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Research has identified several transcription factors that regulate activity-dependent

plasticity and memory, with cAMP-response element binding protein (CREB) being

the most well-studied. In neurons, CREB activation is influenced by the transcription

factor nuclear factor kappa B (NF-κB), considered central to immunity but more

recently implicated in memory. The transcription factor early growth response-2 (Egr-2),

an NF-κB gene target, is also associated with learning and memory. Nuclear factor

(erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in

pathological conditions, has not been studied in normal memory. Given that numerous

transcription factors implicated in activity-dependent plasticity demonstrate connections

to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2,

Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after

training in the Morris water maze, a hippocampal-dependent spatial memory task.

After a 6-day acquisition period, time to locate the hidden platform decreased in the

Morris water maze. Mice spent more time in the target vs. non-target quadrants of

the maze, suggestive of recall of the platform location. Western blot data revealed a

decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65,

Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all

tested animals. These data demonstrate that training in a spatial memory task results in

alterations in and associations with particular transcription factors in the hippocampus,

including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein

levels caution against its use as a loading control in immunoblot studies examining

activity-dependent plasticity, learning, and memory.
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INTRODUCTION

The formation of various forms of memory is regulated by
distinct neurobiological mechanisms. For example, the formation
of long-term (across hours to days), but not short-term (across
minutes), memory is associated with protein synthesis (Davis
and Squire, 1984; Kandel, 2001; Alberini, 2009). Transcription
factors, which can either repress or activate transcription, play
a vital role in driving protein synthesis underlying synaptic
plasticity and memory, whereby protein synthesis provides the
necessary building blocks to accommodate structural changes
at the synapse that foster memory formation (Alberini, 2009;
Alberini and Kandel, 2014).

The transcription factor cAMP-response element binding
protein (CREB) was among the first to be examined in a context
of memory, starting with seminal work linking CREB-mediated
gene expression to long-term facilitation of the gill-withdrawal
reflex in the invertebrate Aplysia (Dash et al., 1990; Kaang et al.,
1993; Bartsch et al., 1995). The importance of CREB in long-
term memory (LTM) has also been demonstrated in Drosophila
melanogaster (Yin et al., 1994) as well as mammals, including
mice (Bourtchuladze et al., 1994) and rats (Josselyn et al., 2001).
These data, therefore, suggest a phylogenetically conserved role
for CREB in LTM formation.

The consolidation of long-term spatial memories requires
protein synthesis and is generally considered to be CREB-
dependent (Benito and Barco, 2010). For example, CREB
knockout (KO) mice exhibit deficits in learning the location of
a hidden platform based on visual cues (Bourtchuladze et al.,
1994) in the Morris water maze (MWM), a behavioral paradigm
to assess rodent spatial learning andmemory (Morris et al., 1982).
These mice also display deficits in recalling the platform location
after 15 days of training. In rodents, spatial memory formation
and intactMWMperformance rely critically on the hippocampus
(Morris et al., 1982; Bannerman et al., 1999). In rats, disruption of
hippocampal CREB via antisense oligodeoxynucleotides impairs
long-term spatial memory formation in the MWM (Guzowski
and McGaugh, 1997). Further, hippocampal CREB levels have
been shown to be strongly correlated with spatial memory
capabilities in mice (Brightwell et al., 2004).

In addition to CREB, other transcription factors implicated
in memory have been identified (Alberini, 2009; Alberini and
Kandel, 2014), including nuclear factor kappa B (NF-κB)(Snow
et al., 2014). NF-κB belongs to the Rel family, consisting of
five members that form various dimers: p50, p52, p65/RelA,
RelB, and c-Rel (Alberini, 2009). Only p65, c-Rel, and RelB,
however, have transcriptional activation domains in the C-
terminal region to induce transcription, whereas homodimers
consisting of p50 and p52 suppress gene expression (Ghosh and
Karin, 2002). In neurons, the most common dimers include the
p50 homodimer and p65-p50 heterodimer (Meberg et al., 1996).
These dimers reside in the cytoplasm in an inactive state, where

Abbreviations: ANOVA, analysis of variance; CREB, cAMP-response element

binding protein; Egr, early growth response; IKK, IκB kinase; KO, knock out;

LTM, long-term memory; LTP, long-term potentiation; MW, molecular weight;

MWM, Morris water maze; NF-κB, Nuclear factor kappa b; Nrf2, nuclear factor

(erythroid-derived 2)-like 2; PIPES, piperazine-N,N′-bis (2-ethanesulfonic acid).

they are bound to inhibitory IκB proteins. Upon stimulation,
phosphorylation of the IκB subunit by IκB kinase (IKK) targets
it for degradation by the proteasome, freeing the dimer to
translocate to the nucleus where it regulates the expression of
genes with DNA-binding sites for NF-κB (Alberini, 2009). Several
activators of neuronal NF-κB have been identified, including
tumor necrosis factor (Albensi and Mattson, 2000), glutamate,
nerve growth factor (Meffert and Baltimore, 2005), dopamine,
nitric oxide, kainite (Simpson andMorris, 1999), calcium (Cruise
et al., 2000), NMDA receptor activation (Burr and Morris, 2002),
and excitatory synaptic transmission via a Ca2+-dependent
process (Alberini, 2009). Further, the induction of long-term
potentiation (LTP), a cellular correlate of learning and memory,
is associated with NF-κB activation, resulting in an increase in
the p65-p50 heterodimer and a decrease in IκB mRNA (Meberg
et al., 1996). In the crab Chasmagnathus, in vivo experiments
demonstrate increased activation of NF-κB in brain cell nuclei
after a fear stimulus (Freudenthal et al., 1998). Further, injection
of IKK blocks its activation, disrupting memory formation
(Merlo et al., 2005). Inhibition of NF-κB reduces neural growth
and branching in the hippocampus (O’Sullivan et al., 2010).
Moreover, p50-KO mice demonstrate deficits in late-phase LTP
as well as selective deficits in spatial memory assessed in the
MWM (Oikawa et al., 2012). Downregulation of neuronal NF-κB
results in decreased activation of CREB via alterations in protein
kinase A (Kaltschmidt et al., 2006), which activates CREB by
phosphorylation at Serine 133 (Walton and Dragunow, 2000).

More recently, the early growth response (Egr) family of
transcription factors, consisting of Egr1-4, has been implicated
in memory. The roles of these various members in memory,
however, are not well-defined. For example, Egr-1 is specific to
spatial navigation long-term memory consolidation (Jones et al.,
2001), whereas Egr-3 is implicated in short-term acquisition (Li
et al., 2007). Other studies, however, have reported improved
memory in Egr-2 KO animals (Poirier et al., 2007). Egr-2 has
inhibitory roles on certain cognitive functions via regulating
the expression of Nab1 and Nab2 proteins (Desmazières et al.,
2008) that increase transcriptional activity of other Egr family
where their effect is through Nab, resulting in facilitation in some
types of memory (Poirier et al., 2008). In neurons, Egr-2 is a
downstream target of NF-κB (Nafez et al., 2015). As with NF-κB,
studies suggest a role for Egr-2 in establishing persistent LTP
(Williams et al., 1995), consistent with a role for this isoform in
learning and memory.

The transcription factor nuclear factor (erythroid-derived 2)-
like 2 (Nrf2) is a key regulator of antioxidant genes. Encoded
by the NFE2L2 gene, Nrf2 resides in the cytoplasm under
basal conditions. Cellular stressors (i.e., oxidative, electrophilic),
however, activate Nrf2, resulting in its translocation to the
nucleus where it forms a heterodimer with Maf protein and
initiates gene transcription through binding to DNA promoter
regions (Tebay et al., 2015). Several studies report crosstalk
between Nrf2 and NF-κB in pathological conditions, including
cellular exposure to methamphetamine (Permpoonputtana and
Govitrapong, 2013) as well as experimental models of diabetes
(Agca et al., 2014), Alzheimer’s disease (Ashabi et al., 2013),
chronic stress (Djordjevic et al., 2015), spinal cord injury (Jin
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et al., 2014), and Parkinson’s disease (Tobón-Velasco et al.,
2013). Environmental enrichment elevates Nrf2 levels in the
hippocampi of rats that have undergone experimental induction
of cerebral hypoperfusion, a model of vascular dementia (Yang
et al., 2015). These results suggest a role for Nrf2 in cognitive
recovery after brain damage. Despite the identified role of NF-κB
in synaptic plasticity, learning, and memory and its relationship
to Nrf2 under several pathological conditions, alterations in
Nrf2 in the context of activity-dependent plasticity, learning and
memory in the typical, intact mammalian brain have not been
investigated.

To further elucidate the transcriptional regulators of activity-
dependent plasticity, this research investigated the effects of
training in a spatial learning and memory task on transcriptional
regulation in the hippocampus. We hypothesized that MWM
training would alter levels of and/or be associated with NF-κB as
well as transcription factors previously shown to interact (directly
or indirectly) with NF-κB, specifically Nrf2, CREB (total and
phosphorylated), and Egr-2, in the CD1 mouse hippocampus.
Given recent technical reports questioning the use of actin as
a loading control for normalization of Western blot data due
to studies documenting experimentally-induced changes in actin
levels (Gilda and Gomes, 2013; Li and Shen, 2013; Rivero-
Gutierrez et al., 2014), we investigated putative differences in
actin as a function ofMWM-training in the mouse hippocampus.
Here, we report several novel findings, including upregulation of
Nrf2 and actin in the hippocampi of MWM-trained mice relative
to untrained controls. Further, Nrf2 was highly correlated with
performance in the memory retention assessment of the MWM
in nearly all tested animals, suggesting a newly-identified role
for Nrf2 in activity-dependent plasticity, learning, and memory
outside of antioxidant regulation in the intact mammalian brain.
This is the first report, to our knowledge, detailing parallel
upregulation of both p65 NF-κB subunit and Nrf2 after training,
in contrast to prior studies documenting opposing regulation
under pathological and/or inflammatory conditions.

MATERIALS AND METHODS

Animals
Experiments were carried out in 1 month-old male CD1 mice
(N = 20) purchased from Jackson Laboratory (Bar Harbor, ME,
USA). Mice were housed in the pathogen-free animal facility at
St. Boniface Research Centre and maintained on a 12-h light/12-
h dark cycle at room temperature (22◦C). Food and water
were provided ad libitum. All procedures were approved by the
University of Manitoba Animal Care and Use Committee, which
adheres to the guidelines set forth by the Canadian Council on
Animal Care. One half of the mice (n = 10) underwent MWM
training.

MWM Training
The MWM was used to assess hippocampal-dependent spatial
memory using methods previously described (Kaltschmidt et al.,
2006; Kishida et al., 2006; Oikawa et al., 2012). The standard
MWM consisted of a circular pool (100 cm diameter) filled with
water (24–25◦C) made opaque (white) with powdered milk.

Visual cues were positioned equidistant above the water level,
and unwanted extra-maze cues were blocked with a curtain.
A non-visible escape platform (7 cm diameter) was submerged
∼5mm below the water surface in the center of the designated
target quadrant. In the acquisition phase (4 trials/day for 6
consecutive days), mice were given up to 60 s per trial to find
the hidden platform and were required to remain seated on the
platform for 10 s, after which the mice were returned to their
home cage. Live video was recorded for each trial using the
Videomex tracking system (Columbus Instruments, Columbus,
OH, USA). Escape latency data (i.e., time to locate the platform)
were extracted from video data during the acquisition phase.
Search strategies were assigned for every trial of the acquisition
phase using the classification scheme, as per Brody andHoltzman
(2006). The search strategy employed by an animal in the MWM
varies across training days and can indicate the formation of a
spatial map (Guzowski and McGaugh, 1997; Kishida et al., 2006;
Poirier et al., 2007). For example, during early training, mice
will exhibit wall-hugging but tend to display a more focused
search of the platform across training, representing the use of
a spatial search strategy. Therefore, search strategies employed
during the MWM were categorized into three main strategies,
as previously described (Guzowski and McGaugh, 1997; Poirier
et al., 2007): (1) repetitive looping: swimming in a circular
pattern approximately equidistant from the pool wall (chaining),
swimming in a circular pattern along the periphery of the
pool (peripheral looping), swimming in tight circular patterns
(circling), and/or thigmotaxis (wall hugging); (2) non-spatial
systemic: searching the interior portion of the pool without
an apparent spatial focus (scanning), searching the entire pool
randomly without an apparent spatial focus (random), and/or
searching a defined area of the pool in an incorrect quadrant; and
(3): spatial strategies: swimming directly to the platform (spatial
direct), swimming to the platform without repeated looping
(spatial indirect), or swimming directly to the correct target
quadrant, with continued searching of the platform confined
to the target quadrant. The strategy that best described the
majority of the swim path was assigned to each trial. During the
retention phase, the platform was removed from the pool, and
each mouse was given up to 60 s to search for the position of
the missing platform (4 trials/day for 3 days). Several parameters
were extracted from retention phase data, including time spent in
the target quadrant, time spent in non-target quadrants, and the
number of passes over the missing platform location.

Brain Tissue Collection
The day following training, mice were sacrificed by isoflurane
inhalation, followed by decapitation. Brains were rapidly excised
and hippocampi extracted. Hippocampi were placed inHibernate
(Gibco) and weighed. Tissues were snap-frozen in liquid nitrogen
and stored at−80◦C prior to Western blotting.

Protein Extraction
Hippocampal tissue was homogenized in ice-cold RIPA buffer
(150mM sodium chloride, 1.0% Triton X-100, 0.5% sodium
deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and 50mM
Tris, pH 8.0) supplemented with 1% protease inhibitor cocktail
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(Amresco, Solon, OH, USA) and 1% phosphatase inhibitor
cocktail (Sigma-Aldrich, St. Louis, MO, USA). To further
solubilize intracellular proteins, samples were incubated with
constant agitation for 35–40min at 4◦C. Tissue lysates were then
centrifuged at 10,000 rpm for 10min (4◦C) and supernatants
collected. Protein concentrations were estimated using the DC
Protein Assay (Bio-Rad, Hercules, CA, USA) as described by the
manufacturer. Subsequently, samples were diluted to an equal
concentration with RIPA buffer.

Western Blotting
To prepare the tissue lysates for Western blotting, a 4X
Laemmli buffer (16% SDS, 40% glycerol, 20% β-mercaptoethanol,
0.01% bromophenol blue, and 0.25M Tris, pH 6.8) was added.
Prior to electrophoresis, samples were denatured at 95◦C for
8min. Fifteen micrograms of protein from each sample was
separated by SDS-PAGE at 200V for approximately 45min
with 10% Criterion™ Tris-Glycine eXtended (TGX) Stain-Free™
polyacrylamide gels (Bio-Rad, Hercules, CA, USA). Stain-Free™
gels were activated by UV transillumination for 2.5min using the
ChemiDoc™ MP (Bio-Rad, Hercules, CA, USA). Proteins were
transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA,
USA) by the Trans-Blot R© Turbo™ Transfer System (Bio-Rad,
Hercules, CA, USA). Transfer efficiency was visualized with
the ChemiDoc™ MP. The nitrocellulose membranes were then
blocked for 1 h at room temperature with 5% skim milk in 1X
Tris-buffered saline with 0.1% Tween-20 (TBS-T), except those
for which pCREB was detected, in which case 5% bovine serum
albumin (BSA) in 1X TBS-T was used to reduce non-specific
binding. After blocking, membranes were incubated overnight
at 4◦C with the following diluted primary antibodies: rabbit
monoclonal anti-pCREB (detects CREB phosphorylated at Serine
133) (molecular weight (MW): 37 kDa; 1:1000 dilution, Abcam,
Cambridge, UK, cat. no. ab32096), rabbit monoclonal anti-NF-
κB p50/p105 (MW: 50 kDa/105 kDa; 1:5000 dilution, Abcam,
Cambridge, UK, cat. no. ab32360), rabbit polyclonal anti-NF-
κB p65 (MW: 60 kDa; 1:2000 dilution, Abcam, Cambridge, UK,
cat. no. ab16502), rabbit polyclonal anti-Nrf2 (MW: 61kDa;
1:100 dilution, Santa Cruz Biotechnology, Dallas, TX, USA,
sc-13032), and rabbit monoclonal anti-Egr-2 (a.k.a. krox-20,
cat. no. ab108399) (MW: 53 kDa; 1:7500 dilution, Abcam,
Cambridge, UK). Following incubation with primary antibodies,
nitrocellulose membranes were washed with 1X TBS-T and
then incubated with a peroxidase-conjugated AffiniPure goat
anti-rabbit IgG (H + L) antibody (1:2000 dilution, Jackson
ImmunoResearch Laboratories, West Grove, PA, USA) for 1 h
at room temperature. After washing with 1X TBS-T, the relative
amount of bound antibody was measured using enhanced
chemiluminescence (ECL). Proteins of interest were detected
using the Bio-Rad Clarity™ Western ECL Blotting Substrate
(Bio-Rad, Hercules, CA, USA) and visualized by the ChemiDoc™
MP (Bio-Rad, Hercules, CA, USA) with ImageLab™ software.
Membranes probed for pCREB were stripped and re-probed
with the rabbit monoclonal anti-CREB (MW: 37 kDa; 1:1000
dilution, Abcam, Cambridge, UK, cat. no. ab32515) primary
antibody. A subset of membranes was also stripped and re-
probed with the rabbit polyclonal anti-actin primary antibody

(MW: 42 kDa; 1:500 dilution, Sigma-Aldrich, St. Louis, MO,
USA, cat. no. A5060). Band intensities were quantified using
ImageLab™ software and normalized to the total amount of
protein per lane.

Statistical Analyses
Behavioral data from the acquisition phase of the MWM were
analyzed by One-way repeated-measures analysis of variance
(ANOVA) across Days (6), followed by post-hoc comparisons
using Fisher’s least significant difference (LSD) tests. Analyses
were conducted on themean scores/day from the four daily trials.
Search strategy data were analyzed using Chi-square tests of the
proportion of trials for which a given strategy was employed.
Data were analyzed using paired samples t-tests to compare the
time spent in the target quadrant relative to the average time
spent in the three non-target quadrants during the retention
phase. Western blot data were analyzed using student’s t-tests,
as all variables followed a normal distribution. To investigate
the relationship between transcription factor levels and memory
formation in the MWM, Pearson correlations were performed
on band densitometry data and retention phase parameters,
including cumulative number of passes over themissing platform
area and time in target quadrant. Significance was predetermined
at p < 0.05, and all analyses were two-tailed.

RESULTS

MWM-acquisition Phase
Analysis of escape latency, the time the mouse took to find the
hidden platform, revealed a significant decrease over time in
the acquisition phase [repeated measures ANOVA; p < 0.001,
F(5, 45) = 34.95]. Post-hoc comparisons revealed a significant
decrease in escape latency as early as Day 2 (p < 0.01), with
continued improvements at Day 3 (vs. Day 2: p < 0.001; vs. Day
1: p < 0.001; Figure 1). Overall, mean latency (±SEM) decreased
from 56.9 ± 4.8 s on Day 1 to a mean of 12.1 ± 1.5 s on Day 6
(p < 0.001), suggestive of learning the platform location. Search
strategy data, analyzed using a 3 (Spatial Strategy)× 6 (Day) Chi-
square analysis, revealed overall differences in the frequencies
across Day and Strategy, χ2

(
10) = 78.78, p < 0.001. Additional

analyses revealed that search strategy differed at Day 1, χ2
(2)

=

27.13, p < 0.001; Day 2, χ2
(2)

= 9.13, p = 0.01; Day 3, χ2
(2)

= 35.38, p < 0.001; Day 4, χ2
(2)

= 11.38, p = 0.003; Day 5, χ2
(2)

=

27.13, p < 0.001; and Day 6, χ2
(2)

= 30.88, p < 0.001. For spatial

strategies, a significant difference in the frequency of use occurred
across days, χ2

(5)
= 44.41, p < 0.001; differences also emerged

for non-spatial strategies, χ2
(5)

= 19.59, p = 0.001, and repetitive

looping, χ2
(5)

= 15.59, p = 0.02. Mice used a mixture of strategies

on the first day, including spatial (12.5%), non-spatial (55%),
and repetitive looping (32.5%) and then showed a progressive
increase (day 2, 27.5%; day 3, 60%; day 4, 40%; day 5, 57.5%; day
6, 57.5%; in the use of spatial strategies over the rest of the 6-day
acquisition phase (Figure 2). This increased reliance on spatial
strategies to locate the platform is consistent with the formation
a cognitive spatial map (Brody and Holtzman, 2006).
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FIGURE 1 | Escape latency across training days in the acquisition

phase of the MWM. Plot depicting time to locate the hidden platform (mean

± SEM; n = 10) across training days, as assessed using repeated-measures

ANOVA, followed by Fisher’s LSD post-hoc comparisons. a, significantly

different from Day 1, p < 0.01; b, significantly different from Day 1 and Day 2,

p < 0.001.

FIGURE 2 | Assessment of search strategy in the acquisition phase of

the MWM. The percentage of time engaged in specific search strategies

during the 60-s trial was calculated, with search strategies combined into 3

groups based on functional similarity (repetitive looping, nonspatial systemic

strategies, and spatial strategies) and analyzed using Chi Square. a:

p < 0.001; b: p = 0.001; c: p = 0.02. n = 10.

MWM-retention Phase
Over the 3-day retention phase in which the platform was
removed, used to assess memory for the previously learned
platform location, the time spent in the target quadrant was
compared to the average time spent in the non-target quadrants
as an indicator of the animal’s recall of the platform location.
Mice spent significantly more time in the target quadrant as
compared to the average time spent in the non-target quadrants
on Day 1 (mean ± SEM: 16.73 ± 0.82 vs. 14.07 ± 0.31 s.,
respectively; p = 0.04), suggestive of recall of the platform
location. The time spent in the target quadrant was not
significantly differently from the average time spent in the non-
target quadrants on Day 2 (mean± SEM: 13.33± 1.48 vs. 15.4±
0.48 s, respectively; p > 0.05) or Day 3 (mean± SEM: 16.1± 1.35

FIGURE 3 | Memory retention in the MWM assessed by time in target

quadrant. During the 3-day retention phase, the platform was removed, and

the time spent in the target quadrant was compared to the average time spent

in the non-target quadrants. Mean ± SEM; n = 10; *p < 0.05.

vs. 14.63 ± 0.46 s, respectively; p > 0.05) of the retention phase
(Figure 3).

Western Blot Data from the Hippocampi of
MWM-trained vs. Untrained Control Mice
After MWM, brain tissue was extracted for Western blot
experiments to detect transcription factor protein levels after
training for comparison to levels in untrained controls. Prior to
tissue freezing for Western blotting, hippocampi were weighed.
No significant differences were found between untrained control
(mean ± SEM: 0.054 ± 0.01) and MWM- trained mice (0.051
± 0.01; p = 0.8; data not shown). Based on data normalized
to total protein, hippocampal actin levels were significantly
increased (p < 0.001; n = 9–10) in MWM-trained mice vs.
untrained controls (Figure 4). This upregulation was confirmed
in a repeated Western blot experiment (p = 0.04; n = 9–
10; data not shown) and in an additional experiment in which
group order was reversed (e.g., samples from MWM-trained
mice loaded first; p = 0.01; n = 5) to rule out any systemic
bias or artifact due to loading order (data not shown). Not
surprisingly, no significant differences were detected in any of
the transcription factors when normalized to actin levels (data
not shown). Therefore, all subsequent immunoblot results were
garnered with analyses based on densitometry values normalized
to total protein (Figure 4B).

Relative to untrained controls, levels of NF-κB subunit p50
were significantly lower in the hippocampi of mice after MWM
training (p < 0.01) relative to untrained controls, with no
significant differences in its precursor subunit, p105 (Figure 5).
In contrast, levels of hippocampal NF-κB subunit p65 were
significantly higher after MWM training compared to untrained
controls (p < 0.001), as were Nrf2 protein levels (p <

0.05; Figure 5). No such differences, however, were found in
hippocampal CREB, pCREB, or Egr-2 levels as a function of
training (Figure 5).
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FIGURE 4 | Semi-quantification of actin protein levels in the

hippocampus of MWM-trained vs. untrained control CD1 mice. (A) Gel

activation image of protein from hippocampal homogenates (15µg) using UV

illumination-based stain-free technology. (B) Image of nitrocellulose blot after

protein transfer, indicating the total amount of protein in each lane that was

used for normalization. (C) Representative Western blot detecting total actin

(1:500) in hippocampal homogenates from MWM-trained and untrained

control mice (n = 9–10). (D) Bar graph of densitometry values for actin,

normalized to total protein and expressed as percentage change from control

mean (100%) ± SEM, from hippocampal homogenates from untrained controls

and MWM-trained mice. Error bars represent standard error; ***p < 0.001.

Associations between Performance in the
Retention Phase of the MWM and
Transcription Factor Levels
Correlational analyses between transcription factor densitometry
values and cumulative passes over platform across the 3-day

FIGURE 5 | Semi-quantification of transcription factor protein levels in

the hippocampus of MWM-trained vs. untrained control CD1 mice. (A)

Representative Western blots detecting NF-κB subunits (p50, p105, and p65),

Nrf2, CREB (total and activated pCREB), and Egr-2. All samples

(n = 9–10/group) were immunoblotted simultaneously using 26-well

CriterionTM TGX Stain-FreeTM gels (Bio-Rad). (B) Bar graph of densitometry

values of transcription factors of interest, normalized to total protein and

expressed as percentage change from control mean (100%) ± SEM, from

hippocampal homogenates from untrained controls and MWM-trained mice.

*p < 0.05; **p < 0.01; ***p < 0.001.

retention phase in trained mice did not reveal any significant
associations (Figure 6). A correlation of 0.46 between Nrf2 and
passes over platform, however, approached significance (p =

0.07). Examination of the scatterplot (Figure 6E) indicated the
presence of a data point in which protein levels were low relative
to passes over platform as compared to the trained group overall.
Interestingly, a strongly positive significant correlation (r = 0.98;
p < 0.01) was found between Nrf2 and passes over platform
for the remaining eight animals with this inconsistent data
point removed from the analysis. Therefore, in 88.8% of animals
(n = 8/9), the relationship between Nrf2 levels and passes
over platform approached near perfect linearity. Correlational
analyses using time spent in the target quadrant did not yield
any significant relationships with actin (Figure 7A) or with any of
the NF-κB subunits measured (Figures 7B–D). As well, Nrf2 was
not significantly associated with this retention phase parameter
(Figure 7E), in contrast to the significant relationship reported
with passes over platform. Densitometry values for pCREB were
significantly correlated with time in target quadrant in the
positive direction (r = 0.7; p < 0.05; Figure 7G). The positive
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FIGURE 6 | Associations between hippocampal transcription factor protein levels and MWM-retention phase parameter passes over platform. (A–H)

Scatterplots and Pearson correlation coefficients between densitometry values (normalized to total protein) from Western blot experiments and the cumulative number

of passes over the platform area during the MWM retention phase (n = 9–10). *: highly significant positive correlation for n = 8/9 tested animals after removal of one

inconsistent data point (outlined in dashed line).

correlation (r = 0.58) between time in target quadrant and CREB
levels approached significance (p < 0.1; Figure 7F), as was the
case for time in target quadrant and Egr-2 levels (r = 0.65;
p = 0.6; Figure 7H).

DISCUSSION

The present study simultaneously evaluated changes associated
with MWM training in levels of three transcription factors
previously implicated in memory. We hypothesized that training
in a task associated with spatial learning and memory would
alter levels of or be associated with regulators of activity-
dependent plasticity, learning and memory, including NF-κB
as well as CREB, and Egr-2, both of which are influenced
by NF-κB dynamics. The effects of MWM training on Nrf2
were also analyzed to investigate training-induced transcriptional
modifications of this master redox regulator. We found
alterations in NF-κB and Nrf2, with no effect of training on

CREB or Egr-2 levels. Interestingly, we found a decrease in NF-
κB p50 levels after MWM training. NF-κB has multiple roles in
the central nervous system, including inflammation regulation
(Vallabhapurapu and Karin, 2009), development (Mincheva-
Tasheva and Soler, 2013), synaptic plasticity, and learning and
memory (Snow et al., 2014). Given its diverse functions in the
brain, it is not surprising that neuronal NF-κB composition is
complex, consisting of various dimers that can form from its
multiple isoforms. Although we found downregulation of p50
NF-κB after training, this subunit is considered inhibitory, as
p50 homodimers repress downstream gene expression (Ghosh
and Karin, 2002). In line with such an inhibitory role is
evidence demonstrating enhanced spatial learning in the MWM
but not other tests of spatial learning (e.g., Barnes maze) in
NF-κB-p50 KO mice (Lehmann et al., 2010). Increased levels
of p65, however, may reflect enhanced activation, given that
heterodimers consisting of p50 and p65, the most common
dimer composition found in neurons, initiate gene expression
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FIGURE 7 | Associations between hippocampal transcription factor protein levels and MWM-retention phase parameter time in target quadrant. (A–H)

Scatterplots and Pearson correlation coefficients between densitometry values (normalized to total protein) from Western blot experiments and the time spent in the

target quadrant during the MWM retention phase. n = 9–10.

in the nucleus (Mincheva-Tasheva and Soler, 2013). We cannot
definitively state the implication of a reduction of the p50
subunit, given that its action on target genes (i.e., inhibition or
activation) is a function of its associated subunit and resulting
dimer composition. In addition to measures of NF-κB dimer
subunits, future studies could measure levels of IκB to more
accurately evaluate training-induced activation of NF-κB.

Relative to other organs, the brain has unusually high energy
demands, exhibiting high oxygen consumption and robust
production of reactive oxygen species (ROS). Studies have
shown that formation and maintenance of LTP, a commonly
studied cellular substrate for learning and memory, are ROS-
dependent, including superoxide and H2O2 (Klann et al., 1998;
Knapp and Klann, 2002). Furthermore, this regulation acts in
a concentration-dependent manner (Kamsler and Segal, 2003).
Therefore, ROS appear to be essential signaling components for
memory formation; on the other hand, they can also impair
the same neuronal networks necessary for memory function.
Hence, it is logical to suggest the importance of transcriptional

regulation of the redox state in memory formation. Nrf2
is a master transcriptional regulator of genes involved in
antioxidant response and ROS production, and for some of
these genes (SOD-1, NADPH oxidase), direct connections with
hippocampus-dependent spatial memory function have already
been documented (Gahtan et al., 1998; Kishida et al., 2006).

Memory improvement upon Nrf2 level modulation has been
reported in aged APP/PS1 mice (Kanninen et al., 2009) and
in rats with induced memory impairments (Dwivedi et al.,
2013). To our knowledge, however, this is the first report to
demonstrate alterations in hippocampal Nrf2 after training with
a learning and memory paradigm in the typical mammalian
brain. Further, we found a strong positive correlation between
Nrf2 and performance in the memory retention phase of the
MWM in the overwhelming majority of tested animals. Such
data argue for the involvement of Nrf2 in hippocampal-mediated
activity-dependent plasticity and memory.

Previous findings report opposing expression patterns
between NF-κB p65 and Nrf2 (Ashabi et al., 2013;

Frontiers in Molecular Neuroscience | www.frontiersin.org 8 November 2015 | Volume 8 | Article 70

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Snow et al. Nrf2 and NF-κB p65 in Hippocampal-dependent Memory

Permpoonputtana and Govitrapong, 2013; Tobón-Velasco
et al., 2013; Djordjevic et al., 2015), in contrast to our findings of
training-induced increases in both NF-κB p65 and Nrf2. These
reports examined this relationship in cases of pathologies and
putative treatments, where oxidative stress is an accompanying
phenomenon. Therefore, our results suggest a dynamic
regulation of NF-κB p65 and Nrf2 that appears condition-
dependent, whereby components of these two transcription
factors display similar expression patterns under physiological
conditions but opposing patterns under pathological conditions.

In addition to elevations in Nrf2, this is the first study
of which we are aware to report increased hippocampal actin
levels after Morris water maze training in mice. Several lines
of research confirm a role for actin, a fundamental component
of the neuronal cytoskeleton, in synaptic plasticity, learning
and memory. For instance, brain-specific KO of β-actin, the
major actin isoform in the mammalian central nervous system,
impaired performance in the MWM in mice, particularly in the
memory retention phase (Cheever et al., 2012). Morphologically,
sensitivity to β-actin depletion was region-specific, despite its
ubiquitous presence in the brain. For example, the hippocampus
and cerebellum were particularly vulnerable to the effects of
a lack of β-actin, as gross morphology was aberrant. No such
abnormalities were found in the cerebral cortex (Cheever et al.,
2012). Thus, the hippocampus may be especially sensitive and
responsive to actin levels in the context of both learning and
memory formation and development.

Actin is intricately involved in the activity-dependent
modulation of dendritic spines and synaptogenesis (Hotulainen
and Hoogenraad, 2010). Actin rearrangement from monomeric
(G-actin) to filamentous (F-actin) states via polymerization
is required for consolidation of conditioned taste aversion
memory (Bi et al., 2010) and conditioned place aversion
memory (Hou et al., 2009). Pharmalogical inhibition of
actin polymerization within the hippocampus impairs object
placement memory formation in female rats in a dose-dependent
fashion (Nelson et al., 2012). Further, interventions that induce
actin rearrangement improve MWM performance in mice
(Fu et al., 2014) without increasing total actin, confirming
actin-induced activity-dependent synaptic remodeling in a
manner independent of protein synthesis. Enlargement of the
actin cytoskeleton and subsequent stabilization, however, may be
considered a critical determinant of memory consolidation
(Rudy, 2015). Others have reported activity-dependent
upregulation of actin-binding proteins in the hippocampus,
including increased levels of pCofilin after object placement
training (Nelson et al., 2012). Our results of increased total
actin protein levels suggest an additional mechanism of actin-
induced changes, perhaps through increasing the available pool
of hippocampal actin that would be required to induce spine
formation and synaptogenesis. Indeed, Motanis and Maroun
(2012) showed distinct physiological requirements of different
phases of learning and memory. Specifically, they demonstrated
that acquisition of contextual fear conditioning involves both
actin rearrangement and protein synthesis, whereas reacquisition
of fear conditioning after extinction was dependent upon actin
rearrangement; protein synthesis was not required. Given data

demonstrating behavioral consequences to changes in actin and
our results of increased hippocampal actin in MWM-trained
mice, the use of actin as a loading control in immunoblot studies
investigating proteins putatively involved in activity-dependent
plasticity, learning and memory should be undertaken with
caution. Moreover, recent reports indicate less variable protein
loading and increased linear range of detection with total protein
as the loading control (Gilda and Gomes, 2013; Li and Shen,
2013), as in the present study, as compared to normalization
with actin. Immunoblot studies investigating activity-dependent
plasticity and/or the molecular basis of learning and memory
should confirm whether or not differences in actin levels exist
as a function of the experimental condition to determine its
suitability as an internal control.

The role of CREB in learning and memory has been widely
studied, with the general consensus being that CREB plays a
pivotal role in learning and memory, including hippocampal-
dependent spatial learning (Guzowski and McGaugh, 1997).
Evidence suggests a role for CREB in LTM, but not short-term
memory, in MWM tests (Florian et al., 2006). CREB signaling
associated with learning and memory, however, has been shown
to vary in magnitude as a function of brain structure and
temporal dynamics, with CREB activation following a biphasic
pattern post-training (Porte et al., 2008b). Further, the duration
of activation of CREB may be more important in explaining
hippocampal-mediated CREB activity associated with learning
than the magnitude (Porte et al., 2008b).

Although, the literature supports a role for CREB in LTM,
the view that CREB is essential for hippocampal synaptic
plasticity and memory is not unanimous. Balschun et al. (2003)
found only minimal impairment in the acquisition phase of
the MWM, with no deficits in the memory retention phase in
transgenic mouse in which the expression of CREB isoforms
in the CA1 hippocampal subregion was disrupted. Further,
they found no deficit in hippocampal LTP. Disruption of all
CREB isoforms brain-wide failed to alter hippocampal LTP,
LTD or contextual fear conditioning. Hippocampal-independent
taste aversion conditioning, however, was severely compromised
in mice lacking all CREB isoforms in the brain. In another
study, blockade of all CREB isoforms in the CA1 hippocampal
subfield did not alter late-phase LTP, the phase associated with
memory consolidation/LTM (Pittenger et al., 2002). In this
study, forskolin- and dopamine-associated LTP was diminished.
Although the majority of studies across various species and
experimental paradigms support a pivotal role for CREB in LTM,
one possible explanation for reported inconsistencies is that, in
some types of memory and/or under some conditions, memory
formation may be CREB-independent (Alberini, 2009).

Interestingly, although we found decreases in NF-κB p50, we
saw no changes in Egr-2, a gene target of NF-κB in neurons
(Nafez et al., 2015), after MWM training. In contrast to our
results with Egr-2, Egr-1 levels are up-regulated during spatial
memory formation in the hippocampus (Pollak et al., 2005). The
Egr family of proteins plays distinct roles in particular forms
of memory (Poirier et al., 2008), with previous studies showing
a paradoxical role for Egr-2 in learning and memory (Poirier
et al., 2007). Egr-2-deficient mice show no impairment in spatial
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memory; rather, they exhibit improved performance in motor
learning on rotarod tests and in object recognition memory tests
(Poirier et al., 2007).

In the hippocampus, Egr-2 levels have a distinct spatial profile,
with lower basal levels in the dentate gyrus relative to other
subfields (Richardson et al., 1992). Other studies reveal subfield-
specific differences in transcription factor levels after training.
For example, although MWM-training upregulated pCREB and
Egr-1, pCREB levels were highest in the CA3 region vs. CA1,
whereas Egr-1 showed the reverse pattern (highest in the CA1
vs. CA3) (Zhou et al., 2013). Previous research has found no
change in CREB levels after spatial learning, whereas pCREB
increased (Porte et al., 2008a). Moreover, although training in
the MWM induced CREB activation in the hippocampus overall,
mice with the best recall of the platform location had the lowest
levels of pCREB in the CA1 region (Porte et al., 2008b). The
present study did not detect any differences in CREB as a function
of MWM training. Performance in the memory retention phase
was significantly correlated with pCREB levels but in the positive
direction, unlike previous findings in the CA1 (Porte et al.,
2008b). It must be noted, however, that the correlation with
memory retention and pCREB levels, a finding that would not
survive correction for multiple comparisons, was much weaker
than that seen with Nrf2. The discrepancies in the literature
regarding pCREB and memory may further be explained, in
part, by the fact that we examined protein levels in homogenates
from whole hippocampi, thus excluding an investigation of
possible subfield-specific alterations induced by spatial learning
in the MWM. Moreover, alterations in particular hippocampal
transcription factors associated with memory in mice may be
strain-dependent (Pollak et al., 2005). Further, not all strains of
mice perform equally well in different mazes; some are better
learners that others, and some perform better in specific mazes
(Ammassari-Teule andDeMarsanich, 1996; Crawley et al., 1997).
These factors should be considered when evaluating reports of
transcriptional regulation of learning and memory using mice as
the model system.

Although the data presented herein demonstrate several
protein alterations in the hippocampus after MWM training,
indicating molecular changes associated with activity-dependent
plasticity, the trained mice were exposed to significant stress,
whereas the control were not. Hence, the effects of stress induced
by the training paradigm on these changes cannot be ruled
out. The significant correlations found for performance on
the memory retention phase and Nrf2 protein levels, however,
provide strong evidence implicating Nrf2 in hippocampal spatial

memory formation, as do our findings of a significant association
between pCREB levels and performance in the memory retention
phase.

CONCLUSIONS

In summary, this study revealed modifications in the levels of
transcription factors associated with MWM-training in CD1
mice, including parallel elevations in NF-κB p65 and Nrf2,
unlike the expression pattern seen in the literature thus far in
pathological conditions. Egr-2 levels remained unchanged after

training, as did CREB levels. A measure of memory retention
was significantly correlated with Nrf2 in most animals. Actin was
increased in MWM-trained animals relative to controls, thereby
rendering actin an ineffective loading control in the present
context and arguing for the use of total protein as an internal
control, as presented here. These results support the view that
training and performance in a spatial memory task are associated
with transcriptional changes in the hippocampus, including those
related to neuronal redox regulation.
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