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Nicotine addiction, the result of tobacco use, leads to over six million premature deaths
world-wide per year, a number that is expected to increase by a third within the next
two decades. While more than half of smokers want and attempt to quit, only a small
percentage of smokers are able to quit without pharmacological interventions. Therefore,
over the past decades, researchers in academia and the pharmaceutical industry
have focused their attention on the development of more effective smoking cessation
therapies, which is now a growing 1.9 billion dollar market. Because the role of neuronal
nicotinic acetylcholine receptors (nAChR) in nicotine addiction is well established, nAChR
based therapeutics remain the leading strategy for smoking cessation. However, the
development of neuronal nAChR drugs that are selective for a nAChR subpopulation is
challenging, and only few neuronal nAChR drugs are clinically available. Among the many
neuronal nAChR subtypes that have been identified in the brain, the α4β2 subtype is the
most abundant and plays a critical role in nicotine addiction. Here, we review the role
of neuronal nAChRs, especially the α4β2 subtype, in the development and treatment of
nicotine addiction. We also compare available smoking cessation medications and other
nAChR orthosteric and allosteric ligands that have been developed with emphasis on
the difficulties faced in the development of clinically useful compounds with high nAChR
subtype selectivity.

Keywords: smoking cessation, nicotine addiction, nicotinic acetylcholine receptor (nAChR), positive allosteric
modulator, drug development

INTRODUCTION

Tobacco smoking is considered the leading preventable cause of disease, disability, and death
worldwide (WHO report on the global tobacco epidemic 2011). According to the recent
report of the Center for Disease and Control and the 32nd tobacco-related Surgeon General’s
Report published in 2014, smoking remains the single largest cause of preventable disease and
death in USA (Alberg et al., 2014). There are about 45 million smokers in the USA leading
to more than 400,000 premature deaths and over $300 billion in health care expenses and
lost productivity each year. Smoking prevalence in USA has declined in the last 50 years, in part,

Abbreviations: ACh, acetylcholine; DA, dopamine; GABAAR, γ-aminobutyric acid type A receptor; nAChR, nicotinic
acetylcholine receptor; NAc, nucleus accumbens; NRTs, nicotine replacement treatments; VTA, ventral tegmental
area.
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because of public awareness and governmental regulation that
control tobacco use. However, smoking prevalence among adults
with serious mental illness has increased 53% (Evins et al., 2015).
In addition, an estimated 16 million Americans suffer from
tobacco-related illnesses and 126 million Americans are exposed
to secondhand smoking. Lung cancer is the primary contributor
to tobacco-related illnesses; however, tobacco smoking also
increases the risk of coronary heart disease, stroke and chronic
obstructive pulmonary disease (Surgeon General’s Report, 2014).

Tobacco smoke contains hundreds of chemicals, many of
which are known carcinogens; however, nicotine is the only
component with known addictive properties (Wonnacott et al.,
2005). The ventral tegmental area (VTA) dopaminergic (DA)
neurons, which send projections to the nucleus accumbens
(NAc) are highly implicated in rewarding and aversive effects
of nicotine (Klink et al., 2001; Laviolette and van der
Kooy, 2004; Kalamida et al., 2007; Changeux, 2010). Nicotine
modulates the firing rate of VTA DA neurons and the levels
of dopamine in the NAc by acting directly on nicotinic
acetylcholine receptors (nAChRs) expressed on these neurons
(Picciotto et al., 1995, 1998). Nicotine also indirectly modulates
VTA DA neurons firing rate through binding to nAChRs
on GABAergic and glutamatergic neurons projecting to the
VTA (Mansvelder et al., 2002). In the absence of nicotine,
VTA DA neurons are characterized by spontaneous single-
spike firing (Gracem and Bunney, 1984). However, in the
presence of nicotine, burst firing of VTA DA neurons can be
observed which subsequently increase in the level of extracellular
dopamine in the NAc (Nisell et al., 1994; Erhardt et al.,
2002). With prolonged use of nicotine products, dopaminergic
reward pathways become ‘‘sensitized’’ to nicotine and nicotine
dependance becomes evident by the presence of withdrawal
symptoms such as anxiety, irritability, and stress (Dome et al.,
2010). Once nicotine dependance is developed, it requires
continuous nicotine reinforcement and becomes difficult to quit
smoking.

Neuronal-type nAChRs are pentameric ligand gated
ion channels that mediate the action of the endogenous
neurotransmitter acetylcholine. Twelve homologous neuronal
nAChR subunits, nine α subunits (α2–α10) and three β

subunits (β2–β4), form functional nAChRs that are either
homopentamers (e.g., α7 nAChR) or heteropentamers (e.g.,
α4β2; Figure 1; Gotti and Clementi, 2004; Kalamida et al.,
2007; Hurst et al., 2013). Each nAChR contains at least two
orthosteric (agonist-binding, canonical) sites at the extracellular
interface between an α subunit and a β subunit (e.g., α4:β2
interface) or between two α subunits (e.g., α7:α7 interface;
Jensen et al., 2005). In addition to the orthosteric sites, allosteric
binding sites have been identified within the extracellular and
transmembrane domains of nAChRs (reviewed in Hamouda
et al., 2014).

The α4β2 nAChR is the most abundant and diffuse neuronal
nAChR subtype. It has a high affinity for nicotine (Ki, ∼1 nM)
representing >90% of high-affinity nicotine binding sites in the
brain and is a primary nAChRs subtype affected by nicotine
blood levels achieved during smoking (Benwell et al., 1988;
Flores et al., 1992; Rose et al., 1999; Sabey et al., 1999).

Chronic exposure of α4β2 nAChR to nicotine causes receptor
desensitization and upregulation, which are thought to play
key roles in nicotine reinforcement leading to addiction (Reus
et al., 2007). Both α4 knock-out (KO) mice and β2 KO
mice lack the majority of high-affinity nicotine binding sites
(Picciotto et al., 1995; Marubio et al., 1999). Alpha-4 KO mice
display reduced antinociceptive effects of nicotine and lack
the high-affinity nicotine-induced response in thalamic neurons
(Marubio et al., 1999). Beta-2 KO mice do not self-administer
nicotine, lack nicotine-induced improvement of performance
in passive avoidance tests and exhibit no increase in VTA
currents and striatal dopamine levels in response to nicotine
(Picciotto et al., 1995, 1998). Targeted re-expression of the β2
subunit in the VTA of mice lacking β2 nAChR subunit (β2
KO) was sufficient to reestablish sensitivity to nicotine (Maskos
et al., 2005). These results establish that α4β2 nAChRs in
neurons, originating in the VTA, play a crucial role in nicotine
addiction.

In addition to α4 and β2, other nAChR subunits especially α6
and α5 have been shown to play a role in nicotine addiction, albeit
as part of a β2-containing receptors (Changeux, 2010; Brunzell
et al., 2014). Alpha 6-containing nAChRs (e.g., α6β2 and α4α6β2)
are expressed in the VTA DA neuron cell bodies and thought to
mediate 30–80% of nicotine-induced striatal and NAc dopamine
release (Drenan et al., 2008; Exley et al., 2008; Zhao-Shea et al.,
2011). An α6 KO mouse exhibits reduced burst firing of DA
neurons and decreased nicotine self-administration (Changeux,
2010) suggesting a possible role in mediating changes in burst
firing in DA neurons of the VTA. The α5 nAChR subunit is
expressed in the reward pathway and forms a functional receptor
with α4 and β2 subunits replacing a β2 subunit (Changeux, 2010;
Jin et al., 2014). Alpha 5-containing nAChRs have been shown
to regulate dopamine transmission in the dorsal striatum and to
determine the aversive response to nicotine (Frahm et al., 2011;
Exley et al., 2012). Furthermore, an α5 subunit variant containing
a single aspartic acid to asparagine substitution (α5D398N)
is associated with an increased risk of developing nicotine
dependance (Bierut et al., 2008). Because α6- and α5 nAChR
subunits have limited brain distribution compared with other
nAChR subunits, targeting α6- and α5-containing receptors is
a promising strategy to develop tobacco cessation therapeutics
with lower prevalence of adverse effects (Gotti et al., 2010).

NICOTINE ADDICTION
PHARMACOTHERAPIES

Tobacco addiction is a chronic condition that in most cases
requires a combination of behavioral and pharmacological
therapies. The majority of smokers want (69%) and attempt
(52%) to quit, however, only a small percentage of smokers
succeed even with the help of currently available interventions
(Gonzales et al., 2006). Because nAChRs play a central role in
the neuronal mechanism leading to nicotine addiction, they are
considered a major target for the development of therapeutic
strategies for smoking cessation aids. Current FDA-approved
therapeutic interventions for smoking cessation include nicotine,
bupropion and varenicline (Figure 2). Other smoking cessation
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FIGURE 1 | A top view (left) and a side view (right) of a homology model of α4β2 nAChR. The α4β2 nAChR contains two α4 subunits, two β2 subunits, and a
fifth subunit that can be α4, β2, or other nAChR subunit. Two orthosteric (agonist-binding) sites are located at the extracellular domain of α4 and β2 subunit (denoted
by a docked ligand in red). ECD, extracellular domain; TMD, Transmembrane domain.

medications include cytisine as well as few second-line
medications such as clonidine and nortriptyline (Lerman et al.,
2007; Syad and Chaudhari, 2013).

Nicotine Replacement Treatments
Nicotine replacement treatments (NRTs) are FDA approved and
the most prevalent pharmacological interventions for smoking
cessation. NRT products include transdermal patches, chewing
gums, nasal sprays, inhalers, orally dissolvable films, lozenges and
low nicotine cigarettes. NRTs increase the chances of quitting
when compared with placebo or a lack of treatment. However,
over 90% of over-the-counter NRT users relapse within six
months (Stead et al., 2008).

Cytisine (Tabexrrr (EU); Sopharma/Extab)
Cytisine is the world’s oldest smoking cessation aid (Prochaska
et al., 2013). It is an α4β2 nAChR partial agonist that is widely
used in Europe for smoking cessation but not approved by the
FDA for use in the United States. Cytisine has clinical efficacy
(end-of treatment odd ratio of 1.93–3.4) that is comparable to
varenicline and NRT but associated with higher frequency of
adverse effects (Etter, 2006; West et al., 2011; Leaviss et al., 2014).
When combined with behavioral support, cytisine was superior
to NRT as a smoking cessation aid (Walker et al., 2014).

Varenicline (Chantixrrr (USA), Champixrrr

(EU); Pfizer)
Varenicline is a cytisine derivative that acts as a partial
agonist at α4β2 nAChR and a full agonist at α7 nAChR,
but its efficacy as a smoking cessation aid correlates with its
effect on α4β2 nAChR (Mihalak et al., 2006; Rollema et al.,
2007). Varenicline displays ∼30–60% of the in vivo efficacy of
nicotine and blocks nicotine response both in vivo and in vitro

(Coe et al., 2005a). In randomized controlled trials, smokers
receiving varenicline initially have higher abstinence rates
than those receiving placebo or any other smoking cessation
treatments (end-of-treatment odds ratio of 1.7–4.9; Tonstad
et al., 2006; Reus et al., 2007; Nides et al., 2008). The abstinence
rate was higher with longer varenicline treatment (24 vs. 6 weeks;
Lee et al., 2008) but the superiority of varenicline compared with
other treatments became less significant at longer end points
(Gonzales et al., 2006). Along with cognitive behavioral therapy,
varenicline improved prolonged abstinence rates for smokers
with serious mental illnesses (Evins et al., 2014). Varenicline’s
association with behavioral side effects, including abnormal
dreams, depression, and suicidal thoughts, led to the inclusion
of boxed warnings for serious neuropsychiatric risks.

Bupropion (Wellbutrinrrr/Zybanrrr;
GlaxoSmithKline)
Bupropion was used first as an antidepressant acting through
the modulation of monoamine neurotransmitters and then it
was approved by the FDA as the first non-nicotine medication
for use in smoking cessation (Lerman et al., 2007). Bupropion
inhibits α4β2 and α7 nAChRs, inhibits nicotine-induced
dopamine release and attenuates nicotine self-administration
(Slemmer et al., 2000; Dwoskin et al., 2006). Since adults with
depression are more likely to smoke, the antidepressant effect
of bupropion is very advantageous in decreasing stress and
negative mood (dysphoric-like) state associated with nicotine
withdrawal. Diminishing the dysphoric-like state associated
with nicotine withdrawal is believed to prevent relapse to
smoking and has been shown with other smoking cessation
agents such as varenicline and cytisine (Igari et al., 2014). As
monotherapy, bupropion has a lower abstinence rates compared
with varenicline (Nides et al., 2008). However, in combination
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with varenicline, bupropion treatment has been shown to
increase rates of long-term abstinence from smoking but not
7-day point prevalence at 12 and 26 weeks (Ebbert et al., 2014).

INVESTIGATIONAL nAChR ORTHOSTERIC
LIGANDS FOR SMOKING CESSATION

Current tobacco dependance treatments have a 12-month
abstinence success rate of 22% at best (Gonzales et al., 2006);
the relapse rate within 1 year following the discontinuation
of smoking cessation therapy is high (Tonstad et al., 2006).
Therefore, a critical need for more effective smoking cessation
aids still exists. Several nAChR ligands (partial agonists,
antagonists, or desensitizers; Figure 2) are currently under
clinical trials for use as smoking cessation therapies or have been
discontinued during various phases of the trial.

Cytisine Derivatives
Cytisine has been used extensively as a template for nAChR
ligands development (Cassels et al., 2005). In addition to
varenicline, Pfizer has developed other cytisine derivatives
which are nAChR partial agonists (CP-360288, CP-601927 and

FIGURE 2 | The chemical structures of nAChR orthosteric (1–5) and
allosteric (6–10) ligands. (1) nicotine; (2), cytisine; (3), varenicline;
(4), ABT-089; (5), sazetidine; (6), physostigmine; (7), galanthamine; (8), dFBr;
(9), NS9283; (10), CMPI.

CP-601932) as part of its drug discovery programs targeting
smoking cessation (Coe et al., 2005b). CP-601927 is a high
affinity, selective partial agonist at the α4β2 nAChR. In contrast,
CP-601932 has similar affinity for α4β2 and α3β4 nAChRs with
very low efficacy (2%) at α4β2 nAChRs rendering it as functional
antagonist of α4β2 nAChRs (Chatterjee et al., 2011; Mineur et al.,
2011). CP-601932 and CP-601927 were safe in human clinical
studies but CP-601932 was discontinued in Phase 2 due to a
lack of efficacy compared with varenicline. The cytisine dimer,
1,2-bis-N-cytisinylethane (CC4) also acts as partial agonist with
apparent selectivity for α4β2 and α6β2 nAChRs (Sala et al.,
2013). In a zebrafish model, CC4 and CC26 reduced nicotine-
induced self-administration and conditioned place preference
(Ponzoni et al., 2014). Dianicline (SSR591813) is another cytisine
derivative that was developed by Sanofi-Synthelabo Research,
France as a partial agonist with higher affinity for α4β2 nAChRs
than other nAChR subtypes. Dianicline increased extracellular
dopamine levels in the NAc, and prevented nicotine withdrawal
signs in rats (Cohen et al., 2003). Dianicline was well tolerated
and reduced self-reported tobacco craving and withdrawal
symptoms. However, it did not increase cigarette smoking
abstinence rates and was therefore discontinued in Phase 3 due
to a lack of efficacy (end of treatment odds ratio of 1.2; Rollema
et al., 2010; Tonstad et al., 2011).

ABT-418 and ABT-089
For more than two decades, Abbott has been investing heavily in
the development of safe and effective ligands to target neuronal
nAChRs for the treatment of a variety of neuropathologies
and for smoking cessation (Arneric et al., 2007). This led to
the introduction of a series of nAChR agonists and partial
agonists including ABT-418 and ABT-089. ABT-418 is a full
nAChR agonist with apparent selectivity for the neuronal nAChR
especially the α4β2 subtype (Decker et al., 1994). ABT-418 is
3–10 fold more potent than nicotine in enhancing learning
and memory. It has anxiolytic-like effects, a lower potency
than nicotine in enhancing dopamine release, and much less
propensity to cause side effects associated with nicotine (Arneric
et al., 1994; Papke et al., 1997). ABT-418 was well tolerated and
had no signs of abuse potential (Potter et al., 1999; Wilens et al.,
1999) but its feasibility as smoking cessation aid has not been
demonstrated in large scale clinical trials. ABT-089 has higher
affinity for the α4β2 than the α7 nAChR subtype, enhanced
ACh release and cognitive performance but was less potent and
less efficacious than nicotine in stimulating dopamine release
(Sullivan et al., 1997). In animal studies, acute administration
of ABT-089 had no effect on nicotine self-administration but
attenuated the reinstatement of nicotine-seeking behavior (Lee
et al., 2014). While ABT-089 was safe and well tolerated in
humans; its clinical efficacy as smoking cessation aid has not been
yet demonstrated (Wilens et al., 2006; Apostol et al., 2012).

Mecamylamine and other nAChR
Antagonists
Since the beneficial effect of NRTs could be attributed
to functional antagonism, due to nAChR desensitization
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with continuous exposure to agonist, nAChR antagonists
were exploited as smoking cessation aids (Dwoskin et al.,
2004). Mecamylamine is a non-selective nAChRs competitive
antagonist that inhibits nicotine-induced dopamine release from
striatal slices in a concentration-dependent manner (Nickell
et al., 2013). However, mecamylamine used alone or in
combination with nicotine was no better than NRTs used alone
in improving the chance of quitting smoking in a double-
blind randomized clinical trial (Glover et al., 2007). In recent
preclinical studies, selective α6-containing nAChR antagonists
such as α-conotoxin PIA and BPiDI have been shown to reduce
nicotine-induced DA release in striatal slices and to decrease
nicotine self-administration in rats (Brunzell et al., 2010; Gotti
et al., 2010;Wooters et al., 2011). These results provided evidence
that selective inhibition of α6-containing nAChRs has potential
therapeutic use for smoking cessation (Brunzell et al., 2014).

Sazetidine A (a nAChR Silent Desensitizer)
Sazetidine A represents a new class of nAChR ligands. It does
not directly activate nAChR, does not inhibit nicotine-induced
nAChR activities and does not induce nAChR up-regulation.
Instead, It desensitizes nAChR for prolonged periods without
activation (‘‘Silent desensitizer’’; Xiao et al., 2006; Zwart et al.,
2008; Hussmann et al., 2012). Sazetidine A binds with higher
affinity at α4β2 than other nAChR subtypes and shows reduced
withdrawal symptoms and nicotine self-administration (Levin
et al., 2010), albeit with different functional and behavioral
profiles than varenicline (Turner et al., 2013).

THE POTENTIAL THERAPEUTIC USE
OF nAChR ALLOSTERIC MODULATORS

Selective targeting of nAChRs is a leading strategy for smoking
cessation aid development, and there are sincere efforts to
develop nAChR ligands with high selectivity for specific receptor
subtypes. Nevertheless, nicotine and varenicline are the only
FDA-approved nAChR ligands for smoking cessation (Hurst
et al., 2013). The development of nAChR based therapeutics
remains challenging, in large part, because of the presence of
multiple neuronal nAChR subtypes in the reward pathway with
unique roles in the development of nicotine addiction. The
majority of currently pursued nAChRs therapeutics fall under
the category of agonists, partial agonists or antagonists that
bind to orthosteric (agonist binding) sites. Because neuronal
nAChRs subtypes share conserved ACh binding sites, there
have been difficulties developing clinically useful agonist/partial
agonist with selectivity for a nAChR subtype. Furthermore,
direct activation of neuronal nAChRs by orthosteric ligands is
associated with alteration in cholinergic transmission due to
prolonged activation and desensitization of nAChRs (Williams
et al., 2011). Therefore, positive allosteric modulators (PAMs)
of nAChRs were introduced as a novel class for nAChR-based
therapeutics (Taly et al., 2009). PAMs do not bind to the
ACh binding site or activate nAChRs in the absence of ACh.
Rather, they potentiate ACh-induced response by increasing
ACh potency, enhancing ACh efficacy and/or nAChR opening
probability and have minimal effect on the patterns of brain

cholinergic activities (Williams et al., 2011; Uteshev, 2014).
As such, nAChR PAMs lack reinforcing actions of their own
but replace the subjective reinforcement effect of nicotine.
Thus, they reduce the need for tobacco intake with minimal
abuse liability (Liu, 2013). Since PAMs binding site(s) are
distinct from the evolutionarily conserved ACh binding sites,
they exhibit greater structural diversity and are more likely
to be exclusive to a nAChR subpopulation. As such, nAChR
PAMs may provide the required specificity for developing novel
compounds that target nAChR subtypes with complex subunit
composition (α4α6β2β3, α6β2β3 and α6β2) that are expressed
mainly in striatal dopaminergic neurons (Taly et al., 2009). In
support of this notion, several available nAChR PAMs have
displayed far greater nAChR subtype selectivity than agonists
(Sala et al., 2005; Albrecht et al., 2008; Springer et al., 2008;
Timmermann et al., 2012; Olsen et al., 2014). Examples of
non-selective nAChR PAMs include physostigmine and galantha
-mine and selective α4β2 nAChR PAMs include dFBr
(desformylflustrabromine), NS9283 (3-[3-(pyridin-3-yl)-1,2,4-
oxadiazol-5-yl]benzonitrile, and CMPI (3-(2-chlorophenyl)-
5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole;
Figure 2). Galanthamine and physostigmine are used clinically
as acetylcholinesterase inhibitors. They were among the first
nAChRs allosteric potentiators to be identified (Maelicke et al.,
2001). Galanthamine potentiates ACh-induced activities
of nAChRs but not muscarinic acetylcholine receptors
(Samochocki et al., 2003). Galanthamine has been shown
to reduce nicotine-self administration behavior in rats (Liu,
2013) and to enhance dopaminergic neurotransmission in vivo
via nAChR potentiation (Schilström et al., 2007). The lack of
nAChR subtype selectivity hindered the use of physostigmine
and galanthamine for smoking cessation but they are valuable
pharmacology tools for studying the interaction of allosteric
modulators with nAChRs. Physostigmine and galanthamine
computational docking studies and photoaffinity labeling with
[3H]physostigmine and [3H]galanthamine identified allosteric
binding sites in the nAChR extracellular domain both at the
agonist-binding (‘‘canonical’’) and non-agonist binding ‘‘non-
canonical’’ subunit interfaces (Luttmann et al., 2009; Hamouda
et al., 2013). dFBr was isolated from the marine bryozoan
Flustra foliacea (Peters et al., 2002) and its effect as neuronal
nAChR PAM was demonstrated. dFBr enhanced ACh-currents
in α4β2 nAChR but not α7 or α3-containing nAChRs (Sala
et al., 2005; Kim et al., 2007). dFBr was also shown to block the
inhibitory effect of β Amyloid (Aβ1–42) peptide on α4β2 nAChR
(Pandya and Yakel, 2011). In rats, dFBr was shown to reduce
intravenous nicotine self-administration without supporting
self-administration behavior (Liu, 2013). CMPI and several
other substituted piperidines have been identified as potent and
selective α4β2 nAChR potentiators in high-throughput screening
and lead optimization projects at Amgen Inc., (Albrecht et al.,
2008; Springer et al., 2008). NS9283, developed at Neurosearch
Inc., specifically enhances the potency of acetylcholine induced
currents in α4β2 receptors with a 3α, 2β subunit stoichiometry
(Timmermann et al., 2012; Olsen et al., 2014) thus providing
further selectivity for a subpopulation within the α4β2 nAChR
subtype.
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CONCLUSION

Drugs that selectively target a subpopulation of nAChRs within
the brain’s nicotine reward pathway will have a great impact on
the treatment of nicotine addiction. However, the design and
development of novel nAChR orthosteric and allosteric ligands
require: (1) an accurate mapping of anatomical distribution
and delineation of functional contribution of various nAChRs;
(2) precise understanding of the three dimensional structure of
individual nAChR subtypes; (3) structural studies to illustrate
drugs binding mode within the orthosteric binding site (e.g.,
Hansen et al., 2008; Bach et al., 2015). Such studies will provide
structural information that may expand the chemical space in the
development of novel partial agonists as a smoke cessation aids;
and (4) structural studies to identify binding sites for nAChR

PAMs (e.g., Seo et al., 2009; Olsen et al., 2013; Hamouda et al.,
2015) and to understand the structural bases of PAM subtype
selectivity. Such studies have the potential to identify novel
allosteric sites that are unique to α6β2 and α4β2-containing
nAChRs and to facilitate the development of novel nAChR based
therapeutics for smoking cessation.
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