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Our recent data suggest a high accumulation of copper (Cu) in the subventricular zone
(SVZ) along the wall of brain ventricles. Anatomically, SVZ is in direct contact with
cerebrospinal fluid (CSF), which is secreted by a neighboring tissue choroid plexus (CP).
Changes in Cu regulatory gene expressions in the SVZ and CP as the function of aging
may determine Cu levels in the CSF and SVZ. This study was designed to investigate
the associations between age, Cu levels, and Cu regulatory genes in SVZ and plexus.
The SVZ and CP were dissected from brains of 3-week, 10-week, or 9-month old male
rats. Analyses by atomic absorption spectroscopy revealed that the SVZ of adult and
old animals contained the highest Cu level compared with other tested brain regions.
Significantly positive correlations between age and Cu levels in SVZ and plexus were
observed; the SVZ Cu level of old animals was 7.5- and 5.8-fold higher than those of
young and adult rats (p < 0.01), respectively. Quantitation by gPCR of the transcriptional
expressions of Cu regulatory proteins showed that the SVZ expressed the highest level
of Cu storage protein metallothioneins (MTs), while the CP expressed the high level of
Cu transporter protein Ctri. Noticeably, Cu levels in the SVZ were positively associated
with type B slow proliferating cell marker Gfap (p < 0.05), but inversely associated with
type A proliferating neuroblast marker Dcx (p < 0.05) and type C transit amplifying
progenitor marker Nestin (p < 0.01). Dmt7 had significant positive correlations with
age and Cu levels in the plexus (o < 0.01). These findings suggest that Cu levels in
all tested brain regions are increased as the function of age. The SVZ shows a different
expression pattern of Cu-regulatory genes from the CP. The age-related increase of MTs
and decrease of Ctr1 may contribute to the high Cu level in this neurogenesis active
brain region.

Keywords: subventricular zone, choroid plexus, copper, age-dependent, neurogenesis

Introduction

Copper (Cu) is essential for numerous biological functions by serving as an indispensable cofactor
for enzymes that widely involve in a number of biochemical reactions (Turski and Thiele,
2009; Uriu-Adams et al., 2010; Gambling et al., 2011; Zheng and Monnot, 2012). In the central
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nervous system, cuproenzymes (i.e., cytochrome C oxidase,
superoxide dismutase, lysyl oxidase, ceruloplasmin, dopamine-
B-monooxygenase, peptidylglycin a-amidating monoxygenase,
and tyrosinase) participate in biological processes of energy
metabolism, anti-oxidative defense, neurotransmitter and
neuropeptide synthesis (Prohaska and Brokate, 2001; Takahashi
et al, 2002; Skjorringe et al, 2012; Scheiber et al., 2014).
Toxicologically, free Cu ions can interact readily with oxygen to
initiate a cascade of reactions leading to the generation of highly
damaging hydroxyl radicals. It is because of its essentiality to the
cellular function and its cytotoxic nature in oxidative stress that
Cu is strictly regulated in the body (Linder and Hazegh-Azam,
1996; Turnlund, 1998; Li and Zheng, 2005). Thus, disruption of
the tightly regulated Cu homeostasis in the brain, either excess
or deficient, can lead to severe neurological malfunction and
neurodegeneration. A considerable amount of research has
suggested that the pathogenesis of neurodegenerative disorders
such as Parkinson’s disease (PD), Alzheimer’s disease (AD),
familial amyotrophic lateral sclerosis (ALS), prion disease and the
inherited disorders Menkes disease and Wilson’s disease, involve
an imbalanced Cu homeostasis in the brain (Gaggelli et al., 2006;
Matés et al., 2010; Zheng and Monnot, 2012). A recent human
study compared the patterns of levels of biological metals in
cerebrospinal fluid (CSF) among neurodegenerative diseases,
and found that patients with PD, AD, or ALS had significantly
higher Cu contents in the CSF than those of controls (Hozumi
etal,, 2011). Therefore, a stable Cu homeostasis must be carefully
maintained to assure the normal brain function.

Cu from the blood circulation is transported into the brain
via the blood-brain barrier (BBB) and blood-CSF barrier (BCB;
Choi and Zheng, 2009; Zheng and Monnot, 2012; Fu et al,
2014). Previous studies from this laboratory have demonstrated
that the BBB serves as the major route for the transport of Cu
into the brain parenchyma, while the BCB mainly contributes to
maintain the Cu homeostasis in the brain by exporting excess Cu
from the CSF to the blood (Choi and Zheng, 2009; Zheng and
Monnot, 2012; Fu et al., 2014). Once entering the brain, the Cu
content and spatial distribution are uneven (Becker et al., 2005;
Lech and Sadlik, 2007; Dobrowolska et al., 2008; Davies et al.,
2013, 2014; Ramos et al., 2014), which also vary among different
species (Waggoner et al., 2000; Olusola et al.,, 2004; Jackson
et al., 2006), and change during the development, with age and
in neurodegenerative conditions (Palm et al., 1990; Tarohda
et al., 2004; Serpa et al., 2008; Wang et al., 2010; Ramos et al.,
2014). Age-related increase in brain Cu content was observed in
mouse (Wang et al., 2010), rat (Palm et al., 1990), and bovine
(Zatta et al., 2008). Our recent published study using X-ray
fluorescent (XRF) microscopy reveals an extraordinarily high
Cu content in the subventricular zone (SVZ) along the wall of
rat brain lateral ventricles, which appears to increase with age
(Pushkar et al., 2013). More recently, our quantification studies
by using atomic absorption spectrophotometry (AAS) further
confirm that Cu concentrations in the SVZ are significantly
higher than those in striatum (STR) and hippocampus (HP; Fu
etal., 2015).

The SVZ, along with the subgranular zone (SGZ) in HP,
serves as a source of neural stem/progenitor cells (NSPC) in the

process of adult neurogenesis (Lledo et al., 2006; Ghashghaei
et al,, 2007). Actively differentiated NSPCs possess a unique
ability to migrate from the SVZ origin, via the rostral migratory
stream (RMS), to the olfactory bulb (OB; Lois et al., 1996;
Curtis et al., 2007). On the migratory path, it is assumed that
the cells may further differentiate in adjacent brain regions to
provide renewed neurons so as to compensate the loss of neurons
due to neurodegenerative injury (Lledo et al., 2006; Ghashghaei
etal., 2007). Our recent studies have demonstrated that exposure
to toxic metal manganese (Mn), which causes Parkinsonian
disorders in humans (Crossgrove and Zheng, 2004; Racette et al.,
2012), results in an elevated neurogenesis activity in the SVZ
and RMS; the phenomenon appears to be associated with an
increased expression of divalent metal transporter-1 (DMT1) in
the SVZ (Fu et al., 2015).

Cellular Cu homeostasis is regulated by four major groups of
Cu regulatory proteins, i.e., Cu uptake transporters such as Cu
transporter 1 (CTR1) and DMT1, Cu efflux transporters such as
Cu-transporting ATPases ATP7A and ATP7B, intracellular Cu
chaperon proteins such as cytochrome ¢ oxidase-17 (COX17),
antioxidant 1 Cu chaperon (ATOX1), Cu chaperone for
superoxide dismutase (CCS), and intracellular Cu binding
proteins such as metallothioneins (MTs) for Cu storage (Scheiber
et al,, 2014). In mammalian brain, these Cu regulatory proteins
are widely expressed with particular abundance in brain capillary
endothelial cells and choroid plexus (CP) epithelial cells, the
two major cell types constituting the BBB and BCB, respectively
(Hidalgo et al., 2001; Kuo et al., 2006; Zheng and Monnot, 2012;
Davies et al., 2013; Fu et al., 2014). Anatomically, the SVZ is a
symmetric region located at the external wall of the both lateral
ventricles. The SVZ has the direct contact with the CSF, which
is secreted by the CP. It is therefore highly possible that the
regulation of Cu transport across the BCB may influence the
Cu accumulation in the SVZ. As an active neurogenesis region,
the high Cu content in the SVZ may play a potential role in
regulating the neurogenesis process. However, little knowledge
is available on the expression patterns of Cu regulatory proteins
in relationship to aging, as well as their contributions to the high
Cu content in the SVZ.

The main purposes of this study were to: (1) compare the
Cu distribution pattern in brain regions including SVZ, CP, HP,
frontal cortex (FC), cerebellum (CB), and OB by using AAS;
(2) assess the transcriptional expression levels of Cu regulatory
proteins in the SVZ and CP tissues using quantitative real time
RT-PCR (qPCR) and compare the expression patterns of Cu
regulatory proteins between these two regions; and (3) investigate
the associations between aging, Cu contents, and expressions of
Cu regulatory proteins in the SVZ and CP tissues. The results of
this study provide first hand evidence of Cu regulatory proteins
in the SVZ and help establish a new connection between the SVZ
and CP.

Materials and Methods

Materials
Chemical reagents were purchased from the following sources:
cDNA synthesis kit and iTaq Universal SYBR Green Supermix
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from Biorad (Hercules, CA, USA), ultrapure nitric acid (HNOs3)
from Mallinckrodt (St. Louis, MO, USA), and other routine
chemicals and reagents from Sigma (St. Louis, MO, USA). All
reagents were of analytical grade, HPLC grade, or the best
available pharmaceutical grade.

Animals

Young (3 weeks), adult (10 weeks), and old (9 months) male
Sprague-Dawley (SD) rats were purchased from Harlan Sprague
Dawley Inc. (Indianapolis, IN, USA). Upon arrival, rats were
housed in a temperature-controlled room under a 12-h light/12-h
dark cycle and allowed to acclimate for 1 week prior to
experimentation. They had free access to deionized water and
pellet Purina semi-purified rat chow (Purinal Mills Test Diest,
5755C. Purina Mills, Richmond, Inc., USA). The study was
conducted in compliance with standard animal use practices and
approved by the Animal Care and Use Committee of Purdue
University.

Rats were anesthetized with ketamine/xylaxine (75:10
mg/kg, 1 mg/kg ip.). CSF samples, free of blood, were
collected using 26G butterfly needle by inserting the needle
between the protuberance and the spine of the atlas, and
blood samples were obtained from the vena cava for
serum separation. Rat brains were dissected to harvest
the CP in lateral and third ventricles, SVZ, OB, STR, HP,
FC, and CB for measurement of Cu levels using AAS.
SVZ and plexus tissues were further used to determine the
transcriptional expression levels of Cu binding proteins and
cellular markers for SVZ neural stem cells using qPCR.
Samples were freshly analyzed or stored at —80°C for further
analyses.

Determination of Copper Concentrations by AAS
Brain tissue and serum samples were digested with concentrated
ultrapure HNO;3; in a MARSXpress microwave-accelerated
reaction system. Due to the small massive weights and volumes,
as well as avoiding the over-dilution, SVZ, CP and CSF samples
were digested overnight with 50-100 pL HNOj; in the oven
at 55°C. An Agilent Technologies 200 Series SpectrAA with

a GTA 120 graphite tube atomizer was used to quantify Cu
concentrations. Digested samples were diluted by 5 or 10 times
with 0.1% (v/v) HNOj3 in order to keep the reading within the
concentration range of the standard curve. Range of calibration
standard for Cu was 0-25 pg/l. Detection limit for Cu was
0.9 ng/ml of the assay solution. Intra-day precision was 1.6% and
the inter-day precision as 3.7% (Zheng et al., 1998, 1999, 2009).

Quantitative Real Time RT PCR
Transcription levels of mRNA encoding Cu transporters (i.e.,
Ctrl, Dmtl, Atp7a and Atp7b), Cu chaperons (i.e., Cox17, Ccs
and AtoxI), Cu binding protein MTs (i.e., Mt1la, Mt2a and Mt3),
and cellular markers for neuronal precursor cells (i.e., Nestin,
Dcx and Gfap) were quantified using qPCR. Total RNA was
isolated from rat SVZ and CP tissues by using TRIzol reagent
following the manufacturer’s instructions. An aliquot of RNA
(I ng) was reverse-transcribed into cDNA using the BioRad
iScript cDNA synthesis kit. The iTaq Universal SYBR Green
Supermix was used for qPCR analyses. The amplification was
run in the CFX Connect™ Real-Time PCR detection system
with an initial 3 min denaturation at 95°C, the amplification
program was followed by 40 cycles of 30 s denaturation at
95°C, 10 s gradient from 55 to 65°C and 30 s extension at
72°C. A dissociation curve was used to verify that the majority
of fluorescence detected could be attributed to the labeling of
specific PCR products, and to verify the absence of primer dimers
and sample contamination. Each qPCR reaction was run in
triplicate. The relative mRNA expression ratios between groups
were calculated using the delta-delta cycle time formulation.
After confirming that the reference gene was not changed,
the cycle time (Ct) values of interested genes were normalized
with that of the reference gene in the same sample to obtain
AACt values. The amplification efficiencies of target genes
and the internal reference were examined by determining the
variations of the cycle time with a series of control template
dilutions.

The forward and reverse primers for target genes were
designed using Primer Express 3.0 software and showed as
follows:

Category Gene name Primer sequence
Transporters Ctrl Forward 5-TCG GCC TCA CAC TCC CAC GA-3
Reverse 5'-CGA AGC AGA CCC TCT CGG GC-3¥
Dmtl Forward 5'-TCG CAG GCG GCA TCT TGG TC-3’
Reverse 5'-TAC CGA GCG CCC ACA GTC CA-3
Atp7a Forward 5-CTT GTA GAG GAG GCA CAG AC-3’
Reverse 5'-GGT AAC AAT GGA AAC CAA GA-3
Atp7b Forward 5'-AAT CCA GGA CTG TCC GTT CTA A-3’
Reverse 5'-CAC TTG CTC CTC TCT GAG GAT T-3’
Chaperons Cox17 Forward 5-CTG AGT TTT GGG AGC TTT GC-3’
Reverse 5'-AGG GCT TCA GAG GCT TCT TC-3'
Ccs Forward 5'-TCA CAG GGA ATT CTG GGA AG-3
Reverse 5-GGA GGC TCT GTT CAG AGG TG-3'
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Category Gene name Primer sequence
Atoxl Forward 5-CTC AAC AAA ACA GGA AAA GC-3/
Reverse 5-GAT CAA CAG TCT GCC TCT TC-3/
Binding Proteins Mtla Forward 5'-GCC TTC TTG TCG CTT ACA CC-3'
Reverse 5-AGG AGC AGC AGC TCT TCT TG-3'
Mt2a Forward 5/-ACA GAT GGA TCC TGC TCC TG-3’
Reverse 5-GAG AAC CGG TCA GGG TTG TA-3'
Mt3 Forward 5-CCC TGC AGG ATG TGA GAA GT-3’
Reverse 5-TTT GCT GTG CAT GGG ATT TA-3’
Reference Gene Actb Forward 5-AGC CAT GTA CGT AGC CAT CC-3’
Reverse 5-CTC TCA GCT GTG GTG GTG AA-3'

All  primers were obtained from Integrated DNA
Technologies (Coralville, IA, USA). Experimental conditions
were optimized for annealing temperature, primer specificity
and amplification efficiency.

Statistical Analyses

All data are presented as mean =+ SD. Statistical analyses of the
differences among different age groups or different primary cells
were carried out by one-way ANOVA with post hoc comparisons
by the Dunnett’s test using IBM SPSS for Windows (version
22.0). Pearson correlation analysis was conducted to analyze
the relationship among the test parameters. A Grubb’s test was
used to screen outliers in AAS and qPCR data. In all cases,
a probability level of p value equal to or less than 0.05 was
considered as the criterion of significance.

Results

Brain Regional Copper Content

To determine whether the age affects the brain regional Cu
contents, brain tissues of SVZ, plexus, OB, STR, HP, FC, CB, as
well as CSF and serum were collected from three groups of rats
with different ages for quantitation of Cu concentrations using
AAS. By comparison between age groups, our results revealed

TABLE 1 | Age-dependent increased brain regional copper levels.

that Cu levels of all selected brain regions increased as age
progressed; Cu concentrations were significantly higher in the
old age group than those in the young or adult groups (p < 0.05;
Table 1). There were about 4-9 fold increases in brain tissue Cu
levels in old animals compared with the young. The Cu content
in the CSF of old rats was about 1.7-fold and 2.0-fold higher than
those of the young and adult animals, respectively (p < 0.05;
Table 1). Interestingly, the serum Cu level in the old age group
was also found to be significantly higher, by 3.9-fold and 2.6-fold,
than those of the young and adult groups, respectively (p < 0.01;
Table 1). In addition, the adult rats had higher Cu levels in the
STR (p < 0.01), CB (p < 0.05) and serum (p < 0.01) than those in
the young rats (Table 1). These findings clearly establish a general
age-dependent increase of Cu levels in different brain regions,
CSF and serum.

Among young animals, the CP has the highest Cu content as
compared with the other brain regions (p < 0.05), followed by
SVZ, STR, FC, OB, and CB (Table 1). However, the highest Cu
level was detected in the SVZ of adult and old rats, as compared
with the other selected brain regions (Table 1). Animals in adult
age showed higher Cu levels in the STR, CP, and OB, which were
significantly higher than those in the HP, FC, and CB (p < 0.05;
Table 1). Interestingly, the second highest Cu content in the old
age group was observed in the OB, which was slightly lower

Samples Cu concentration (rg/g tissue or pg/L)
Young rats Adult rats Old rats
Svz 0.711 +£ 0.052 0.928 £ 0.105 5.347 + 0.563"#%
CP 0.809 + 0.2562 0.748 + 0.182% 3.352 £ 1.024*#aa
OB 0.554 =+ 0.028%° 0.735 + 0.058% 5.226 £ 0.513*##00
STR 0.633 + 0.062°° 0.832 £ 0.066*+a¢ 2.880 + 0.24Q+*+##aacc
HP 0.537 £ 0.0357800d 0.633 £ 0.0357a0cdd 3.149 £ 0.354*##aace
FC 0.569 = 0.0397a0bd 0.585 = 0.023aabccdd 2.227 £ 0.18@*+##aabbecdee
CB 0.518 + 0.0403abb 0.569 + 0.037*aabbccdd 2.417 + 0.055**##aabbccee
CSF 14.29 + 4.65 12.32 £ 5.94 24,32 4+ 9.41*
Serum 318.5 + 25.87 476.6 + 42.24* 1252.7 & 109.3*##

Note: Data represents mean + S.D., n = 8-12 (brain tissues), n = 5-7 (CSF) and n = 6-7 (serum). 1. Comparison among different age groups: *p < 0.05, *p < 0.01,
as compared with young rats; *p < 0.05, ¥p < 0.01, as compared with adult rats. Comparison within the same age group: a: p < 0.05, aa: p < 0.01, as compared
with SVZ; b: p < 0.05, bb: p < 0.01, as compared with CP; c: p < 0.05, cc: p < 0.01, as compared with OB; d: p < 0.05, dd: p < 0.01, as compared with STR; ee:
p < 0.01, as compared with HP. SVZ, subventricular zone; CF, choroid plexus; OB, olfactory bulb; STR, striatum; HF, hippocampus; FC, frontal cortex; CB, cerebellum;
CSF, cerebrospinal fluid.
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than that in the SVZ but significantly higher than the level in
the CP (p < 0.01; Table 1). These data indicate that both SVZ
and CP accumulate a higher Cu than the other selected brain
regions. Considering the adjacent anatomic locations of the SVZ
and plexus, the higher Cu may imply the greater demand of
both regions for Cu ions and/or for Cu regulation within brain
parenchyma.

Transcriptional Expression of Copper Regulatory
Proteins in the SVZ and Choroid Plexus

A higher accumulation of Cu in a particular brain region
could be due to a higher expression of Cu uptake transporters
or intracellular binding proteins. The current literature lacked
such information. Thus, as the first step to understand the
Cu regulatory mechanism in the SVZ and the nearby CP, we
determined the expression levels and identified the expression
patterns of Cu regulatory proteins in the SVZ and plexus of rats
with different ages. The mRNAs study included Cu transporters
(i.e., Ctrl, Dmtl, Atp7a and Atp7b), Cu chaperons (i.e., Cox17,
Ccs and Atox1) and Cu storage protein MTs (i.e., Mtla, Mt2a
and Mt3). After normalizing with the Actb, the A ACt values were
summarized in Table 2.

Our qPCR AACt results demonstrated that all selected Cu
regulatory proteins existed in both SVZ and CP of young, adult
and old rats (Table 2). Noticeably, the pattern of transcriptional
expression of these Cu regulatory proteins in the SVZ was
quite different from that in the CP. The mRNA levels of Cu
storage protein metallothionein (i.e., Mt3, Mt2a and Mtla) were
the highest in the SVZ tissues of all three ages, followed by
Cu chaperons of CoxI7 and Ccs, and Cu transporters Ctrl
and Dmtl (Table 2). In contrast, the CP of all age groups
had the highest expression of Cu uptake transporter Ctrl,
followed by Mt3, Cox17, Ccs and Dmtl (Table 2). When the
comparison was made within the same tissue but different age
groups, we observed significantly increased expressions of Dmt1,
Atp7b, Ccs, and Mts (Mtla, Mt2a and Mt3) in the SVZ of
the old rats, while the expression of Ctrl showed a significant
reduction in adult and old animals than the young animals
(Table 2).

Among the age-dependent up-regulation, Mt3 expression in
the SVZ of old animals appeared to increase the most, about 3.8-
fold (p < 0.01) and 3.0-fold (p < 0.01) increase, as compared
with the young and adult age groups, respectively (Table 2). In
the CP, however, the age-related mRNA expression appeared
to be most abundant for Ctrl (p < 0.01), Dmtl (p < 0.01),
Cu chaperons CoxI7 (p < 0.05) and Ccs (p < 0.01) when the
values in the old animals were compared with those in the young
animals (Table 2). Interestingly, significantly lower expressions
of Cu chaperone Atox1, Cu binding proteins Mtla and Mt3 were
observed in old animals, as compared with those in the young or
adult groups (Table 2).

In comparison with the CP, the SVZ from all the ages showed
significantly higher expressions of Mt3 (p < 0.01) and Mt2a
(p < 0.01) than those in the plexus, whereas the CP of all
ages had more abundant expressions of Cu transporters (Ctrl,
Dmtl and Atp7a) and Cu chaperons (Cox 17, AtoxI and Ccs)
than those in the SVZ (p < 0.01; Table 2). These findings
demonstrate entirely different patterns of Cu regulatory proteins
between the SVZ and CP. The high abundance of Cu binding
proteins in the SVZ suggests that the SVZ may have the ability
to store large amount of Cu ions in brain ventricular region,
which underlies the high Cu content detected in this region
(Table 1). Similarly, the high abundance of Cu transport proteins
in the CP suggests that the BCB plays an important role in
transporting Cu ions between the blood and CSF, which may
influence the SVZ.

Age-Depedent Expressions of Cellular Markers
for Neural Stem Cells in SVZ

The SVZ possesses four different types of cells: (i) type
E ependymal cells; (ii) type A proliferating neuroblasts
(Doublecortin (DCX) positive); (iii) type B slow proliferating
progenitor cells (Nestin and glial fibrillary acidic protein (GFAP)
positive); and (iv) type C transit amplifying progenitors (Nestin
positive). In our preliminary study, by using qPCR we detected
the expression of mRNAs encoding three NSPC markers (GFAP,
Nestin and DCX) in the SVZ tissue; the results confirmed
the validity of the dissection method used to collect the SVZ

TABLE 2 | Transcriptional expression levels of copper regulatory proteins in SVZ and choroid plexus of young, adult and old rats.

SVZ (AA Ctvalue)

Choroid plexus (AA Ct value)

Category Gene Young rats Adult rats Old rats Young rats Adult rats Old rats
Transporters Ctr1 0.0145 £ 0.0007 0.0105 + 0.0009% 0.0095 + 0.0010% 0.4364 + 0.0817**  0.5291 + 0.0568%## 0.5904 + 0.07052a044
Dmt7 0.0108 &£ 0.0017  0.0095 + 0.0028 0.0126 + 0.0024° 0.0294 4+ 0.0033**  0.0350 + 0.00372a## 0.0440 + 0.00412abbAA
Atp7a 0.0016 £ 0.0003  0.0016 + 0.0003 0.0017 + 0.0003 0.0152 + 0.0040**  0.0131 + 0.00172"* 0.0149 4+ 0.002144
Atp7b  0.0013 £ 0.0001 0.0009 + 0.0003 0.0015 + 0.0004°®  0.0010 + 0.0004 0.0008 + 0.0001 0.0009 + 0.0002
Chaperones Cox17 0.0547 +£0.0109  0.0531 + 0.0081 0.0663 + 0.0297 0.1052 + 0.0244** 0.1189 + 0.0082"# 0.1244 4+ 0.0210244
Atox7  0.0024 4+ 0.0024  0.0027 + 0.0011 0.0027 £ 0.0013 0.0226 + 0.0046™  0.0125 4+ 0.00272%"  0.0118 + 0.0034330AA
Ccs 0.0207 £ 0.0055  0.0244 + 0.0058 0.0323 + 0.0125%  0.0555 4 0.0105** 0.0634 + 0.0050*# 0.0816 + 0.008282abbAA
Binding Proteins Mt7a  0.0630 &+ 0.0125  0.0406 + 0.0138% 0.0985 + 0.0282240  0.0560 + 0.0131 0.0319 + 0.0053% 0.0483 + 0.0126°044
Mt2a  0.2289 + 0.0461 0.1288 + 0.0515% 0.2648 + 0.1049°°  0.0247 + 0.0159** 0.0119 + 0.0032*# 0.0189 + 0.0133%44
Mt3 0.2330 + 0.0618 0.2970 + 0.1008 0.8869 + 0.3864230 0.1349 + 0.0715** 0.0473 + 0.0059%##  0.1414 + 0.0237Pb2A

Note: Data represents mean + S.D., n = 6. SVZ, subventricular zone. Comparison between SVZ and choroid plexus with the same age: *p < 0.01, as compared with the
SVZ of young rats; *p < 0.01, as compared with the SVZ of adult rats; AA: p < 0.01, as compared with the SVZ of old rats. Comparison among different age groups
within SVZ or choroid plexus tissues: a: p < 0.05, aa: p < 0.01, as compared with young rats; b: p < 0.05, bb: p < 0.01, as compared with adult rats.
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FIGURE 1 | Transcriptional expression levels of Gfap, Nestin and Dcx in by normalizing with the Actb. (C) mMRNA expression levels of Dcx in SVZ tissues
subventricular zone (SVZ) tissues of young, adult and old rats by gPCR. were expressed as the AACt value by normalizing with the Actb. The data are
(A) mRNA expression levels of Gfap in SVZ tissues from all ages were representative of triplicate experiments. Data represent mean +
expressed as the A ACt value by normalizing with the Actb. (B) mRNA SPRAGUE-DAWLEY (SD), n = 6; *p < 0.05, **p < 0.01, as compared with the
expression levels of Nestin in SVZ tissues were expressed as the AACt value YR. YR, AR, and OR are the abbreviations of young, adult and old rats.

tissue from rat brain. The age effect on these NSPC markers
was then investigated. Significant age-related expressions of
these NSPC markers (Gfap, Nestin and Dcx) were found in
the SVZ from three age groups (Figure 1). Specifically, Gfap
transcriptional levels in the SVZ were significantly higher
in the adult (p < 0.05) and old animals (p < 0.01) than
that in the young rats (Figure 1A). A significant reduction
of Nestin expression was observed in the old age group, as
compared with the young animals (p < 0.05; Figure 1B).
Both adult (p < 0.05) and old (p < 0.01) age groups showed
a lower expression of Dcx than that of the young animals
(Figure 1C).

Correlations of Age-Dependent Copper Levels
and Transcriptional Expressions of Copper
Regulatory Proteins in SVZ and Choroid Plexus
We further extended our research to investigate the correlations
among age, brain Cu content and Cu regulatory protein
expressions in the SVZ (Table 3) and the CP (Table 4). Pearson
correlation analyses revealed the following strong positive
correlations in the SVZ: age and SVZ Cu content (Pearson
r = 0984, p < 0.01), age and mRNA expressions of Gfap
(r=0.540, p < 0.01), age and Cu storage protein Mtla (r = 0.669,
p < 0.01) and Mt3 (r = 0.806, p < 0.01; Table 3). In addition,
we also found the following inverse correlations between age and
transcriptional expressions of Nestin (r = —0.584, p < 0.01), Dcx
(r = —0.551, p < 0.01) and Cu transporter Ctrl (r = —0.733,
p < 0.01; Table 3). These age-related correlations indicate
that SVZ is capable of accumulating more Cu ions as the age
increases.

When the Cu content in the SVZ was correlated with the
mRNA expressions of SVZ cellular markers as well as Cu
regulatory proteins, the following positive correlations in the
SVZ were identified: Cu content and Gfap (r = 0.482,p < 0.05),
Cu content and Cu storage proteins Mtla (r = 0.712, p < 0.01),
Mt2a (r = 0414, p < 0.05), and Mt3 (r = 0.779, p < 0.01;

Table 3). The inverse correlations were also observed between:
the SVZ Cu content and the expressions of Nestin (r = —0.552,
p < 0.01), Dex (r = —0.492, p < 0.05), and Ctrl (r = —0.638,
p < 0.01). The correlation results appear to indicate that
Cu regulatory proteins, particularly the Cu storage proteins
MTs, are essential for SVZ to concentrate high Cu content.
Furthermore, the positive correlation between SVZ Cu content
and Gfap, and the inverse correlation between SVZ Cu
level and Nestin as well as Dcx suggest that the high Cu
environment in the SVZ may affect the neurogenesis within this
region.

We also used the same correlation analysis approach to study
these correlations in the nearby tissue CP. Results in the Table 4
revealed the following positive correlations between: the age and
plexus Cu content (r = 0.681, p < 0.01), CtrI (r =0.632, p < 0.01),
Dmtl (r = 0.854, p < 0.01) and Cecs (r = 0.819, p < 0.01). An
inverse correlation was observed between the age and AtoxI
(r = —0.576, p < 0.05). Of the studied Cu transport or storage
proteins, only the DmtI expression was found to be positively
correlated with plexus Cu content (r = 0.661, p < 0.01; Table 4).
Therefore, the age-related up-regulations of Cu transporters
CTR1 and DMT1 and Cu chaperon CCS may contribute to the
high Cu accumulation in the CP.

Discussion

Our current studies confirm our previous observation that the
SVZ accumulates remarkably high amounts of Cu as compared
with other selected brain regions (Pushkar et al., 2013; Fu et al,,
2015). Furthermore, our data demonstrate that Cu contents in
all selected brain regions, CSF and serum display an age-related
increase. Quantification of the transcriptional expressions of Cu
regulatory proteins provides direct evidence of the presence of
Cu transporters, chaperons and intracellular binding proteins
in the SVZ and CP. Interestingly, we observe that the SVZ is
highly enriched with Cu storage MTs, whereas the CP is more
abundant with Cu transporters. There are also age-related up-
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TABLE 3 | Correlation coefficients of transcriptional expression levels of copper regulatory proteins and cellular markers in SVZ.

Age SVZ-Cu Gfap Nestin Dcx Ctr1 Dmt1 Atp7a Atp7b Cox17  Atox1 Ccs Mtia Mt2a Mt3
Age 1.000 0.984** 0.540** —0.584** —0.551** —0.733** 0.412*  0.231 0.484*  0.308 0.073 0.521*  0.669** 0.365 0.806**
SVZ-Cu 1.000 0.482* —0.552** —0.492* —0.638** 0.422* 0.214 0.556*  0.279 0.042 0.477*  0.712™  0.414* 0.779**
Gfap 1.000 —0.622** —0.999** —0.701* —0.087 —0.166 —0.109 0.001  —0.045* 0.120 0.038 -0.225 0.272
Nestin 1.000 0.643**  0.585** —0.071 0.209 -0.160 -0.170 -0.257 -0.174 -0.310 -0.139 —0.438
Dcx 1.000 0.715*  0.037 0.164 0.107 0.000 0.037 -0.123 —0.046 0.219 -0.279
Ctr1 1.000 0.121 0.131 0.072 0.031 0.062 -0.227 -0.077 0.227 —0.423*
Dmt1 1.000 0.731** 0.555* 0.770* 0.558** 0.727* 0.773* 0.773* 0.732**
Atp7a 1.000 0.406*  0.564*  0.305 0.592**  0.541*  0.566** 0.452*
Atp7b 1.000 0.603*  0.128 0.621**  0.756™  0.772**  0.660**
Cox17 1.000 0.523* 0.890**  0.698™  0.772**  0.793**
Atox1 1.000 0.257 0.290 0.299 0.352
Ccs 1.000 0.726** 0.719* 0.873*
Mtia 1.000 0.905**  0.853**
Mt2a 1.000 0.720**
M3 1.000
“correlation is significant at the p < 0.05 level (2-tailed); **correlation is significant at the p < 0.01 level (2-tailed). n = 6.
TABLE 4 | Correlation coefficients of transcriptional expression levels of copper regulatory proteins in choroid plexus.

Age CP-Cu Ctr1 Dmt1 Atp7a Atp7b Cox17 Atox1 Ccs Mtia Mt2a Mt3

Age 1.000 0.681** 0.632** 0.854** 0.067 -0.157 0.350 -0.576* 0.819** 0.013 —0.058 0.282
CP-Cu 1.000 0.321 0.661** 0.010 —-0.164 0.019 —0.403 0.431 0.144 —0.011 0.171
Ctr1 1.000 0.743* 0.229 —0.029 0.340 —0.592** 0.631**  —0.265 —0.231 —0.104
Dmt1 1.000 0.006 —0.335 0.365 —0.608** 0.814* —-0.149 —-0.115 0.063
Atp7a 1.000 0.798** 0.320 0.467 0.284 -0.113 0.217 0.421
Atp7b 1.000 0.131 0.492* —0.054 0.030 0.376 0.405
Cox17 1.000 0.082 0.727** -0.132 0.179 0.353
Atox1 1.000 —0.301 0.278 0.436 0.440
Ccs 1.000 —0.093 0.092 0.410
Mtia 1.000 0.462 0.650**
Mt2a 1.000 0.744**
Mt3 1.000

“correlation is significant at the p < 0.05 level (2-tailed); **correlation is significant at the p < 0.01 level (2-tailed). n = 6.

regulation and down-regulations of Cu regulatory proteins in
both SVZ and CP. Moreover, significant positive correlations
exist between age and Cu contents, and between expression
levels of Cu regulatory proteins and Cu content in the SVZ
and CP.

Age-related increases of Cu levels in brain, serum and CSF
have been reported in literature by studies conducted mainly
in rodents and humans (Palm et al.,, 1990; Zatta et al., 2008;
Wang et al, 2010; Hozumi et al, 2011). A recent human
study, however, shows an age-related decline in Cu levels
in selected brain regions (Ramos et al, 2014). Our current
data, along with previous observation (Pushkar et al., 2013),
clearly establish an age-related accumulation of Cu in the
SVZ, CP and other tested brain regions. With regards to the
SVZ and CP, two neighborhood tissues that are separated
by the CSF, a high Cu accumulation could be due to: (1)
increased Cu uptake; (2) increased intracellular binding or
storage of Cu; and/or (3) decreased ouster of intracellular
Cu ions. These processes are regulated by a host of proteins
whose activities may change with the aging process, which may
underscore the age-related buildup of Cu in these tissues. The
adjacent anatomic location notwithstanding, the mechanisms
by which these two tissues accumulate Cu appear to be

entirely different. Our qPCR data revealed an age-dependent
increase in expression of Cu storage proteins MTs in the SVZ;
whereas these storage proteins showed an age-related reduction
in the CP. This difference became even larger in the aged
animals; the MTs expressions in the old rats were about 2-14
fold higher in the SVZ than in the plexus. In contrast, the
expression of a major Cu uptake transporter Ctrl showed an
age-dependent increase in the CP; but it was greatly reduced
in the SVZ. Thus, the different expression patterns between
the SVZ and plexus appear to suggest two distinct pathways
for Cu to accumulate in respective regions: while the SVZ
gains the increased storage ability with aging, the neighborhood
CP extends its capability in taking up Cu ions through Cu
transporters.

Intracellular storage of Cu is known to be regulated by MTs
(Suzuki et al., 2002; Tapia et al., 2004; Ogra et al., 2006). Multiple
lines of evidence show that the elevated expression of MTs is
the cell’s response to the excess cellular Cu in order to protect
the cells against the cytotoxicity induced by redox active Cu
ions (Hidalgo et al., 1994; Dincer et al., 1999; Haywood and
Vaillant, 2014; Bulcke and Dringen, 2015). It is therefore possible
that the observed increase in MTs expression in the SVZ may
be a consequence of age-related Cu increase in the body; yet it
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remains difficult to explain why the M Ts expression was reduced
in the CP where in fact Cu levels were increased with age.

The CP functions as a barrier between the blood and CSF
and transports materials across the BCB. Ctrl is a major Cu
transporter with the highest expression in the apical surface of the
choroidal epithelia (Kuo et al., 2006; Zheng and Monnot, 2012;
Davies et al., 2013). Our previous work has established that Cu
is transported out of brain from the CSF to blood via Ctrl and
DMT]1 in the plexus (Zheng and Monnot, 2012). Recent studies
by Haywood and Vaillant (2014) on sheep suggest that there is a
reverse transfer of Cu from the blood into the choroidal epithelia.
The authors further postulate that the elevated Cu content in the
aging human brain may be the result of dysregulated CTR1 at
brain barriers. However, our own data from adult rats show a
distinct apical distribution of Ctrl in choroidal epithelia (Zheng
and Monnot, 2012). It is unclear, though, if this distribution
pattern may change over the life time from the apical to the
basolateral side of choroidal epithelium. If does, it is quite
possible then that the increased expression of Ctrl in aging rats,
as observed in this study, may transport Cu from the blood to
the CSF, leading an increased CSF Cu level. Consequently it may
act on Cu regulatory machinery in the SVZ. This interesting
hypothesis, however, needs further experimentation to prove.

DMT1 in the CP also contributes to cellular Cu uptake, albeit
much lesser than Ctrl in net gain (Zheng et al., 2012). Current
data showed that expression of DMT1 appeared to increase
significantly with aging in the CP, but to a lesser extent in the
SVZ. Literature data have suggested a significant age-related
upregulation of DMT1 expression in the FC of 12-month-old
APP/PS transgenic mice as compared with the data from 6-
month-old animals (Xian-hui et al., 2015). An early study in
rat brain also shows an age-dependent alteration in two mRNA
isoforms of DMTI, i.e.,, DMT1 (+IRE) and (—IRE; Ke et al.,
2005). Reports by Knutson et al. (2004), however, show no
significant age-related change in DMT1 mRNA levels in selected
mouse brain regions. While DMT1 may not play an essential
role in transporting Cu by the BCB (Zheng et al., 2012), our
recent work has indeed exhibited co-localization of DMT1 with
the newly proliferating neural stem cells in the SVZ and with
neuroblasts in the RMS (Fu et al., 2015). The role of DMT1 in
Cu accumulation in the SVZ and related age effect remain to be
explored.

Our data raise several interesting questions. First, what cell
type in the SVZ is responsible for Cu accumulation? Our
correlation analyses revealed a positive correlation between SVZ
Cu and Gfap, but an inversed relationship with Nestin or Dcx.
GFAP is a cellular marker for glial cells and type B progenitor
cells in the SVZ. In the brain, higher Cu contents in glial cells
have also been reported by other groups (Szerdahelyi and Kasa,
1986; Kodama et al., 1991; Becker and Salber, 2010; Scheiber and
Dringen, 2013; Pal and Prasad, 2014). The inverse correlations
between SVZ Cu and Dcx (marker for type A proliferating
neuroblasts) and between SVZ Cu and Nestin (marker for type
C transit amplifying progenitors), on the other hand, did not
support a significant role of either cell type in Cu accumulation in
the SVZ. Thus, it seems likely that the age-related increase of Cu
in the SVZ occurs primarily in GFAP-positive type B glial cells.

Second, what are the consequences of high Cu levels in the
SVZz? 1t is well known that aging is one of the most relevant
factors for the significant decline in adult neurogenesis in the
SVZ (Hamilton et al.,, 2013). The current study has established
significant inverse correlations between age and neural stem cell
markers of Nestin and Dcx, and between Cu content and both
cellular markers. In other words, with increased age, fewer Nestin
or Dcx positive-type C or type A cells were proliferated in the
SVZ of old rats. These observations support the view of age-
related decline in brain’s capability to produce new neurons in
neurogenic region—SVZ (Limke and Rao, 2003). Interestingly
also, with increased Cu levels, which increases with age, too,
fewer type C and type A were proliferated in the SVZ. Thus,
these data appear to suggest that extensive Cu accumulation
in the SVZ as the function of age may down-regulate the
proliferation of neural stem cells, leading to a reduction of
neurogenesis.

Finally, what is the exact role of Cu in adult neurogenesis
in the SVZ? The data presented in this report have established
a regulatory role of Cu in adult neurogenesis. A recent finding
by this laboratory has also shown that a significantly reduced
Cu content in the SVZ after subchronic Mn exposure in fact
enhances the proliferating activity of NSPC in the SVZ and
RMS (Fu et al.,, 2015). Thus, we suspect that in response to
changes in biochemical milieu due to aging, environmental
exposure or disease states, Cu level in the SVZ may function as
a sensor/switch that could either turn on (promote) or turn off
(restrain) the signaling pathway that regulates the neurogenesis
process in adult brain. This hypothesis requires further studies.

The current study has the following limitations. First,
the analyses were based largely on qPCR quantification of
translational expression of Cu regulatory proteins. While the
established technology provides the confident data, it may not
truly reflect amounts of proteins ultimately expressed in tested
tissues. Our next step is to use Western blot to determine the
protein amounts in the SVZ and CP. In addition, the current
study compares the outcomes only between the SVZ and plexus.
To fully appreciate Cu’s role in adult neurogenesis, there is a need
to compare the distribution of Cu regulatory proteins throughout
entire brain including key areas such as HP, STR, and OB etc.
Finally, there existed specie differences from rodents to humans.
These differences should be taken into account when interpreting
the significance of the observed data.

In summary, Cu dyshomeostasis plays an unequivocal role
in the pathogenesis of age-related neurodegenerative disorders.
The data in this report provides general information on age-
dependent Cu content, and expression of various Cu regulatory
proteins in the brain, particularly in the neurogenic SVZ and its
anatomically adjacent tissue CP. Our observation on increased
Cu levels and reduced neurogenesis in the SVZ may provide a
new clue to understand the mechanism of adult neurogenesis.
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