = 9 for

control + Sal/Mem and 10 for VPA + Sal/Mem, *P < 0.05, **P < 0.01,

***P < 0.001, ns, not significant; Kruskal–Wallis test, Wilcoxon test, and

Student’s t-test).

Discussion

In the present study, we demonstrated that suppression of
NMDAR function by memantine improves social deficits and
repetitive behaviors in VPA mice. In addition, VPA mice
displayed repetitive behavior in a novel and bright environment
but not in a familiar and dark environment.

The rescue of impaired social interaction in VPA mice by
memantine (Figure 1) is similar to previous reports showing
that NMDAR suppression by MK801 (NMDAR antagonist),
memantine, or MPEP (an mGluR5 antagonist) rescues social-
interaction deficits in VPA rats (Kim et al., 2014g). Therefore,
memantine appears to restore social deficits in both VPA mice
and rats, likely through suppression of enhanced NMDAR
function. These results, together with a recent report that
memantine and MPEP rescue social deficits in IRSp53−/− mice
(Chung et al., 2015), which display enhanced NMDAR function
(Kim et al., 2009), further links NMDAR hyperfunction with
social deficits.

VPAmice did not display impaired social novelty recognition,
although there was a tendency toward a decrease (Figure 2). This
contrasts with a recent report that social novelty recognition in
the three-chamber test was strongly reduced in VPA rats (Kim
et al., 2014g). In addition, memantine treatment had no effect
on social novelty recognition in VPA or control mice (Figure 2).
This again contrasts with the significant enhancement of social
novelty recognition by memantine in both VPA and control

(VPA-untreated) rats (Kim et al., 2014g). These differences may
be attributable to species-specific differences between rats and
mice.

VPA mice showed enhanced repetitive self-grooming and
jumping (Figures 3A,B), findings similar to the previously
reported increase in repetitive self-grooming in VPA mice
(C57BL/6 and ICR strains) (Gandal et al., 2010; Mehta et al.,
2011; Kim et al., 2014a) and repetitive/stereotypic-like behaviors
in VPA rats (Schneider and Przewlocki, 2005). Notably, these
repetitive behaviors were rescued by memantine in VPA mice
(Figures 3E,F), suggesting that suppression of the enhanced
NMDAR function in VPA mice reverses repetitive behaviors. To
the best of our knowledge, this is the first report demonstrating
rescue of repetitive behavior by direct NMDAR inhibition in an
animal model of ASDs. Our results are in line with a previous
report that enhanced self-grooming and marble burying in VPA
mice are rescued by MPEP (Mehta et al., 2011), which likely
suppresses NMDAR function or downstream signaling indirectly
through inhibition of mGluR5, a glutamate receptor subtype
known to act synergistically with NMDARs (Jia et al., 1998;
Alagarsamy et al., 1999). Another finding relevant to the current
results is the rescue of enhanced marble burying in VPA mice
(ICR strain) by donepezil (Kim et al., 2014a), amedication known
to suppress NMDAR function through multiple mechanisms,
including inhibition of acetylcholine esterase, stimulation of α7
nicotinic acetylcholine receptors, and endocytosis of NMDARs
(Moriguchi et al., 2005; Shen et al., 2010).
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FIGURE 4 | VPA mice do not display repetitive self-grooming or altered

locomotor or rearing activity in a familiar and dark environment. (A–F)

VPA mice (8–16 weeks) do not display significant alterations in self-grooming,

locomotor activity or rearing movement, as measured by continuous 48-h

monitoring of mouse movements in Laboras cages. Values in (A), (C), and (E)

are averages of results from two light-off periods. (s. e. m. n = 12 for control

and 10 for VPA, *P < 0.05; Student’s t-tests).

VPA mice in a familiar and completely dark environment
showed no alterations in self-grooming, horizontal locomotion
or rearing movement (Figure 4), results that contrast with the
enhanced self-grooming and jumping in VPA mice placed in a
novel and bright environment (jumping in the dark environment
could not bemeasured owing to lack of supporting software). The
enhanced self-grooming in the novel and bright environment
in VPA mice may represent novelty-induced grooming, as
previously reported in rats and mice (Spruijt et al., 1992; van Erp
et al., 1994). In addition, the normal levels of self-grooming in
a familiar, dark environment may reflect decreased novelty and
levels of related stressors (Spruijt et al., 1992; van Erp et al., 1994;
Komorowska and Pellis, 2004).

Previous studies have shown that NMDAR function is
enhanced in the medial prefrontal cortex (mPFC) region of VPA
rats at early stages (P12–16), but not at P30 or P40–50 (Rinaldi
et al., 2007; Walcott et al., 2011), and is even reduced at later
stages (P110–130) (Martin andManzoni, 2014). Howmight these
results be reconciled with our hypothesis that suppression of the
enhanced NMDAR function in VPA mice rescues social deficits

and repetitive behaviors? One possibility is that some brain
regions other than the mPFC that are associated with autistic-
like phenotypes may have enhanced NMDAR function in VPA
mice at stages in which behavioral experiments were performed
(P56–112). Indeed, IRSp53−/− mice, whose social deficits are
normalized by memantine, display enhanced NMDAR function
in the hippocampus, but normal NMDAR function in the
mPFC (Chung et al., 2015). Similarly, Shank2−/− mice lacking
exons 6 + 7, whose social deficits are rescued by the NMDAR
agonist D-cycloserine, display reduced NMDAR function in the
hippocampus, but normal NMDAR function in the mPFC (Won
et al., 2012). In addition,Neuroligin-3R451C knock-in mice, which
express an ASD-related mutation found in humans and display
autistic-like behavioral phenotypes, show enhanced NMDAR
function in the hippocampus, but enhanced inhibitory synaptic
transmission in the somatosensory cortex (Tabuchi et al., 2007;
Etherton et al., 2011). However, given the well-known association
of the mPFC with social functions, other brain regions with
enhanced NMDAR function in VPA mice, if such regions exist,
may be functionally connected to the mPFC. For example,
memantine, which suppresses elevated NMDAR function in the
IRSp53−/− hippocampus, has been shown to suppress neuronal
firing in the mPFC, where no NMDAR hyperfunction was
observed (Chung et al., 2015).

Lastly, while we have thus far associated excessive NMDAR
function with autistic-like phenotypes in VPA mice, the opposite
change—limited NMDAR function—has also been associated
with autistic-like phenotypes in other animal models. For
instance, autistic-like social deficits and repetitive behaviors
observed in rats and mice are rescued by pharmacological
reagents that elevate NMDAR function (Chubykin et al., 2007;
Blundell et al., 2010; Silverman et al., 2010a, 2012; Deutsch
et al., 2012; Won et al., 2012; Yadav et al., 2012; Benson et al.,
2013; Budreck et al., 2013; Burgdorf et al., 2013; Burket et al.,
2013; Huang et al., 2014). Therefore, deviation of NMDAR
function in either direction appears to be associated with autistic-
like phenotypes, and correcting these deviations may have
therapeutic potential (Lee et al., 2015).

In summary, our results indicate that suppression of NMDAR
function in VPA mice rescues repetitive behavior as well as social
deficits.
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Supplementary Figure 1 | VPA mice do not show repetitive digging

behavior, as determined by the number of marbles buried. Glass marbles

(1.5 cm in diameter) were used to measure digging. (s. e. m., n = 8 for control

(VPA-untreated) mice and VPA mice, ns, not significant; Student’s t-test).
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