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The long-lasting enhancement of synaptic effectiveness known as long-term potentiation

(LTP) is considered to be the cellular basis of long-term memory. LTP elicits changes

at the cellular and molecular level, including temporally specific alterations in gene

networks. LTP can be seen as a biological process in which a transient signal sets a

new homeostatic state that is “remembered” by cellular regulatory systems. Previously,

we have shown that early growth response (Egr) transcription factors are of fundamental

importance to gene networks recruited early after LTP induction. From a systems

perspective, we hypothesized that these networks will show less stable architecture,

while networks recruited later will exhibit increased stability, being more directly related

to LTP consolidation. Using random Boolean network (RBN) simulations we found that

the network derived at 24 h was markedly more stable than those derived at 20min

or 5 h post-LTP. This temporal effect on the vulnerability of the networks is mirrored

by what is known about the vulnerability of LTP and memory itself. Differential gene

co-expression analysis further highlighted the importance of the Egr family and found a

rapid enrichment in connectivity at 20 min, followed by a systematic decrease, providing

a potential explanation for the down-regulation of gene expression at 24 h documented

in our preceding studies. We also found that the architecture exhibited by a control and

the 24 h LTP co-expression networks fit well to a scale-free distribution, known to be

robust against perturbations. By contrast the 20min and 5 h networks showed more

truncated distributions. These results suggest that a new homeostatic state is achieved

24 h post-LTP. Together, these data present an integrated view of the genomic response

following LTP induction by which the stability of the networks regulated at different times

parallel the properties observed at the synapse.

Keywords: long-term potentiation, gene expression, maintenance, synaptic plasticity, memory, dynamic stability,

co-expression analysis

1. Introduction

Living cells are equipped with a robust and yet plastic analog system, which allows them to
respond to environmental inputs. Information sensed from the changing environment is integrated
and processed by networks of interacting elements to generate an adequate response. Despite
the complexity of the underlying mechanisms, some aspects of cellular behavior are of apparent
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multistable nature, leading to discrete changes that can last for
long periods of time. Cell cycle checkpoints, cell differentiation,
and apoptosis represent phase transition of multi-component
switches that generate robust (and potentially irreversible)
transitions (Siegal-Gaskins et al., 2011). From a genetic control
perspective, it has been postulated that attractors in the gene
and protein expression dynamics, which are the more stable
position to which systems tends to evolve, define the cell’s
character (Kauffman, 1969). Namely, if individual expression
values get close enough to the attractor values, these will remain
constant even if disturbed. The characterization of the structure
of genetic networks from a dynamical perspective using different
theoretical methods (Mestl et al., 1997) predicts two broad
regimes. The ordered regime, robust against perturbations, and
a chaotic regime, sensitive to perturbations. While robustness is a
hallmark of homeostasis, it is reasonable to expect that transitions
between cellular states require an enhanced sensitivity. In such
scenario, a compromise between robustness and sensitivity could
potentially be attained by a rewiring of the network or by the
recruitment of different networks.

The change in synaptic efficiency known as long-term
potentiation (LTP) represents the cellular correlate for long-
term memory in the mammalian brain. From a systems
perspective, LTP offers an attractive model of a cellular switch,
whereby activation promotes movement to a new cellular state.
Just as any other biological switch, LTP accommodates a
compromise between robustness to genetic and environmental
noise and sensitivity to discriminate meaningful signals. This
characteristic is likely to be distributed at different levels of
biological organization. For example, LTP requires activation
and trafficking of glutamate receptors to the postsynaptic
membrane, in addition to protein synthesis and de novo
gene expression (Abraham and Williams, 2003). Indeed,
specific patterns of gene expression have indeed shown to
be regulated at different times following LTP induction, and
are crucially involved in the maintenance of LTP (Park
et al., 2006; Håvik et al., 2007; Ryan et al., 2011, 2012).
Specifically, we reported that the networks derived 20min post-
LTP induction, comprised many transcription factors (TFs),
including all members of the early growth response (Egr)
family, and were associated with functions such as development,
proliferation, and neurogenesis. By contrast the networks derived
at 5 h contained molecules associated with calcium dynamics,
dendritogenesis and neurogenesis and in the networks derived
at 24 h neurotrophin-NFKB driven pathways of neuronal growth
were identified. Our analysis also revealed several mechanisms
controlling the temporal shifts in gene expression such as
regulation of specific microRNA and histone deacetylases. Thus,
the variety of functions held by the genes offers a glimpse of the
potential complexity underlying the genomic response to LTP.

The involvement of complex gene networks in the
maintenance of LTP suggests that a multistable switch is
also present in the structure of the gene regulatory networks
recruited at different times following LTP induction. From
a systems perspective, we expect that the transition between
the pre- and post-LTP homeostatic state is paralleled by the
genomic response. We propose that while gene networks

rapidly and transiently activated following LTP-inducing
stimulation will show a less stable architecture, networks
recruited later will exhibit an increased stability, being more
directly related to LTP consolidation and post-LTP homeostatic
state. Using random Boolean networks (RBN) simulations, we
addressed this hypothesis by studying the dynamical stability
of networks previously identified (Ryan et al., 2011, 2012).
We also use the gene expression profiles provided in these
studies to explore the overall co-expression network architecture.
Following identification of tightly co-expressedmodules, we used
functional analysis to investigate the intramodular differential
connectivity at different times post-LTP induction. Our results
offer an integrated picture of the genomic response following
LTP and support the conclusion that a new homeostatic state is
achieved 24 h post-LTP.

2. Materials and Methods

2.1. Network Topologies
LTP-related gene expression profiles investigated in this study
were taken from Ryan et al. (2011, 2012). Briefly, 20min, 5 h,
and 24 h following induction of LTP at perforant path synapses
in the dentate gyrus in awake freely moving rats, gene expression
profiling was carried out using Affymetrix RAT230.2 microarrays
and the functional relationships of the differentially expressed
genes (±1.15-fold change; p < 0.05; moderated paired t-test
between the stimulated and control hemispheres) was explored
using the network analysis tool Ingenuity pathway analysis,
version 7 (IPA) (Ingenuity Systems, USA; https://www.analysis.
ingenuity.com). In the present study we analyzed the highest
scoring network from each time point (N = 35) alongside
the yeast transcriptional network (N = 30) as a benchmark
for RBN modeling (Lee et al., 2002). The yeast transcriptional
network represents potential pathways that yeast cells can use to
regulate global gene expression. It provides a useful comparison
for our analysis for a number of reasons. First, it was constructed
by determining experimentally the binding sites of most of the
known yeast TFs. In addition to being comprehensive, the yeast
network is of similar size to the LTP networks identified by IPA.
Finally, it has been used previously in the literature for RBN
models (Kauffman et al., 2003; Karlsson and Hörnquist, 2007;
Tuğrul and Kabakçıoğlu, 2010). For a node (gene), the number of
incoming connections (edges) is called the in-degree of the node
and the number of outgoing connections (edges) is its out-degree.
The analyses using RBNs were also applied to two different sets
of null-hypothesis random networks. First, an ensemble of 100
random networks was generated for each of the 4 biological
networks studied (20min, 5 h, 24 h, and yeast) by preserving the
same number of nodes and edges. In order to construct these
random networks, pairs of genes are connected randomly with
equal probability from the list of N = 35 or N = 30 genes until
the total number of edges of the biological network has been set.

A more stringent control consisted of 4 ensembles of 100
rewired networks constructed such that each of the genes had
the same in- and out-degree as the biological network. These
networks are constructed by randomly choosing two edges of
the biological network and swapping them so that A→B and

Frontiers in Molecular Neuroscience | www.frontiersin.org 2 August 2015 | Volume 8 | Article 42

https://www.analysis.ingenuity.com
https://www.analysis.ingenuity.com
http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Nido et al. The transcriptional regulation of memory

C→D, become A→D and C→B. Swapping is prevented if either
A→D or C→B exist already (Kannan et al., 1997). Hence, these
sets of rewired networks preserve not only the number of genes
and the total number of interactions, but also the original degree
sequence and hence their local connectivity is identical to the
biological network. These controls allowed us to discriminate
the effects of the network’s local structure from the effects of the
general topology on the robustness.

2.2. Random Boolean Networks
RBNs represent one of the simplest models for gene regulatory
networks (Kauffman, 1969). We assumed the expression of each
gene in a network to be only “on” or “off” values (corresponding
to transcriptionally active and transcriptionally inactive). If we
define the state of the network as the set of values of expression of
all the genes, for a network of size N, a bit vector G(x1, . . . , xN)
with x = 0, 1 suffices to fully describe it. We implemented the
connectivity of a given network as amatrixW of sizeN×N where
wij = 1 if gene j acts upon gene i, and wij = 0 otherwise.

To model the gene expression dynamics of the network, we
allowed the vector G to evolve across discrete time steps. We
considered the value xi of the gene i at a certain time step t to be
dependent only on the values at t − 1 of the ki genes that act on
it. For each gene in the network, hence, a fixed Boolean function
bi mapped every possible combination of values of the ki inputs
of i to an updated value for the gene i.

On each interaction, we updated all the values of the state
vector G synchronously. This means that given a set of values
for the state vector G(t) and a set of Boolean functions B, the
dynamics of the system are deterministic and the number of
possible states for G is discrete. Furthermore, it is known that
using synchronous RBN dynamics leads to the expression values
of the genes to converge into a number of recurring states or
attractors. Crucially, these states can be regarded as different
homeostatic cell states (Kauffman, 1993). The size and number of
these attractors characterize the dynamical stability of a network.
Note that while we allowed the values of the genes in the network
to evolve over time, we kept the connectivity W and the set of
Boolean functions fixed.

The choice of the synchronous Boolean approximation was
guided by an optimal compromise between both conceptual
simplicity and computational feasibility, while still holding the
capacity to approximate a general stability characterization of
a biological network (Kauffman et al., 2003). Indeed, since the
gene networks studied were built based on gene expression
profiles that represent averages of gene product, a choice of an
asynchronous stochastic schema is difficult to justify.

The networks studied using RBN in the present work (see
Section 2.1) do not convey any information on the rules for the
interactions that could be used to constrain the sample space of all
possible Boolean functions. However, as the present study deals
with the comparison of the stability conferred by the architecture
of specific networks, it suffices to construct the Boolean functions
from a flat distribution. Namely, we opted not to introduce a bias
in the outputs of the Boolean functions. This means that for a
given Boolean function bi the probability of the output being one
of a particular combination of input values is P(bi = 1) = 0.5.

2.3. Dynamical Robustness
In general, we consider a stable network one in which small
perturbations are not amplified in time but rather converge into
the same attractor. In this scenario, arbitrarily changing the
values of few genes would not have a dramatic effect—after a
few iterations, the perturbed genes would return to their original
values. The opposite behavior is also possible. We consider an
unstable (or chaotic) network one in which the perturbation of
few genes results in a generalized change in expression values
after few iterations. To simulate the effect of a perturbation in
a network, we first chose a set of initial conditions GA(t = 0). We
generated an additional instance of the network, with the same
initial conditions but shifting some of them [a total of H(t = 0)
genes] to the opposite Boolean value, so that the two instances
GA(t = 0) and GB(t = 0) are, in terms of gene expression,
H(t = 0) far apart. This measure is known as Hamming
distance, and is equivalent to the size of the perturbation. We
then ran RBN dynamics in parallel for both GA and GB, with the
same Boolean functions for τ time steps. We calculated the new
updated Hamming distance H(t = τ ) between GA(t = τ ) and
GB(t = τ ) to establish whether the perturbation converged into
the same values,H(τ ) < H(0), or propagated across the network,
H(τ ) > H(0). In the study of dynamical RBN systems, these
distinct outcomes are said to fall either on the ordered or chaotic
regime, respectively (Fox and Hill, 2001).

Different effects of the perturbations are expected with
differing network architectures, Boolean functions or specific
initial conditions. As we wanted to characterize the contribution
of the topology to the stability of the network, we characterized
a network by recording the effects of a perturbation over a large
number of initial distancesH(0), initial conditionsGA(t = 0) and
GB(t = 0), and random Boolean functions.

In order to visually represent the average effect of
perturbations in a particular network, we plotted H(0) (size
of the perturbation at the beginning of the parallel runs, x-axis)
against H(τ ) (y-axis), where τ is a small number of discrete
steps. Plotting different values of H(0) (sampling different
perturbation sizes) results in a Derrida plot, a popular tool used
in RBNs (Derrida and Weisbuch, 1986). While some network
architectures tend to absorb small perturbations and the final
Hamming distances H(τ ) are on average smaller than the initial
perturbation, some topologies tended to amplify them—few
genes with different values of expression lead to dramatically
different network states. Crucially, in the Derrida plots these
different behaviors fall in the opposite halves of the plot, with
robust architectures represented by curves underneath the
diagonal, H(0) > H(τ ), and sensitive architectures above,
H(0) < H(τ ) (Fox and Hill, 2001), and a network whose
Derrida mapping appears tangent to the diagonal is said to
exhibit criticality. Note that choosing small integer values for
τ (shorter dynamics) captures the effects of the network’s local
geometry, while larger values reflect the general characteristics
of the structure of the network, since information has more time
to spread across the network (Aldana et al., 2003). In practice,
the slope for the small H(0) region reveals the average outcome
of a small perturbation. Curves below the diagonal indicate a
tendency toward stability (ordered regime) whereas curves above
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imply instability (chaotic regime). The diagonal H(0) = H(τ )
represents the transition from order to chaos.

To construct the Derrida plots, for a given network we
assigned 1000 random sets of Boolean rules and for each set of
randomly generated rules we ran 100 parallel simulations with
random initial values, uniformly sampling different values of
H(0). We did not imply any structure in the Boolean rules and
these were randomly generated from a flat distribution without
any explicit bias.

2.4. Gene Co-expression Network Construction
Using the gene expression profiling data obtained fromRyan et al.
(2011) differentially expressed genes were ranked according to
the significance of their p-value. For computational reasons and
to enhance the signal in the data, we used only the top 1700
genes of each of the temporal contrasts. The contribution to the
final list of each of the different time groups was equivalent in
terms of number of genes, and resulted in a set of differentially
expressed genes across early and late LTP of 4804 genes with p-
values ranging from 7.7×10−6 to 6.7×10−2. The total number of
genes used for network construction analysis is in the same order
of magnitude of other co-expression studies (e.g., Ghazalpour
et al., 2006).

For the formation of a gene co-expression network for
each of these time points we followed the weighted gene co-
expression network analysis (WGCNA) protocols (Zhang and
Horvath, 2005) as implemented in the WGCNA package of
R software (Langfelder and Horvath, 2008). Briefly, for every
pair of genes i, j the Pearson correlation is calculated and
transformed into an adjacency measure with a power function,
which serves to further separate the highly co-expressed pairs
from the weakly co-expressed pairs. We used the scale-free
topology criterion to choose the soft threshold p = 5 for the
adjacency measure calculation (Zhang and Horvath, 2005). As a
measure of connectedness, the topological overlap (TO, Ravasz
et al., 2002) was used to compute the similarity between genes,
resulting in four undirected weighted networks of the same size
(N = 4804) but with varying connectivity values of TO—control
(unstimulated hemispheres), 20min, 5 h, and 24 h. TO can be
understood as a measure of “agreement” between the nearest-
neighbors of two genes. It has been shown to be one of the
most biologically meaningful similarity measures used in gene
co-expression analysis (Ravasz et al., 2002).

2.5. Identification and Characterization of Gene
Co-expression Modules
For each of the four co-expression networks, we constructed
specific gene co-expression modules, clusters of densely
interconnected genes. This analysis provided a summary of the
networks by reducing their complexity to a small number of
modules uncovering potential biological associations. For each
of the four co-expression networks, we performed a hierarchical
clustering using TO as a similarity measure. The branches of
the resulting dendrogram were cut using the default parameters
implemented in the WGCNA R package (Langfelder and
Horvath, 2008). Modules were considered for further analysis
if they contained at least 50 genes. Note that the intersections

between the modules are not always empty since module
detection was performed independently on each temporal
expression dataset. As larger modules in the control and 20min
samples appear to segregate into different sets of genes, we
chose to keep all the modules and not to merge overlapping
modules (see Supplementary Figure S1). Intramodular functional
enrichment was calculated using the topGO R package (Alexa
et al., 2006) with with a significance criteria of p < 0.01 (Fisher’s
exact test).

2.6. Co-expression Network Reconfiguration
For each of the 58 modules obtained by WGCNA, we quantified
the modular differential connectivity (MDC, Zhang et al., 2013),
which corresponds to the ratio of the average connectivity for
any pair of module-sharing genes at time T1 compared to that
of the same genes at time T2 where wij is the TO between
two genes in a given network. The statistical significance was
assessed by a false discovery rate (FDR) based on permutation
of the gene labels (Zhang et al., 2013). MDC > 1 indicates
enhanced co-regulation between genes, whereas MDC < 1
indicates reduced co-regulation. The MDC was calculated for
each of the 58 networks for each of the three temporal transitions
(control→ 20min, 20min→ 5 h, 5 h→ 24 h).

3. Results

3.1. Dynamic Stability of Temporal LTP Networks
3.1.1. Gene Networks Recruited Earlier Following LTP

have a More Unstable Architecture
To test the hypothesis that the gene networks induced more
rapidly following LTP in vivo show a less stable architecture when
compared to the network induced later, we have drawn on data
from our previously publishedmicroarray data studies Ryan et al.
(2011, 2012). To understand the complexity of the gene networks
regulated following the induction of LTP, we used Affymetrix
DNA microarrays to identify genes differentially expressed at
20min, 5 h, and 24 h post-LTP induction in vivo Ryan et al.
(2011, 2012). Analysis of the gene regulatory networks derived
using IPA suggested that these networks made an important
contribution to the stabilization of LTP. Furthermore, not only
were subsets of genes confirmed to be differentially expressed
by quantitative qPCR, but also specific microRNA predicted to
act as key regulatory hubs within these networks were shown to
be differentially expressed in the hours following LTP induction
(Ryan et al., 2013; Joilin et al., 2014). Here, we have used RBN
modeling to assess the stability of the architecture of the three
highest scoring networks as identified by IPA at each time point.
These networks were analyzed alongside the yeast transcriptional
network as a benchmark for RBN modeling (Lee et al., 2002;
Kauffman et al., 2003; Karlsson and Hörnquist, 2007; Tuğrul and
Kabakçıoğlu, 2010).

Consistent with our hypothesis, the output of the RBN
analysis (Figure 1) demonstrates that the network identified
24 h following LTP induction is considerably more ordered
than either of the earlier networks (20min and 5 h) or the
RBN benchmark, the yeast transcriptional network. The curve
corresponding to the late (24 h) network lies underneath the
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A

B

C

FIGURE 1 | Results of the RBN dynamical stability analysis. (A) Derrida

plots for the LTP networks previously identified by Ryan et al. (2011, 2012) at

different times post-LTP induction (20min, 5 h, 24 h in green, orange, and

blue, respectively) and the yeast transcriptional network (black). The left plot

corresponds to the initial Hamming distance H(0) plotted against the

Hamming distance after 1 iteration, H(1). Hence, only the nearest-neighbor

interactions (local motifs) affect the dynamics. The right plot depicts H(0) vs

H(5), where long-distance indirect influences between genes have an effect

on the dynamics. Longer dynamics allow to reveal the influence of the overall

network structure on its stability. The earlier networks (20min and 5 h) are

more unstable than the 24 h network, and the curve corresponding to the

latter lies near the diagonal of the plot, which represents the border between

the chaotic (white background) and the ordered regime (gray background).

(B) Average time evolution of perturbed fixed points starting from Hamming

distance H(0) = 1. This small difference tends to be amplified in these

biological networks. The latest network recruited following LTP induction (24

h, blue), shows a less pronounced tendency to amplify the perturbation.

Furthermore, from t = 2 to t = 5 the Hamming distance shows a slight

decrease. The yeast transcriptional network (black dashed line) lies between

the earlier LTP networks and the 24 h. (C) Derrida plots for each LTP network

and to ensembles of random networks. The same stability profile shown in

(A) for H(0) vs H(5) is shown separately for each of the temporal networks.

The range of stability exhibited by the two ensembles of random networks

(red shade: same number of nodes randomly connected by the same

number of edges; blue shade: same number of nodes, same number of

edges, and same in- and out-degree). These contrasts allow to isolate the

effect of the specific degree sequence from the effect of the average degree

(blue shade vs. red shade). In addition, it shows that if an evolutionary

constraint were to act on the degree sequence, the real networks choose the

less unstable option among all the possible network architectures with the

same degree sequence (namely identical local motifs, blue shade). Each

point in the plots is the average over 1000 random rule assignments for 100

random initial conditions (increasing these numbers has no effect on the

results). Shades for random networks (red) and rewired networks (blue)

correspond to the ranges observed using 100 topologies for each. Hamming

distances are normalized by the number of nodes.

others, which means that the average outcomes of perturbations
to the gene expression levels do not spread across the network
to the same extent (Figure 1A; τ = 1). This observation is even

more apparent if the simulations are evolved for more iterations,
allowing the new values for the gene expression to be used as
inputs for next iteration (Figure 1A; τ = 5) before plotting
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the Hamming distances H(0) vs H(τ ). This amplification of the
differences between the temporal networks with longer dynamics
indicates that both local motifs and long-distance interactions
contribute to the differential stability observed between the
temporal networks.

The same conclusion can be drawn from the panel depicted
in Figure 1B, where the average Hamming distance of changing
one random gene [H(0) = 1] is plotted at each consecutive time
step. In other words, the two network states differing in only
one position are independently evolved over 5 time steps and the
distances are monitored at each time step. The amplification of
the perturbation is clearly less pronounced than the one observed
for the other networks, the yeast network lies between the earlier
networks (20min and 5 h) and the more stable 24 h network.

3.1.2. Stability of Random and Rewired Versions of

the Real Networks
Using a similar RBN model, Kauffman et al. (2003) compared
the stability of the yeast transcriptional network with networks
of the same number of nodes and edges that also preserved the
degree sequence (the same sequence of in- and out-going edges);
so-called “rewired” networks. The study demonstrated that the
yeast network was more stable than these rewired networks,
which suggested that an evolutionary pressure may be acting
on the network geometry. To assess if that was the case for the
temporally specific LTP-related gene networks, we conducted
the same analysis by studying the stability of rewired versions
of the real networks. We found that the LTP networks lean
toward a more ordered regime than their rewired counterparts
(Figure 1C), in a manner similar to the yeast transcriptional
network analysis. Furthermore, we also analyzed the stability of
a less constrained set of random networks that only preserve the
number of nodes and the number of edges of the real network
(see Section 2). This contrast isolates the effect of the specific
degree sequence from the effect of the average degree. The plots
indicate that the real networks lie in the less unstable margin of
the possible network architectures with the same degree sequence
(see Figure 1C). This observation is particularly marked in the
cases of the 5 h and 24 h networks, and supports the idea that the
stability is not only dependent on the local structural motifs but
rather is distributed across the global architecture of the network
(Wagner, 2005).

3.2. Co-expression Analysis
Although analysis of the IPA generated networks has provided
validated and biologically meaningful data (Ryan et al., 2011,
2012; Joilin et al., 2014), some limitations are inherent to the
methodology. First, potential key interactions may be excluded
as the interactions of only 35 genes per network have been
considered. Secondly, the architecture of each network is directly
dependent upon the information contained within the IPA
Knowledge base, a manually curated database, which makes
these networks susceptible to false negatives. Thirdly, genes that
are modestly but consistently regulated at each time point will
be excluded if they do not reach the inclusion criteria at any
time. Finally, the analysis is incompatible with the identification

of a control network, allowing the characterization of a pre-
LTP homeostatic state, as networks are based on differentially
expressed genes. Thus, to rigorously test our findings that not
only are biologically relevant groups of genes regulated following
LTP, but that the resultant networks have specific architectural
properties and become more stable with time, we used the
WGCNA methodology (Zhang and Horvath, 2005) to construct
weighted gene co-expression networks based on each of the
sample classes (unstimulated hemispheres, 20min, 5 h, and 24 h
stimulated hemispheres). We next assessed the connectivity
distributions within these networks.

3.2.1. Identification of Co-expression Modules
Co-expression matrices were formed using TO as a similarity
measure, which represents the degree of “connectedness”
between two genes (Figure 2). The top hubs in the co-expression
networks according to their degree (TO with the other genes
in the network are shown in Table 1). Within the TO matrices
we identified a total of 58 densely connected modules through
hierarchical clustering (Control: 9modules containing between
69 and 2327 genes; 20min: 9 modules with 64–1184 genes;
5 h: 24 modules with 31–535 genes; 24 h: 16 modules with
42–1164 genes) (see Table 1 and Supplementary Figure S2). To
explore the functional relationships of the genes within these
modules, modules were tested for Gene Ontology (GO) term
enrichment using the topGO R package. We present a brief
summary here and a more comprehensive list in Supplementary
Material.

Consistent with our previous analysis, WGCNA identified
a number of transcriptional modulators as hubs in the 20min
co-expression modules. Our results stress the importance of
the Egr family, previously reported to be expressed following
LTP induction (Cole et al., 1989; Richardson et al., 1992). In
particular, Egr1 appears among the top 10 hubs of the overall
5 h co-expression network (see Table 1). In addition, Wt1, a
member of the same family, appears as a key regulator in
one of the co-expression modules (see Supplementary Figure
S2, module brown_20). Its role as a repressor of the other
Egr family members (Haber et al., 1991) suggests that it may
play an important role in regulating Egr gene expression after
LTP. Similarly, the Homer family of TFs has been implicated
in LTP (Kato et al., 1997) and Homer2 appears as a hub in
a co-expression module activated at 20 min and 24 h (see
Supplementary Figure S2, module turquoise_24).

A representative GO term for each module is shown in
Table 2. Functions overrepresented in the modules identified
at 20min show “positive regulation of endocytosis,” “neuron
part and cytoplasmic microtubule,” “axogenesis,” “calmodulin-
dependent kinase activity,” and “transcription from RNApolI
promoter” among others. At 5 h, “CNS neuron axonogenesis,”
“anion homeostasis and synapse assembly” are salient
overrepresented functions. Regulation of gene expression is
represented by the GO terms “regulation of DNA methylation”
and “chromatin DNA binding,” “histone H3-K27 methylation.”
Finally, modules identified at 24 h show “neuron projection
membrane,” “histone demethylation,” and “response to calcium”
among others.
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FIGURE 2 | (A) The co-expression networks (N = 4804) corresponding

to the different temporal microarray datasets (control, 20min, 5 h, 24 h)

represented as heatmaps. The darker shade of red represents higher

TO values between a pair of genes at that particular time. The TO

measure represents the degree of “connectedness” between two

genes, and it is based on the adjacency measure calculated from the

Pearson correlation (see Section 2). (B) Scale-free fit index as a

function of the soft-thresholding power p for the co-expression

networks constructed using the time-course microarray data. The R2 fit

to a scale-free distribution of the unstimulated control and the 24 h

networks (black and blue curves, respectively) are both higher and

saturate at lower values of p than the earlier networks (20min and 5 h

co-expression networks, green and orange, respectively). The latter

reaches a saturation only of around R2 = 0.5. Scale-free networks have

been shown to be more robust against small random perturbations,

while at the same time are sensitive to specific directed perturbations,

which confers them a high degree of sensitivity to meaningful signals.

These results are in agreement with the notion drawn from the results

using RBNs on the IPA networks. (C) Mean connectivity as a function

of the soft-thresholding power p. While the temporal co-expression

networks fall into two different categories according to their scale-free

distribution fit, the average connectivity does not show a clear

temporal-specific pattern. The dashed lines in the plots indicate the

value of p = 5, chosen to conduct the module identification. (D)

Fraction of nodes with degree k in the above co-expression networks

using p = 5 and p = 20. These degree distributions are log-transformed

both in the x- and y-axes. The black lines represent the linear model

fit with the values of R2.

3.2.2. Scale-free Distributions are Distinctive in the

Pre-LTP and 24h LTP Co-expression Networks
It is widely accepted that biological networks tend to
have connectivity distributions that approximate scale-free

distributions (Jeong et al., 2000), which define networks with
few highly connected nodes and many sparsely connected nodes
(Barabási and Albert, 1999). This structural property may be
selected for in biological networks due to its robustness against
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TABLE 1 | Top hubs in the co-expression networks according to their

degree (TO with the other genes in the network).

Probe ID Gene symbol Gene title

20MIN NETWORK

1395900_at Chtf8 CTF8, chromosome transmission fidelity factor

8 homolog (S. cerevisiae)

1385824_at Cep350 centrosomal protein 350

1381003_at Ikzf2 IKAROS family zinc finger 2

1386234_at NA NA

1391555_at Ncoa3 nuclear receptor coactivator 3

1388079_at Cacng8 Ca2+ channel, voltage-dependent, gamma

subunit 8

1388684_at Fnbp4 formin binding protein 4

1382979_at NA NA

1387435_at St8sia3 ST8 alpha-N-acetyl-neuraminide

alpha-2,8-sialyltransferase 3

1387795_at Pola2 polymerase (DNA directed), alpha 2

5H NETWORK

1384230_at Krtcap3 keratinocyte associated protein 3

1374827_at Ndst2 N-deacetylase/N-sulfotransferase (heparan

glucosaminyl) 2

1383540_at NA NA

1384860_at Zfp84 zinc finger protein 84

1394492_at RGD1563482 similar to hypothetical protein FLJ38663

1368005_at Itpr3 inositol 1,4,5-triphosphate receptor, type 3

1371697_at Pnpla2 patatin-like phospholipase domain containing 2

1368229_at Sip1 survival of motor neuron protein interacting

protein 1

1385928_at Smad6 SMAD family member 6

1368321_at Egr1 early growth response 1

24H NETWORK

1369067_at Nr4a3 nuclear receptor subfamily 4, group A, member

3

1369398_at Naaladl1 N-acetylated alpha-linked acidic

dipeptidase-like 1

1369255_at Il1r1 interleukin 1 receptor, type I

1384999_at Lce1d late cornified envelope 1D

1371003_at Map1b microtubule-associated protein 1B

1369237_at Slc6a7 solute carrier family 6 (neurotransmitter

transporter, L-proline), member 7

1380864_at NA NA

1397942_at Cdc37l1 cell division cycle 37 homolog (S.

cerevisiae)-like 1

1370641_s_at Cacna1i Ca2+ channel, voltage-dependent, T type,

alpha 1I subunit

1377276_at Cdk5r2 cyclin-dependent kinase 5, regulatory subunit 2

(p39)

random perturbations while retaining a high sensitivity to
directed signals (Albert et al., 2000). From a perspective in which
LTP is considered as a high-level switch, these characteristics are
to be expected of the genetic networks associated with the pre-
and post-LTP homeostatic states. On the contrary, it is plausible
that transient topological rearrangements taking place during
the transition exhibit architectures that depart from a scale-free
architecture.

The WGCNA methodology transforms the correlation
between the profiles of expression of two genes into an adjacency
measure using a power function. The degree distribution of the
network is hence dependent on the choice of the parameter
p for the power function. To examine this dependency and
characterize the temporal networks in terms of their resemblance
to scale-free networks, we plotted the scale-free fit index of each
temporal network (control, 20min, 5 h, 24 h) as a function of
the parameter p (Figure 2B). The results demonstrate that the
networks reach an asymptotic maximum fit at different values of
p, with the unstimulated control and the 24 h networks saturating
earlier (p ≈ 5 − 10) than the 20min and 5 h networks (p = 20).
In addition, the saturation value of the scale-free fit coefficient
is higher for the control and 24 h than for the 20min and 5 h
networks. In summary, the control and the 24 h networks fit
to a greater degree to a scale-free distribution, independently
of the average connectivity (Figure 2C). Furthermore, a closer
inspection to the scale-free model fit for the values of p = 5
and p = 20 reveals that the earlier networks following LTP
stimulation (20min, 5 h), have few nodes with a low degree
(truncated left side of the distribution) (Figure 2D).

3.2.3. Changes in Connectivity Parallel Gene

Up-regulation Following LTP
Interestingly, the co-expression networks corresponding to the
later times (5 h and 24ḣ) appear to be more dissociated than
the earlier networks (control and 20min), splitting up into more
modules for the same power threshold (see Table 2).

The modular differential connectivity (MDC, Zhang et al.,
2013) corresponds to the ratio of the average connectivity for
any pair of module-sharing genes at time T1 compared to that
of the same genes at time T2 where wij is the TO between
two genes in a given network. We calculated the MDC in the
58 co-expression modules across each temporal transition—
control→ 20min, 20min→ 5 h, and 5 h→ 24 h. The findings
are summarized in Figure 3. While the fraction of modules with
a significant increase in MDC is similar along the time samples,
the fraction of modules with a significant loss of connectivity
increases with time (stacked bars plot, Figure 3D).

The rapid response elicited after LTP induction at the gene
expression level corresponds to the transition observed between
the control and the 20min dataset in terms of MDC. Out of the
58modules, 57 show a gain of connectivity (MDC > 1), of which
20 are significant with FDR < 10% (a more strict FDR < 1%
gives still a total of 10 significant modules). This marked increase
in the average TO connectivity takes place in combination with
the documented enrichment in up-regulated genes within the set
of differentially expressed genes (Ryan et al., 2011).

Our results, however, highlight a global loss of connectivity
between the 20 min and 5 h networks (0.187–0.089 average
TO, respectively). Yet, the proportion of modules exhibiting
gain/loss/conservation of connectivity is very similar (17/17/24,
respectively). More interestingly, the fraction of the modules
with a significant loss of MDC corresponds to modules that
showed an increase in MDC in the earliest transition. These
modules subsequently undertake a loss of connectivity in the final
transition to the 24 h phase.
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TABLE 2 | Summary of the modules identified by WCGNA with at least 50 genes.

Module Size Functional category Top genes by kTO

cyan_24 97 endosome transport Nog, Thbd, Zscan10

green_U 206 cation transmembrane transport Camk4, St6gal1, Slc31a1

black_20 329 (+) reg. of endocytosis Arhgap27, Kdm5b, Acrv1

brown_24 459 cofactor transporter activity Mast2, Mlst8, Fgd2

black_24 269 epitelial polarization Cpn1, Thoc2, Pqlc3

brown_20 730 neuron part and cytoplasmic microtubule Ddi2, Atp5i, Rab22a

red_20 455 axogenesis Slc10a5, Tnfrsf17, Slc4a11

yellow_U 222 BRCA1-A complex Acap2, Dr1, Alpk3

blue_20 779 leukocyte activation Pias2, Atp6v1b2, Pdzd3

green_20 461 response to axon injury Igha, Tp53bp1, Tal1

pink_20 78 calmodulin-dependent kinase activity Lmo2, Pacsin1, Hmox3

yellow_20 724 transcription from RNApolI promoter Ndst2, Kcnj12, Ptpn7

turquoise_20 1184 oxidoreductase activity Brpf1, Tsta3, Kdelc1

blue_24 753 reg. of endocrine process RT1-Da, Mrpl14, Ccnd1

turquoise_24 1164 neuron projection membrane Ak3, Cacna1i, Rbm4

black_U 145 activation of prot kinase and membrane Znf609, Cd24, Dab2

pink_24 238 fatty-acyl-CoA binding Gtf3c6, Ak3l1, Ap2a2

yellow_24 355 proteasomal protein catabolism Qtrt1, Sh3glb1, Hira

magenta_U 69 integrin binding Uba6, Samd14, Atrx

pink_U 72 mitochondrial transport and apoptosis nod3l, Rnasen, Glce

green_24 281 histone demethylation Gls, Junb, Fam135a

brown_U 691 synapse and reg. of secretion Alox5, Kcnj4, Dhrs9

greenyellow_24 143 tau-protein kinase activity Hspb3, Hist2h2be, Hiat1

magenta_24 212 proteasomal protein catabolism Hectd1, Nans, Sec1

midnightblue_24 86 clathrin-coated endocytic vesicle Reg3a, Dimt1l, Ctrc

red_24 278 septin complex Crcp, Cc2d1a, Pdia6

purple_24 175 cAMP-mediated signaling Epor, Xpnpep3, Fam120b

blue_U 836 dephosphorylation and DNA binding Gabra5, Cdkn2c, Kl

blue_5H 521 amino acid biosynthesis Scn11a, Abi3, Clec10a

lightyellow_5H 88 CNS neuron axonogenesis C1qtnf3, Fbln1, St8sia3

black_5H 237 anion homeostasis and synapse assembly Slc2a4, Pdzd4

cyan_5H 142 reg. of DNA methylation Fmod, Fam135a, Ankrd6

magenta_5H 208 progesterone receptor signaling Mrpl35, Prkd3, Cul5

green_5H 336 GTP-Rho binding and mitochondrion Prelid2, Prl2b1, Abca8

lightgreen_5H 95 T cell migration H3f3b, Cnih2, Trps1

yellow_5H 358 chromatin DNA binding Arglu1, Mccc1, Tmem206

turquoise_5H 535 DNA catabolism Crhr1, Kdm6b, F8

purple_5H 165 histone H3-K27 methylation Fgf21, Adcy4, Klhl22

salmon_5H 151 oxidoreductase activity Hs3st2, Hdac5, Ccdc115

tan_5H 158 MAPK import into nucleus Asb1, Tpr, Pex5l

brown_5H 458 K+ transport and Ras GTPase binding Dhh, Cog7, Dgki

greenyellow_5H 162 response to Ca2+ Flrt3, Cnga1, Adra1d

red_U 178 reg. of GTPase activity Nppa, Cyp8b1, Igfbp2

Size, representative GO term and top genes according to their degree are reported for each module.

4. Discussion

Complex biological networks are expected to maintain a certain
level of stability against environmental perturbations. Whereas

some classically studied mechanisms such as gene redundancy

and epistasis suggest that the dynamical properties of biological

networks are restricted to small sets of genes (Sanjuán et al.,

2004; Moore, 2005), other authors point in the direction
of a “distributed robustness” scenario suggesting that all the
regulatory interactions among genes play a role in the dynamical
characterization of the network (Shmulevich et al., 2005;Wagner,
2005). These studies suggest that stable, robust attractors for
genetic networks may underlie homeostatic cell states. Likewise,
the capacity to generate a new phenotype by sensing specific
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FIGURE 3 | Module reconfiguration following LTP. (A) Modules identified

using the 20min co-expression data all share a similar trend—they become

tightly co-regulated at 20min to lose the connectivity at 5 h. (B) Modules

identified at 5 h exhibit a significant decrease in TO at 24 h. (C) Modules

identified using the 24 h data together with two modules identified with the

control data show a significant gain in intramodular connectivity at 24 h. Green

lines represent significant gain of intramodular connectivity (MDC > 1,

FDR < 10%) and red lines represent significant loss of modular connectivity

(MDC > 1, FDR < 10%). Gray lines represent no statistical significance for the

MDC. (D) Distribution of modules with gain, loss or conservation of

intramodular connectivity.

environmental signals represents a crucial property of living
organisms. The apparent antagonistic relationship between
robustness and sensitivity could potentially be eased by rewiring
the network architecture or by bringing other networks into
operation. Network architectures recruited transiently during
phenotypic transitions do not uphold a homeostatic state and
conceivably they are not under a selective pressure to exhibit a
stable architecture.

While some biological systems are designed to elicit a graded
response to an input, other systems show behaviors that resemble
multistable transitions. These systems can range from relatively
simple switch-like responses to more complex multistable
switches (e.g., Ferrell and Machleder, 1998; Pomerening et al.,
2003; Yao et al., 2011). During LTP in particular, the cell state
needs to transit from a stable point to another stable point.
If this assumption holds for the gene expression profile, LTP
induction can be seen as the perturbation needed to shift the gene
expression equilibrium to the post-LTP attractor. The neuron
has to be able to discriminate the changes eliciting LTP from
the environmental noise. From this perspective, LTP represents
a cellular mechanism, which operates as a switch. The essentiality
of the genomic component for the maintenance of late-LTP
suggests that the gene regulatory tier of information processing

may have characteristics of a high-level switch. Ultimately, other
tiers of regulation acting at different levels of organization
(networks of neurons and nerve fiber projections between brain
areas) act jointly to create, maintain, and retrieve memories.

4.1. Dynamical Stability of Temporal LTP-related
Gene Networks
Previous work shows that there is a critical temporal window
after LTP induction in which a rapid nuclear response takes place
(Nguyen et al., 1994). This early phase is in the order of minutes,
and is characterized by a rapid up-regulation of gene expression,
which persists for many hours. The network identified 20min
after induction represents these early response genes. The set of
genes identified 5 h post-LTP induction are not closely related
to the 20min early responding genes, as demonstrated by
the expression profiles (Ryan et al., 2012). The nature of this
rapid transcriptional response following LTP induction suggests
that the underlying mechanisms are facilitating a switch-like
response. In this line, Saha et al. (2011) documented recently
the presence of stalled RNA polymerase II in LTP immediate
early genes, which they interpreted as a mechanism for the
rapid neuronal induction observed. However, other mechanisms
may be acting jointly at different levels to complement the gene
expression trigger.

The 24 h post-LTP induction represents a temporal and
functionally different data set, as indicated both by the lack of
overlap in gene expression (Ryan et al., 2012) as well as by the
fact that mRNA-synthesis inhibitors are only effective in blocking
LTP when delivered 4–6 h after stimulation (Vickers et al., 2005).
We hypothesized that if the 24 h network was representative of
a new homeostatic state brought about by LTP induction, its
architecture should display an enhanced stability. While there
seems to be an early critical time window of transcription for the
induction of late-LTP (Nguyen et al., 1994; Vickers et al., 2005),
the functional significance of gene expression at 24 h may be
coupled to the activation and coordination of pathways related to
growth and/or neurogenesis (Ryan et al., 2012). The predominant
downregulation of gene expression observed at 24 hmay be partly
responsible for reorganizing the transcriptional layout toward
homeostasis.

Using RBN modeling, we found that the networks derived in
the early time points (20min, 5 h) by the IPA software were more
labile, while the most significant network derived at 24 h was
markedly more stable (see Figure 1). Furthermore, the WGCNA
showed that the degree of co-expression at the different times
evidenced a contrasting distribution of the connectivity. The
unstimulated control and the 24 h networks fit to a scale-free
distribution fairly well while on the contrary, the co-expression
networks corresponding to the 20min and 5 h datasets displayed
a truncated distribution. As higher robustness is expected of
scale free distributions (Albert et al., 2000), this observation is
consistent with the presence of two different homeostatic states
before and after LTP induction, whereas transient topological
rearrangements are characteristic of intermediate networks.

Interestingly, this temporal effect on the vulnerability of the
networks is mirrored by what is known about the vulnerability of
LTP and memory itself. Previous studies have shown that LTP
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can be reversed within hours of induction, but then becomes
resistant to reversal (e.g., Xu et al., 1998;Manahan-Vaughan et al.,
2000; Woo and Nguyen, 2002). It is of particular relevance to
our studies that this resistance to reversal is dependent on new
protein synthesis. Thus, our new data support the conclusion that
the LTP-related gene networks contribute to the stabilization of
LTP.

These results reinforce the view by which the architecture of
the networks is under a selective pressure. Yet the contribution
of the structural properties to the overall robustness of biological
circuits remains to be further clarified—this tendency toward the
stable regime represents only one mechanism yielding robust
behavior and does not rule out other genetic mechanisms
(Wagner, 2005).

4.2. Functional Analysis of WGCNA Modules
While LTP is considered the gold standard model for the cellular
mechanism underlying long-term memories, it is becoming clear
that LTP encompasses a family of different processes by which
neurons integrate and process the information to change their
synaptic weights. For example, it has been argued recently that
in the Schaffer collateral-commissural pathway at least three
mechanistically different forms of synaptic plasticity co-exist,
all N-methyl-D-aspartate (NMDA) receptor-dependent (Park
et al., 2014). These forms can overlap partially in time, and
the combination of these processes can increase their functional
utility. In turn, a specific form of LTP consists of a number of
mechanistically distinct phases that operate at different levels of
organization and time scales. This should come as no surprise
if we recognize that neurons capable of modifying the synaptic
efficacy for long periods of time are to overcome the limitations
imposed by protein and mRNA half-life, typically in the scale of
minutes or hours. In contrast to the TFs, which act in the nucleus,
some effector genes exert their functions in the distal axonal and
dendritic extensions. The translocation of mRNA granules to the
synaptic terminals, for example, carries a significant temporal
lag between transcription and translation (Knowles et al., 1996;
Steward and Schuman, 2003). The control of gene expression
must act in coordination with the different time constraints
posed by the different subcellular destinations. It is reasonable
to assume that the genes transcribed following LTP are effectively
being translated at different times and in different subcellular loci.

While understanding the genomic component underlying
LTP has been the focus of recent research using differential
expression analysis (Lee et al., 2005; Park et al., 2006; Ryan
et al., 2011, 2012), these methods are more error-prone for
genes with a large expression variation than co-expression
analysis. Potentially, genes which are not detected by differential
expression can be detected by co-expression if they activate
other genes which change enough to be detected. Arguably, a
pair of genes with a high value of co-expression are likely to
be forming complexes, pathways, or participate in the same
cellular circuits (Eisen et al., 1998). Using WGCNA we found
that the rapid increase in gene expression observed by the
differential expression analysis is complemented by the increase
in intramodular connectivity. Out of the 58 modules identified
by WGCNA, only one exhibits a significant decrease in average

TO from the control to the 20min time point, while a total
of 20 show a significant increase. This suggests that the rapid
genomic response that follows LTP induction does not only
involve a marked up-regulation of gene expression, but also a
tight coordination of the components that ultimately allow the
transition to a new homeostatic cellular state. The transitional 5 h
dataset shows a loss of intramodular connectivity that parallels
the onset of a general down-regulation of gene expression,
similarly to the 24 h co-expression network. We believe that the
early phase following stimulation is critical in the onset of the
genomic changes that are known to be essential for late-LTP. A
fundamental fraction of the genes that are transcribed rapidly
after LTP induction may be of crucial importance at later times
(Nguyen et al., 1994).

The functional analysis confirms the central role of the Egr
and Homer families in LTP consolidation and maintenance.
Changes in transcription are also likely to be driven by
the constitutive transcription factor NFKB in a transcription-
independent manner. In fact, our results are consistent with its
peaks in activity observed in learning paradigms. In agreement
with previous studies, we found that the control of gene
expression following LTP is, at least to a certain extent, driven
by epigenetic changes. Furthermore, it appears that epigenetic
control does not work in isolation, but rather in conjunction
with other mechanisms (Lubin et al., 2011). Our study identifies
Akt (protein kinase B) in the 20min dataset even though its
expression does not change significantly. The PI3K-Akt-mTOR
is regulated via lipid signaling and its role in LTP may have
been overlooked in previous studies (although see Sanna et al.,
2002). Finally, while regulators of membrane composition are
common across all the datasets, neuronal morphological changes
are and the amplification of the ubiquitin-proteasome pathway
are characteristic of later stages.

4.3. Conclusions
We have presented a view of LTP as a biological process in
which a transient signal sets a new homeostatic state that is
“remembered” by the cellular systems. Central to this process is
the regulation by gene expression, in which the central role played
by the Egr TFs early after LTP induction was highlighted by
differential expression and co-expression analyses. In addition,
we found a rapid enrichment in connectivity at 20min followed
by a systematic decrease. This observation provides a potential
explanation for the down-regulation of gene expression at 24 h
documented by previous studies. From a systems perspective,
we have provided evidence that these networks will show less
stable architecture, while networks recruited later will exhibit
increased stability, consistent with the fact that are more directly
related to LTP consolidation. The architecture exhibited by a
control and the 24 h LTP co-expression networks fit well to a
scale-free distribution, known to be robust against perturbations,
whereas the earlier 20min and 5 h networks showed truncated
distributions. Moreover, using the RBN paradigm we have shown
that the network derived at 24 h exhibited an enhanced stability
when compared to those derived at earlier times post-LTP. This
temporal effect on the vulnerability of the networks is mirrored
by what is known about the vulnerability of LTP and memory.
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Taken together, these results suggest that a new homeostatic state
is achieved 24 h post-LTP, and defines an integrated view of the
genomic response following LTP induction by which the stability
of the networks regulated at different times parallel the properties
observed at the synapse.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnmol.
2015.00042
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