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Postoperative cognitive dysfunction (POCD) is a recognized clinical entity characterized
with cognitive deficits after anesthesia and surgery, especially in aged patients.
Previous studies have shown that histone acetylation plays a key role in hippocampal
synaptic plasticity and memory formation. However, its role in POCD remains to
be determined. Here, we show that suberoylanilide hydroxamic acid (SAHA), a
histone deacetylase inhibitor, attenuates POCD in aging Mice. After exposed to
the laparotomy, a surgical procedure involving an incision into abdominal walls to
examine the abdominal organs, 16- but not 3-month old male C57BL/6 mice
developed obvious cognitive impairments in the test of long-term contextual fear
conditioning. Intracerebroventricular (i.c.v.) injection of SAHA at the dose of (20 µg/2
µl) 3 h before and daily after the laparotomy restored the laparotomy-induced
reduction of hippocampal acetyl-H3 and acetyl-H4 levels and significantly attenuated
the hippocampus-dependent long-term memory (LTM) impairments in 16-month old
mice. SAHA also reduced the expression of cleaved caspase-3, inducible nitric
oxide synthase (iNOS) and N-methyl-D-aspartate (NMDA) receptor-calcium/calmodulin
dependent kinase II (CaMKII) pathway, and increased the expression of brain-derived
neurotrophic factor (BDNF), synapsin 1, and postsynaptic density 95 (PSD95). Taken
together, our data suggest that the decrease of histone acetylation contributes
to POCD and may serve as a target to improve the neurological outcome
of POCD.
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Abbreviations: POCD, postoperative cognitive dysfunction; HATs, histone acetyltransferases; HDACs, histone deacetylases;
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histone H3(acetyl K9); Ac-H3K14, histone H3(acetyl K14); Ac-H4K5, histone H4 (acetyl K5); Ac-H4K12, histone H4 (acetyl
K12); Ac-H3, acetyl histone H3; Ac-H4, acetyl histone H4 (Lys5/8/12/16); GAPDH, genes glyceraldehyde-3-phosphate
dehydrogenase; real-time PCR, real-time polymerase chain reaction; AD, Alzheimer’s disease; LTD, long-term depression;
LTP, long-term potentiation.
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Introduction

Postoperative cognitive dysfunction (POCD) is a cognitive
progressive deterioration in memory and concentration
following exposure to anesthesia and surgery (Amar et al., 1998;
Terrando et al., 2011; Hovens et al., 2012). These cognitive
deficits result in prolonged hospitalization and decreased
quality of life (Moller et al., 1998). Tissue damage induced
neuro-inflammation and altered reactivity of the immune
system after operation are considered to play a major role
in the development of POCD, which elicits neuron damages,
affects synaptic function, and thereby induces cognitive
impairments (Wan et al., 2007; Fidalgo et al., 2011). However,
the molecular mechanisms underlying POCD remain largely to
be determined.

Epigenetic dysregulation on the expression of key genes
is widely involved in the etiology of brain disorders,
including Alzheimer’s disease (AD), Huntington’s disease,
Parkinson’s disease, and Rubinstein-Taybi syndrome (Petrij
et al., 1995; Kazantsev and Thompson, 2008; Chuang et al.,
2009; Francis et al., 2009; Peleg et al., 2010; Gräff and Tsai,
2013). Histone acetylation is one of the most common
forms of epigenetic modification, which is controlled by
the balance between histone acetyltransferases (HATs) and
histone deacetylases (HDACs; Fischer et al., 2010; Haggarty
and Tsai, 2011; McQuown et al., 2011). In general, histone
acetylation facilitates gene transcription, whereas histone
deacetylation results in gene silencing (Fischer et al., 2010;
Haggarty and Tsai, 2011; McQuown et al., 2011). A substantial
body of evidence suggests that the dysregulation of histone
acetylation contributes to the pathogenesis of neurodegenerative
diseases, and targeted restoration of histone acetylation
by HDAC inhibitors shows neuroprotective effects on
neurodegenerative diseases (Petrij et al., 1995; Dash et al.,
2010; Kilgore et al., 2010; Haettig et al., 2011; Ji et al.,
2014).

The similar clinical symptoms has been revealed between
POCD and neurodegenerative disorders (Wang et al., 2013;
Luo et al., 2014; Xu et al., 2014). However, comparing with
the studies of neurodegenerative diseases, the potential function
of histone acetylation in POCD remains primarily unknown.
Therefore, based on the pre-clinical animal mode of the
laparotomy-induced cognitive deficits (Rosczyk et al., 2008;
Barrientos et al., 2012; Hovens et al., 2014), which surgical
procedure involving an incision into the abdominal wall to
examine the abdominal organs, we investigated the role of
histone acetylation and potential therapeutic effect of an HDAC
inhibitor, suberoylanilide hydroxamic acid (SAHA), on POCD.

Materials and Methods

Animals
All animal experiments were carried out in accordance with
the National Institutes of Health Guide for the Care and Use
of Laboratory Animals, USA. The study protocol was approved
by the Institutional Animal Care and Use Ethics Committee,
Jinling Hospital, Nanjing University, Nanjing, China. The

mice were purchased from The Animal Center of Jinling
Hospital, Nanjing, China and efforts were made to minimize
the number of animals used and their suffering. The mice
were housed under specific pathogen-free conditions in a
temperature-controlled room of 23 ± 1◦C on a 12-h light-dark
cycle, with ad libitum access to food and water. Mice were
allowed 7 days to acclimate to the laboratory conditions before
experiments.

Study Groups of Animals
In the first set of experiments, the 3- and 16-month old male
C57BL/6 mice were used. Thirty-two 3-month old mice weighing
25–32 g and thirty-two 16-month old mice weighing 33–40 g
were randomly assigned to receiving laparotomy or sham surgery
(n = 16 for each group). The experimental protocol was presented
in Figure 1A.

In the second set of experiments with SAHA (a histone
deacetylase inhibitor) treatment, sixty-four 16-month old male
mice weighing 33–40 g were randomly assigned to the following
four groups: Sham + Vehicle group, mice received vehicle
treatment and sham surgery; Sham + SAHA group, mice received
SAHA treatment and sham surgery; Laparotomy + Vehicle
group, mice received vehicle treatment and laparotomy; and
Laparotomy + SAHA group, mice received SAHA treatment and
laparotomy (n = 16 for each group). The experimental protocol
was presented in Figure 1B.

Surgery
The Laparotomy or sham surgery was performed as previously
described (Rosczyk et al., 2008; Barrientos et al., 2012; Hovens
et al., 2014). Anesthesia was induced with 1.5% isoflurane
in 100% oxygen in mice and was still maintained with 1.5%
isoflurane bymice anesthesiamask during the surgery procedure.
After the abdominal region of mice was shaved and cleaned with
iodophor disinfectant, a 1.5 cm vertical incision, approximately
0.5 cm below the lower right rib, was created. The viscera and
musculature were vigorously manipulated by inserting a sterile
probe into the body cavity and stretching the musculature.
Intestine was then exteriorized and manipulated between the
surgeon’s thumb and forefinger. The intestines were then placed
back into the peritoneal cavity. The surgeries were lasted for
approximately 15 min. After that, the peritoneal lining, muscle
wall and the skin were closed with three dissolvable sutures
and four silk thread sutures, respectively. The exterior wounds
were dressed with polysporin to prevent potential infection. To
eliminate the effect of hypoxia and acidosis to the experiment,
both hypoxia and acidosis were analyzed by using arterial blood
gas as we described before Li et al. (2014). Isoflurne anesthesia
was stopped immediately for all groups of mice once the suture
was in place. After recovery from anesthesia, the mice were
placed back into their home cages with ad libitum access to
food and water. For the sham surgery, mice were anesthetized,
shaved, cleaned and the incision was sutured under isoflurane
anesthesia for the same duration as those that the laparotomy
surgical mice spent. Without manipulation of the viscera or
musculature, the incision was closed and treated as described
above.
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FIGURE 1 | Diagrammatic presentation of the experimental protocol (A,B) and the position of intracerebroventricular (i.c.v.) cannulation confirmed by
the hematoxylin-eosin (HE) staining in the 16-month old mice (C).

Cannula Placement and SAHA Treatment
Cannula placement was performed 7 days before the surgery
(Figure 1C). In the second set of experiments, each mouse
was stereotaxically implanted with 24-gauge, stainless steel
guide cannula (RWD Life Science Co., Ltd, Shenzhen,
China) under anesthesia with intraperitoneal injection
of 50 mg/kg 2% pentobarbital sodium. The position of
guide cannula was in the left lateral ventricle, which is
0.45 mm posterior to bregma, 1.08 mm lateral to bregma,
and 2.50 mm deep to dura. Once the guide cannula was
placed, it was fixed to skull with glass ionomer cement
(Dental Materials Factory of Shanghai Medical instrument
Co., Ltd, Shanghai, China). The cannula placements were
verified by postmortem dissections of brain tissue, followed by
hippocampus collections.

The dose and time point for SAHA treatment (S1047,
Selleckchem, TX, USA) were designed according to the previous
study, in which it was showed that the hippocampal histone
acetylation levels peaked 3-h after the intracerebroventricular

(i.c.v.) injection of SAHA in mice (Alarcón et al., 2004).
SAHA was dissolved in 40% of dimethylsulfoxide (DMSO)
diluted with saline. In the group of mice treated with SAHA,
the dose of 20 µg in 2 µl was used through i.c.v. injection
once daily for 7 days. The first dose was given at the
time of 3-h before the laparotomy or sham surgery. For
the vehicle controls, the same amount of 40% DMSO was
used.

Hematoxylin-Eosin (HE) Staining
In our preliminary experiment, to ensure the fixed position of
left lateral ventricle, 7 days after cannula placement, mice were
anesthetized deeply with intraperitoneal injection of 50 mg/kg
2% pentobarbital sodium, and then perfused transcardially
with 0.1 M phosphate-buffered saline (PBS, pH 7.4), followed
by 4% phosphate-buffered paraformaldehyde (PFA) for tissue
fixation. The brain was removed, post-fixed in the same PFA
solution for 12 h and sequentially immersed in 30% sucrose-
phosphate-buffer solution for 24 h at 4◦C. Coronal 5-µm-thick
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cryostat sections were cut for the routine hematoxylin-eosin (HE)
staining.

Each section was stained in Harris’s hematoxylin solution for
8 min, differentiated in 1% acid alcohol for 30 s. After rinsing
in 95% alcohol, the slides were counterstained in eosin-phloxine
B solution for 45 s. After being dehydrated in a graded series
of ethanol and cleared in xylene solutions, the sections were
mounted for observation under a light microscope (Olympus
BX53F, Tokyo, Japan).

Open Field Test
All behavioral procedures were performed during the light
phase of the cycle between 10:00 A.M. and 4:00 P.M. in
a sound-isolated room. Five days after the laparotomy, the
mice were subjected to the open field test. The open field
apparatus was positioned in a dimly lit room and consisted
of a white Plexiglas chamber (40 cm × 40 cm with walls
40 cm high). Each mouse was placed at the center of the arena
and left to explore the whole field for 5 min of recording by
using the video tracking system (XR-XZ301, Shanghai Softmaze
Information Technology Co. Ltd, Shanghai, China). The total
distance traveled and the time spent in the center was measured
as the parameter of anxiolytic behavior. Between each test,
the surface of the arena was thoroughly cleaned with 75%
alcohol to avoid the presence of olfactory cues. Tests were
recorded by a person who was blinded to the grouping of
mice.

Fear Conditioning Test
On the sixth day after the laparotomy, mice were subjected to
fear conditioning test by using the fear conditioning paradigm
(XR-XC404, Shanghai Softmaze Information Technology Co.
Ltd, Shanghai, China). A mouse was placed in a conditioning
training chamber (30 cm × 30 cm with walls 45 cm high)
enclosed by a soundproof box with a camera fixed on top.
After a 3 min baseline exploratory period in the chamber,
mice received one tone (30 s, 70 dB, 3 kHz)-foot-shock (2 s,
0.75 mA) pairing. The foot-shock was carried out at the last
2 s of tone stimulation. Afterward, the mice were left in the
conditioning box for additional 30 s before being returned
to their home cage. Two hours after the training session,
one batch of mice was place again in the training chamber
and subjected to the short-term memory (STM) test. During
a period of 5 min in the absence of tone and foot shock
to test contextual fear conditioning to evaluate hippocampus-
dependent memory, the freezing behavior of each mouse
was scored every 5 s. Two hours after the contextual fear
conditioning test, the mice were placed to a novel chamber for
the cued (tone) fear conditioning test to evaluate amygdala-
dependent memory. After a 3 min exploratory period in the
new chamber, a training tone (30 s, 70 dB, 3 kHz) was
applied for another 3 min and freezing behavior was scored
during this tone period. The long-term memory (LTM) was
performed at the time 24-h after training session and another
batch of mice were used. Between each test, the chamber was
thoroughly cleaned with 75% alcohol to avoid the presence
of olfactory cues. The fear conditioning was administered and

evaluated by a person blinded to the group assignment of
mice.

Preparation of Protein Extracts
Two hours after the LTM test, mice were sacrificed and the
hippocampus was harvested. The samples for measuring histone
acetylation were prepared as described before Kilgore et al.
(2010). Briefly, each sample was homogenized in the buffer
containing 50 mM Tris-HCl, pH 7.5, 25 mM KCl, 250 mM
sucrose, 2 mM sodium butyrate, 1 mM sodium orthovanadate,
0.5 mM PMSF and 1× protease inhibitor cocktail (sigma, MO,
USA). After centrifuge at 7700 × g for 1 min at 4◦C to pellet
nuclei, 0.4 N H2SO4 was added to the pellet used for separating
the histones. Then trichloroacetic acid with 10 mM sodium
deoxycholate was added to supernatant to precipitate histone
and incubate on ice for 30 min. After centrifuge at 14000 × g
for 30 min at 4◦C, the pellet of histone was washed once
by acidified acetone and then resuspended in 10 mM Tris-
HCl, pH 8.0.

For measuring the proteins of inducible nitric oxide synthase
(iNOS), brain-derived neurotrophic factor (BNDF), synapsin 1,
PSD-95, NR2A, NR2B, calcium/calmodulin dependent kinase II
(CaMKIIα), and CaMKIIβ, Radio-Immunoprecipitation Assay
(RIPA) buffer containing 1 × protease inhibitor cocktail was
used. Homogenates were centrifuged at 13000 × g at 4◦C for
10 min and the supernatants were collected for western blot.

Western Blot
Approximately 1 µg of histone protein or 50 µg of total
protein per lane was separately by polyacrylamide gels and
then transferred to a polyvinylidene difluoride membrane.
After being incubated in blocking buffer of 5% non-fat
milk in Tris-Buffered Saline Tween (TBST), membranes were
incubated overnight in each primary antibody at 4◦C. The
primary antibodies used were anti-histone H3 (1:900; Cell
Signaling, MA, USA), anti-histone H4 (1:900; Cell Signaling,
MA, USA), anti-acetyl histone H3 (1:800; Merck Millipore,
Darmstadt, Germany), anti-acetyl histone H4 (Lys5/8/12/16;
1:800; Merck Millipore, Darmstadt, Germany), anti-histone
H3 (acetyl K9; 1:800; Abcam, MA, UK), anti-histone H3
(acetyl K14; 1:800; Merck Millipore, Darmstadt, Germany),
anti-histone H4 (acetyl K5; 1:800; Abcam, MA, UK), anti-
histone H4 (acetyl K12; 1:900; Abcam, MA, UK), anti-
Cleaved Caspase-3 (1:900; Cell Signaling, MA, USA), anti-iNOS
(1:2000; ANBO, CA, USA), anti-BDNF (1:1500; Santa Cru, CA,
USA), anti-Synapsin 1 (1:2500; Merck Millipore, Darmstadt,
Germany), anti-postsynaptic density 95 (PSD95) (1:1500;
Abcam, MA, UK), anti-NMDAR2A (1:1000; Abcam, MA, UK),
anti-NMDAR2B (1:1000; Abcam, MA, UK), anti-CaMKIIα
(1:1000; Abcam, MA, UK), anti-CaMKIIβ (1:1000; Abcam,
MA, UK). Membranes were washed with TBST and incubated
with appropriate secondary antibodies (goat anti-rabbit or
goat anti-mouse; Santa Cru, CA, USA). Protein bands were
visualized by using enhanced chemiluminescence method and
quantitatively analyzed with Image J Quant Software (NIH,
Bethesda, MD, USA). The densities of histone acetylation
bands were normalized to those of histone from the same
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sample. The results from various experimental conditions were
normalized to the data of mice in the Sham + Vehicle
group.

Real-Time PCR
Real-time polymerase chain reaction (Real-time PCR) was
performed as described previously (Feng et al., 2011). Total
RNA was extracted from hippocampus of mouse using
RNeasy micro kit (Qiagen, Valencia, CA, USA). Primers
for real-time PCR were designed based on the reported
sequence of mouse gene iNOS, BDNF, synapsin 1, PSD95,
NR2A, NR2B, CaMKIIα, and CaMKIIβ and designed by
OligoPerfect Designer. The primers in conserved coding
region were preferred, if the gene has various transcripts.
The sequences of the primers were detailed in Table 1.
Quantitative PCRs were carried out in triplicate using each
cDNA sample that was equivalent to 50 ng of stating total
RNA. SYBR Green Quantitative PCR protocol was performed
by using iQ SYBR Green Supermix (Bio-rad, CA, USA)
in the Bio-Rad CFX96 real-time detection system (Bio-
rad, CA, USA). To account for the possible differences
in staring cDNA, quantitative PCR of the housekeeping
genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was also carried out for each sample. After PCR reaction,
samples were subjected to a temperature ramp (from
70–95◦C, 2◦C/s) with continuous fluorescence monitoring
for melting curve analysis. For each PCR product, a single
narrow peak was obtained by melting curve analysis at the
specific temperature. The relative amount of mRNA in each
sample was determined using the comparative threshold cycle
method and then normalized those of housekeeping gene
GAPDH.

Statistical Analysis
Data are presented as the mean ± S.E.M. and analyzed by the
Statistical Product for Social Sciences (SPSS; version 17.0, IL,
USA). The difference among groups was determined by two-
way analysis of variance followed by Bonferroni’s post hoc test.
Age and surgery type, or surgery type and drug treatment, were
considered as two independent factors. The P values of age,
surgery type, drug and interaction of factors were presented by
Page, Psurg, Pdrug and Pint respectively. A P value < 0.05 was
regarded as statistical significance.

Results

Laparotomy Induced the Hippocampus-
Dependent Long-Term Cognitive Impairments
and Down-Regulation of Hippocampal Acetyl-H3
and Acetyl -H4 Levels in the 16- but not the
3-Month Old Mice
To investigate the difference of POCD between adult and
aging mice, laparotomy or sham surgery was performed on
the 3- and 16-month old mice. Neither the 3- nor the 16-
month old mice had significant difference in the total distance
traveled (Page = 0.804, Fage(1,28) = 0.0626; Psurg = 0.982,
Fsurg(1,28) = 0.00053; Pint = 0.913, Fint(1,28) = 0.00761) or
time spent in the center (Page = 0.855, Fage(1,28) = 0.0338;
Psurg = 0.839, Fsurg(1,28) = 0.0421; Pint = 0.913, Fint(1,28) = 0.0122)
after the laparotomy or sham surgery (Figures 2A,B). Then
we used fear conditioning test to determine the associative
memory. The laparotomy did not induce the acquirement
of associative memory during the training session of pre-
stimulation (Page = 0.957, Fage(1,28) = 0.00295; Psurg = 0.985,
Fsurg(1,28) = 0.000353; Pint = 0.843, Fint(1,28) = 0.0398) or post-
stimulation (Page = 0.825, Fage(1,28) = 0.0498; Psurg = 0.990,
Fsurg(1,28) = 0.000176; Pint = 0.948, Fint(1,28) = 0.00432; Figure 2C).
In the STM test, no significant difference was found in
the context (Page = 0.506, Fage(1,28) = 0.454; Psurg = 0.920,
Fsurg(1,28) = 0.0103; Pint = 0.994, Fint(1,28) = 0.0000547) or
tone test (Page = 0.593, Fage(1,28) = 0.293; Psurg = 0.925,
Fsurg(1,28) = 0.00893; Pint = 0.916, Fint(1,28) = 0.0113) among
the four groups (Figure 2D). However, in the LTM test,
the laparotomy led to a shorter freezing time in the context
(Page = 0.003, Fage(1,28) = 10.750; Psurg = 0.017, Fsurg(1,28) = 6.396;
Pint = 0.025, Fint(1,28) = 5.583) but not in the tone test
(Page = 0.301, Fage(1,28) = 1.113; Psurg = 0.737, Fsurg(1,28) = 0.115;
Pint = 0.736, Fint(1,28) = 0.116) compared with the sham surgery
in 16-month, but not 3-month old mice (Figure 2E).

We next examined the levels of acetyl-H3 and acetyl-H4 that
are deeply involved in neurodegeneration diseases (Guan et al.,
2009; Ricobaraza et al., 2009; Castellano et al., 2012). We found
that the cognitive impairments in the 16-month old mice was
accompanied with a decreased level of hippocampal acetyl-H3
(Page = 0.034, Fage(1,8) = 6.485; Psurg = 0.007, Fsurg(1,8) = 12.971;
Pint = 0.013, Fint(1,8) = 10.043) and acetyl-H4 (Page = 0.020,
Fage(1,8) = 8.301; Psurg = 0.047, Fsurg(1,8) = 5.499; Pint = 0.049,

TABLE 1 | The sequence of primers for real-time PCR analysis.

Genes Forward primers (5′-3′) Reverse primers (5′-3′) Accession number

iNOS GGATTGTCCTACACCACACCAA ATCTCTGCCTATCCGTCTCGTC NM_010927
BDNF AGCTGAGCGTGTGTGACAGT ACCCATGGGATTACACTTGG NM_007540
Synapsin1 GCTGGAATCCCCAGTGTAAA AGTTCCACGATGAGCTGCTT NM_013680
PSD95 CCCCAACATGGACTGTCTCT ACTCCATCTCCCCCTCTGTT NM_007864
NR2A CTCTGATAATCCTTTCCTCCAC GACCGAAGATAGCTGTCATTTACT NM_008170
NR2B TCCATCAGCAGAGGTATCTACAG CCGTTGACTCCAGACAGGTT NM_008171
CaMKIIα GCCTCAGTCCTCCTGTGAAG ACTCCTCTTCCCACCCACTT NM_009792
CaMKIIβ ATCGCCACCGCCATGGCCAC GGTGATCTCTGGCCGACAGCT NM_001174053
GAPDH ACCCAGAAGACTGTGGATGG CACATTGGGGGTAGGAACAC NM_001289726
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FIGURE 2 | Impact of the cognition and histone acetylation in the 3- and 16-month old mice after surgery. (A,B) Performance of total distance traveled
and time spent in the center during the open field test. Data are presented as the mean ± S.E.M. (n = 16). (C) Performance of freezing time during the fear
conditioning training session. Data are presented as the mean ± S.E.M. (n = 16). (D,E) Performance during fear conditioning tests 2- or 24-h after laparotomy. Data
are presented as the mean ± S.E.M. (n = 8). (F) The acetylation level of histone H3 and H4 in the 3- or 16-month-old mice after laparotomy. Results are mean ±

S.E.M. (n = 3). ∗p < 0.05 compared with the 16-month old mice subjected to sham surgery.

Fint(1,8) = 5.359), whereas the 3-month old mice whose memory
were not damaged did not show such a reduction (Figure 2F).

SAHA Ameliorated the Hippocampus-Dependent
Long-Term Cognitive Impairments in the
16-Month Old Mice Exposed to the Laparotomy
The poor hippocampus-dependent LTM with histone
acetylation down-regulation in the 16-month old mice
exposed to the surgery guided us to further investigate
the effect of SAHA on these mice. The results didn’t
showed any significant differences in the total distance
traveled (Psurg = 0.984, Fsurg(1,60) = 0.000388; Pdrug = 0.955,
Fdrug(1,60) = 0.00318; Pint = 0.847, Fint(1,60) = 0.0375), time spent
in the center (Psurg = 0.676, Fsurg(1,60) = 0.177; Pdrug = 0.904,
Fdrug(1,60) = 0.0148; Pint = 0.899, Fint(1,60) = 0.0163), or ability
of memory acquirement when calculating the freezing time
in the pre-stimulation (Psurg = 0.984, Fsurg(1,60) = 0.000388;
Pdrug = 0.955, Fdrug(1,60) = 0.00318; Pint = 0.847, Fint(1,60) = 0.0375)
and post-stimulation (Psurg = 0.774, Fsurg(1,60) = 0.0833;
Pdrug = 0.866, Fdrug(1,60) = 0.0287; Pint = 0.812, Fint(1,60) = 0.0573)
among the four groups (Figures 3A–C). In the STM test, no
significant difference was found in the context (Psurg = 0.620,
Fsurg(1,28) = 0.251; Pdrug = 0.905, Fdrug(1,28) = 0.0146; Pint = 0.816,
Fint(1,28) = 0.0554) or tone test (Psurg = 0.872, Fsurg(1,28) = 0.0265;
Pdrug = 0.837, Fdrug(1,28) = 0.0429; Pint = 0.403, Fint(1,28) = 0.721)
among the four groups (Figure 3D). In the LTM test, the percent
of freezing time in the context test decreased in the Laparotomy

+ Vehicle group compared with the Sham + Vehicle group,
whereas SAHA diminished the decrease in the Laparotomy +
SAHA group compared with the Laparotomy + Vehicle group
(Psurg = 0.014, Fsurg(1,28) = 6.802; Pdrug = 0.049, Fdrug(1,28) = 4.254;
Pint = 0.021, Fint(1,28) = 5.991; Figure 3E). No significant
difference was observed in the tone test of LTM test among the
four groups (Psurg = 0.803, Fsurg(1,28) = 0.0632; Pdrug = 0.701,
Fdrug(1,28) = 0.150; Pint = 0.898, Fint(1,28) = 0.0167; Figure 3E).

SAHA Restored the Down-Regulation of
Hippocampal Histone Acetylation in the
16-Month Old Mice Exposed to the Laparotomy
The hippocampal levels of acetyl-H3 (Psurg = 0.003,
Fsurg(1,8) = 18.703; Pdrug = 0.010, Fdrug(1,8) = 11.213; Pint = 0.018,
Fint(1,8) = 8.799) and acetyl-H4 (Psurg < 0.001, Fsurg(1,8) = 38.201;
Pdrug < 0.001, Fdrug(1,8) = 44.448; Pint < 0.001, Fint(1,8) = 28.585)
decreased in the Laparotomy + Vehicle group than those
in the Sham + Vehicle group, whereas SAHA abolished
the decrease in the Laparotomy + SAHA group compared
with the Laparotomy + Vehicle group (Figures 4A,B). Four
associated acetylation sites including acetyl-H3K9, acetyl-
H3K14, acetyl-H4K5, and acetyl-H4K12 were analyzed.
The hippocampal acetylation levels of H3K9 (Psurg = 0.005,
Fsurg(1,8) = 14.682; Pdrug = 0.007, Fdrug(1,8) = 12.972; Pint = 0.006,
Fint(1,8) = 13.898), H4K5 (Psurg < 0.001, Fsurg(1,8) = 29.653;
Pdrug = 0.003, Fdrug(1,8) = 17.851; Pint = 0.002, Fint(1,8) = 20.698),
and H4K12 (Psurg < 0.001, Fsurg(1,8) = 40.116; Pdrug = 0.002,
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FIGURE 3 | Impact of suberoylanilide hydroxamic acid (SAHA) treatment on the cognitive performance in the 16-month old mice after surgery.
(A,B) Performance of total distance traveled and time spent in the center during the open field test. Data are presented as the mean ± S.E.M. (n = 16).
(C) Performance of freezing time during the fear conditioning training session. Data are presented as the mean ± S.E.M. (n = 16). (D,E) Performance during the fear
conditioning tests 2- or 24-h after laparotomy. Data are presented as the mean ± S.E.M. (n = 8). ∗p < 0.05 compared with the Sham + Vehicle group; #p < 0.05
compared with the Laparotomy + Vehicle group.

Fdrug(1,8) = 19.008; Pint < 0.001, Fint(1,8) = 26.543) decreased
in the Laparotomy + Vehicle group compared with the Sham
+ Vehicle group, whereas SAHA blocked the decreases in the
Laparotomy + SAHA group compared with the Laparotomy
+ Vehicle group (Figures 4A,B). No significant difference was
observed in the level of acetyl-H3K14 among the four groups
(Psurg = 0.169, Fsurg(1,8) = 2.288; Pdrug = 0.588, Fdrug(1,8) = 0.319;
Pint = 0.829, Fint(1,8) = 0.0501; Figures 4A,B).

SAHA Prevented the Dysregulation of
Hippocampal Neuroapoptosis- and Synaptic
Plasticity-Related Proteins in the 16-Month Old
Mice Exposed to the Laparotomy
The hippocampal protein levels of cleaved caspase-
3 (Psurg < 0.001, Fsurg(1,8) = 49.285; Pdrug < 0.001,
Fdrug(1,8) = 37.549; Pint < 0.001, Fint(1,8) = 38.197) and iNOS
(Psurg = 0.038, Fsurg(1,8) = 6.139; Pdrug = 0.036, Fdrug(1,8) = 6.356;
Pint = 0.015, Fint(1,8) = 9.508) increased in the Laparotomy
+ Vehicle group compared with the Sham + Vehicle group,
whereas SAHA eliminated the increases in the Laparotomy
+ SAHA group compared with the Laparotomy + Vehicle
group (Figure 5A). The hippocampal protein levels of BDNF
(Psurg = 0.010, Fsurg(1,8) = 11.409; Pdrug = 0.007, Fdrug(1,8) = 13.191;
Pint = 0.006, Fint(1,8) = 13.434), synapsin 1 (Psurg = 0.039,
Fsurg(1,8) = 6.070; Pdrug = 0.049, Fdrug(1,8) = 5.387; Pint = 0.035,

Fint(1,8) = 6.418), and PSD95 (Psurg = 0.024, Fsurg(1,8) = 7.708;
Pdrug = 0.060, Fdrug(1,8) = 4.786; Pint = 0.069, Fint(1,8) = 4.401)
decreased in the Laparotomy + Vehicle group compared with the
Sham + Vehicle group, whereas SAHA reversed the decreases in
the Laparotomy + SAHA group compared with the Laparotomy
+ Vehicle group (Figure 5B).

The hippocampal NR2A (Psurg = 0.007, Fsurg(1,8) = 12.823;
Pdrug = 0.048, Fdrug(1,8) = 5.428; Pint = 0.029, Fint(1,8) = 7.055),
NR2B (Psurg < 0.001, Fsurg(1,8) = 26.202; Pdrug = 0.025,
Fdrug(1,8) = 7.533; Pint = 0.037, Fint(1,8) = 6.217), CaMKIIα
(Psurg < 0.001, Fsurg(1,8) = 28.352; Pdrug = 0.007,
Fdrug(1,8) = 12.744; Pint < 0.001, Fint(1,8) = 27.711), and
CaMKIIβ (Psurg = 0.037, Fsurg(1,8) = 6.203; Pdrug = 0.020,
Fdrug(1,8) = 8.463; Pint = 0.029, Fint(1,8) = 7.001) were up-regulated
in the Laparotomy +Vehicle group compared with the Sham +
Vehicle group, whereas SAHA inhibited the up-regulation in the
Laparotomy + SAHA group compared with the Laparotomy +
Vehicle group (Figure 6). The gene expression level changes at
the protein level measured by western blot were consistent to
those at mRNA level measured by RT-real time PCR (Figure 7).
The statistical results were as follows: iNOS (Psurg < 0.001,
Fsurg(1,8) = 89.695; Pdrug < 0.001, Fdrug(1,8) = 50.714;
Pint < 0.001, Fint(1,8) = 39.864), BDBF (Psurg = 0.019,
Fsurg(1,8) = 8.523; Pdrug = 0.256, Fdrug(1,8) = 1.499; Pint = 0.019,
Fint(1,8) = 8.523), synapsin 1 (Psurg = 0.013, Fsurg(1,8) = 10.257;
Pdrug = 0.030, Fdrug(1,8) = 6.956; Pint = 0.021, Fint(1,8) = 8.254),
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FIGURE 4 | Impact of SAHA treatment on the level of histone acetylation in the 16-month old mice after surgery. (A) The representative blot of histone H3
acetylation is shown at the top of the panel and the corresponding quantitative result is shown at the bottom. Data are presented as the mean ± S.E.M. (n = 3).
(B) The representative blot of histone H4 acetylation is shown at the top of the panel and the corresponding quantitative result is shown at the bottom. Data are
presented as the mean ± S.E.M. (n = 3). ∗p < 0.05 compared with the Sham + Vehicle group; #p < 0.05 compared with the Laparotomy + Vehicle group.

PSD95 (Psurg = 0.003, Fsurg(1,8) = 16.908; Pdrug = 0.004,
Fdrug(1,8) = 15.535; Pint = 0.033, Fint(1,8) = 6.646), CaMKIIβ
(Psurg = 0.037, Fsurg(1,8) = 6.203; Pdrug = 0.020, Fdrug(1,8) = 8.463;
Pint = 0.029, Fint(1,8) = 7.001), NR2A (Psurg < 0.001,
Fsurg(1,8) = 27.121; Pdrug = 0.021, Fdrug(1,8) = 8.224; Pint = 0.037,
Fint(1,8) = 6.253), NR2B (Psurg < 0.001,Fsurg(1,8) = 43.819;
Pdrug = 0.002, Fdrug(1,8) = 21.952; Pint = 0.002, Fint(1,8) = 20.371),
CaMKIIα (Psurg < 0.001, Fsurg(1,8) = 64.159; Pdrug < 0.001,
Fdrug(1,8) = 31.208; Pint < 0.001, Fint(1,8) = 47.622), and
CaMKIIβ (Psurg < 0.001, Fsurg(1,8) = 65.655; Pdrug < 0.001,
Fdrug(1,8) = 25.505; Pint < 0.001, Fint(1,8) = 39.780).

Discussion

In the present study, we found that the laparotomy-induced
hippocampus-dependent LTM impairments were accompanied
by the decreased acetylation levels of hippocampal histone H3
and H4 in 16- but not 3-month old mice. Treatment with
SAHA rescued the histone acetylation levels and ameliorated
the hippocampus-dependent LTM impairments in 16-month old
mice exposed to the laparotomy.

Studies have revealed many risk factors, including advanced
age, poor education, duration of anesthesia, respiratory
complications, severity of coexisting illness, and psychoactive
drugs, contributing to the development of POCD (Moller
et al., 1998; Wan et al., 2007). Of these, advanced age is
regarded as the prominent risk factor for the occurrence and
development of POCD (Moller et al., 1998; Wan et al., 2007;
Fidalgo et al., 2011). Therefore, aging animals were used to

establish the relevant POCD models (Rosczyk et al., 2008; Li
et al., 2014). We showed that 3-month old mice exposed to the
laparotomy had no cognitive deficits, but 16-month old mice
had the hippocampal LTM impairments, suggesting that the
laparotomy can induce age-related behavioral impairments.
Moreover, the context-dependent associative memory serves as
an indicative of hippocampus-dependent associative memory
and the tone-dependent associative memory requires proper
function of amygdala (Barrientos et al., 2012). Thus, the impaired
hippocampal LTM in 16- but not 3-month old mice indicated
that the deteriorating effects of the laparotomy on the cognitive
function are age-related. Similar to previous studies (Rosczyk
et al., 2008; Li et al., 2014), we also did not observe an impaired
STM in the 3- or 16-month old mice, which indicated that the
model of POCD used in this study unaffected the intact STM.

Epigenetics have been shown to be deeply involved in the
learning and memory deficits in neurodegenerative diseases
(Govindarajan et al., 2011; Haettig et al., 2011; Haberman et al.,
2012), whose phenotypes and pathogenesis are similar to POCD
(Wang et al., 2013; Luo et al., 2014; Xu et al., 2014). However,
the role of epigenetics in the development of POCD remains to
be investigated. In our study, the decreased levels of hippocampal
histone H3 and H4 acetylation and the impaired cognition in the
16-month old mice exposed to the laparotomy were prevented by
the SAHA treatment, which suggested that the down-regulation
of hippocampal acetyl-H3 and acetyl-H4 contributes to the
pathogenesis of POCD. Moreover, SAHA did not up-regulate
the histone acetyl-H3 and acetyl-H4 in the mice exposed to the
sham surgery compared with those exposed to the laparotomy,
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FIGURE 5 | Impact of SAHA treatment on protein expressions of cleaved caspase-3, iNOS, BDNF, synapsin 1 and PSD95 in the 16-month old mice
after surgery. (A) The protein levels of cleaved caspase-3 and iNOS were determined by western blot. Representative image is at the top and quantitative result is
at the bottom. Data are presented as the mean ± S.E.M. (n = 3). (B) The result of western blot for BDNF, synapsin 1, and PSD95. Representative image is shown at
the top and quantitation is at the bottom. Data are presented as the mean ± S.E.M. (n = 3). ∗p < 0.05 compared with the Sham + Vehicle group; #p < 0.05
compared with the Laparotomy + Vehicle group.

which indicated that the over activity of HDAC makes it more
sensitive to SAHA. Previous studies have revealed that not all
lysines in histone proteins are affected in the development of
neurodegenerative disorders (Miao et al., 2014; Zhong et al.,
2014) and different diseases induce histone acetylation level
changes at different sites (Guan et al., 2009; Itzhak et al.,
2013). Our results showed that the laparotomy induced histone
acetylation level changes at the sites of H3K9, H4K5, and H4K12,
but not H3K14, which suggested that investigating these specific
acetylation sites would be helpful to further understand the
potential pathogenesis of POCD.

To clarify how the altered histone acetylation leads to
the laparotomy-induced cognitive deficits, we investigated the
expression of proteins related to cognition performance in 16-
month old mice. Studies have linked the increased histone
acetylation in the hippocampus to memory permissive for
the transcription of learning-related plasticity genes (Ravi and
Kannan, 2013) and attributed neuron damages and synaptic
plasticity changes to the development of POCD (Bozon et al.,
2002; Jungwirth et al., 2009; Cibelli et al., 2010; Lin and
Zuo, 2011). We observed that neuroapoptosis-related proteins
cleaved caspase-3 and iNOS were up-regulated, and synaptic
plasticity-related proteins BDNF, synapsin 1, and PSD95
were down-regulated in the 16-month old mice after the
laparotomy.

NMDAR and CaMKII proteins mainly locate at hippocampus
and prefrontal cortex and play critical roles in learning
and memory (Coultrap et al., 2014). Both the aged rats
after the isoflurane/nitrous oxide anesthesia and the AD-
like rats exhibit cognitive deficits and neuroapoptosis
associated with an over-expression of hippocampal NR2B
(Liu et al., 2012; Mawhinney et al., 2012). In aged mice, a
higher expression of NMDAR2 was associated with poorer
memory (Zhao et al., 2009). Therefore, our finding that
the activation of NMDAR2-CaMKII pathway was observed
in the hippocampus of 16-month old mice exposed to the
laparotomy might correspond to their memory deficits. It
was well studied that extra-synaptic NMDARs interfered
with the BDNF expression, shut off cell survival pathway,
induced mitochondrial dysfunction and activated pro-death
molecules (Hardingham et al., 2002). Our results of reduced
BDNF and increased cleaved caspase-3 and iNOS suggested
that cell death might be triggered in our aging mice with
POCD. Since SAHA alleviated the up-regulation of NR2,
CaMKII, cleaved caspase-3 and iNOS, it was conceivable
that the pathological high expression of these molecules
contributed to the development of POCD possibly by histone
acetylation.

Increased histone acetylation is generally associated with a
chromatin structure that is more permissive for gene transcript.
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FIGURE 6 | Impact of SAHA treatment on protein expressions of NR2A, NR2B, CaMKIIα, and CaMKIIβ in the 16-month old mice after surgery. (A) The
protein levels of NR2A, NR2B were determined by western blot. Representative image is shown at the top and quantitative result at the bottom. Data are presented
as the mean ± S.E.M. (n = 3). (B) The protein levels of CaMKIIα and CaMKIIβ. Representative image is shown at the top and quantitative result at the bottom. Data
are presented as the mean ± S.E.M. (n = 3). ∗p < 0.05 compared with the Sham + Vehicle group; #p < 0.05 compared with the Laparotomy + Vehicle group.

Our finding of the up-regulations of iNOS, NR2A, NR2B and
CaMKII in the laparotomy with lower acetylation indicated
that the expressions of these genes might not be regulated

FIGURE 7 | Impact of SAHA treatment on mRNA abundances of iNOS,
BDNF, synapsin 1, PSD95, NR2A, NR2B, CaMKIIα, and CaMKIIβ in the
16-month old mice after surgery. The real-time PCR results were
normalized by those of genes glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). The results from each group were then normalized by those from
the group of vehicle-treated mice subjected to sham surgery. Data are
presented as the mean ± S.E.M. (n = 3). ∗p < 0.05 compared with the Sham
+ Vehicle group; #p < 0.05 compared with the Laparotomy + Vehicle group.

directly through histone acetylation on their promoters. It might
have other regulation mechanisms following histone acetylation
underlying these genes. While the down-regulation of BDNF,
synapsin 1 and PSD 95 corresponding to the down-regulation
of histone acetylation indicated that the promoters of these
genes might be deacetylated by HDAC in our POCD model.
Further studies on the promoters of these genes by chromatin
immunoprecipitation are needed to investigate the dynamic state
of histone acetylation associated with these changes of gene
expressions.

It is clear that not only cardiac surgeries, but also abdominal
orthopedic can also produce POCD (Martin et al., 2005).
The possible reason is that immune challenge induced by the
laparotomy results in an exaggerated inflammatory response
in the hippocampus, a region of the brain that contains a
large number of pro-inflammatory cytokine receptors, through
the communication between the peripheral immune system
and the brain (Parnet et al., 1994). The neuroinflammatory
response in turn affect the expression of other important genes to
cause cognitive dysfunction, which is associated with epigenetic
changes such as histone acetylation or deacetylation. At an
advanced age, the long lasting neuroinflammatory response
likely plays an important role to cause hippocampal-dependent
memory deficits (Maier, 2003; Barrientos et al., 2009). That
explains the facts that age is the strongest risk factor for
the development of POCD, and that anti-inflammatory is
considered as a viable strategy to prevent POCD. Noticeably,
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if inflammation does not subside, it can contribute to the
pathogenesis of disease (Vacas et al., 2013). Our findings of
decreased histone acetylation in POCD provide novel insight
into the pathology of POCD and important preclinical evidences
supporting that SAHAmay serve as a potential therapeutic agent
for POCD.
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