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The NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) transcription
factor family is a pleiotropic regulator of many cellular signaling pathways, providing
a mechanism for the cells in response to a wide variety of stimuli linking to
inflammation. The stimulated cells will be regulated by not only the canonical but also
non-canonical NF-κB pathways. To initiate both of these pathways, IκB-degradation
triggers NF-κB release and the nuclear translocated-heterodimer (or homodimer) can
associate with the κB sites of promoter to regulate the gene transcriptions. NF-κB
ubiquitously expresses in neurons and the constitutive NF-κB activation is associated
with processing of neuronal information. NF-κB can regulate the transcription of
genes such as chemokines, cytokines, proinflammatory enzymes, adhesion molecules,
proinflammatory transcription factors, and other factors to modulate the neuronal
survival. In neuronal insult, NF-κB constitutively active in neuron cell bodies can protect
neurons against different injuries and regulate the neuronal inflammatory reactions.
Besides neurons, NF-κB transcription factors are abundant in glial cells and cerebral
blood vessels and the diverse functions of NF-κB also regulate the inflammatory reaction
around the neuronal environment. NF-κB transcription factors are abundant in the
brain and exhibit diverse functions. Several central nerve system (CNS) diseases are
linked to NF-κB activated by inflammatory mediators. The RelA and c-Rel expression
produce opposite effects on neuronal survival. Importantly, c-Rel expression in CNS
plays a critical role in anti-apoptosis and reduces the age-related behaviors. Moreover,
the different subunits of NF-κB dimer formation can modulate the neuroninflammation,
neuronal protection, or neurotoxicity. The diverse functions of NF-κB depend on the
subunits of the NF-κB dimer-formation which enable us to develop a therapeutic
approach to neuroinflammation based on a new concept of inflammation as a strategic
tool in neuronal cells. However, the detail role of NF-κB in neuroinflammation, remains
to be clarified. In the present article, we provide an updated review of the current state
of our knowledge about relationship between NF-κB and neuroinflammation.
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NF-κB FAMILY MEMBERS AND DISEASE
CONTROL

NF-κB exerts effects on almost all cell types in the body, playing
an important function in inflammation, immune responses,
cell cycle, and cell survival (Sen and Baltimore, 1986; Li
and Verma, 2002; Kaltschmidt et al., 2005; Mattson, 2005;
Ledoux and Perkins, 2014). NF-κB has been recognized as a
member of Rel family of transcription factors. In mammals,
there are five different members to compose the NF-κB family:
p65 (RelA), RelB, c-Rel, p50/p105 (NF-κB1), and p52/p100
(NF-κB2) which have the similar amino acid sequence, the
RHD (Rel homology domain, over approximate 300 amino
acids) of these proteins (Chen and Greene, 2004). The
activated NF-κB subunits will assemble to form the homo-
or hetero-dimerized transcription factor complexes displaying
the DNA-binding ability and transactivation potentials. The
most widely studied form of NF-κB is a heterodimer of
the p50 and p65 subunits and is a potent activator of
gene transcription (Schmitz and Baeuerle, 1991). NF-κB is
activated by a wide variety of agents including viruses,
bacterial toxins such as lipopolysaccharide (LPS), UV light,
oxidative stresses such as free radicals and cigarette smoke,
inflammatory stimuli, cytokines, carcinogens, tumor promoters,
and various mitogens (Baeuerle and Henkel, 1994; Baldwin,
1996). NF-κB regulates the expression of almost 500 different
genes, including enzymes [e.g., cyclooxygenase (COX)-2, 5-
lipoxygenase (LOX), and inducible NO synthase (iNOS)],
cytokines [such as interleukin (IL)-1, IL-6, IL-8, chemokines,
and tumor necrosis factor (TNF)], adhesion molecules, cell
cycle regulatory molecules, and angiogenic factors (Duh et al.,
1989; Kaltschmidt et al., 1993; Ahn and Aggarwal, 2005;
Gupta et al., 2010a,b). The activation of NF-κB, especially
the constitutively activated NF-κB in chronic inflammatory
patients, has been found the critical linkage with a wide variety
of human diseases, including asthma, atherosclerosis, AIDS,
Alzheimer’s disease (AD), Parkinson’s disease (PD), rheumatoid
arthritis, cancer, diabetes, and osteoporosis which belong to
autoimmune/inflammatory diseases (Vallabhapurapu and Karin,
2009; Gupta et al., 2010b). The opposite, several native or
artificial agents such as Th2 cytokines (IL-4, IL-13, and IL-10),
interferons, endocrine hormones (LH, HCG, MSH, and GH),
phytochemicals, corticosteroids, and immunosuppressive drugs,
are known to block the specific signaling transductions and
suppress NF-κB activation (Ahn and Aggarwal, 2005). Therefore,
regulation and dysregulation of NF-κB play a key role in diseases
control.

THE CANONICAL AND
NON-CANONICAL NF-κB SIGNALING
PATHWAYS

Based on the previous studies, NF-κB is activated via two
distinct kinase-dependent pathways, the classical/canonical
NF-κB pathway and the alternative/non-canonical NF-κB

FIGURE 1 | Schematic representation of the canonical and
non-canonical nuclear factor (NF)-κB activation pathways. The
canonical NF-κB pathway (upper) can be activated by a wide range of various
stimuli, including tumor necrosis factor (TNF)-α, interlukin (IL)-1,
lipopolysaccharide (LPS), and Toll-like receptors ligand (such as CD40L).
Initiation of the canonical pathway via Toll-like receptor or cytokine receptor
signaling depends on the inhibitor of κB kinase (IKK) complex, which is
composed of the kinases IKKα and IKKβ, and the regulatory subunit IKKγ

(NEMO). Activated IKK phosphorylates the inhibitory subunit IκBα leading to
its degradation. The released NF-κB dimers (p50-p65) translocate to the
nucleus and bind to κB site of chromosome to induce transcription of NF-κB
targeted genes. The non-canonical pathway (lower) is activated by specific
stimuli including B cell activating factor (BAF) belonging to the TNF family
receptor, LPS, lymphotoxin (LT) α1β2, receptor activator of NF-κB (RANK),
and CD40L. NF-κB inducing kinase (NIK) is stabilized. When stimulated, NIK is
activated and recruits IKKα to the p100 complex to phosphorylate p100,
leading to p100 ubiquitination. P52, the processing product of p100,
generates the activated p52/RelB NF-κB complex, which is able to
translocate to the nucleus and induce the downstream gene expressions.

pathway. The most extensively studied NF-κB activation pathway
is the canonical pathway (Figure 1, modified from Noort et al.,
2015), which can be mediated through activation of a variety of
cell surface receptors, including IL-1 receptor, Toll-like receptors
(TLRs), and TNF receptor, in response to pro-inflammatory
mediators like IL-1, LPS, and TNF, as well as via triggering
of the T-cell receptor or B-cell receptor. The inactive NF-
κB resides in the cytoplasm and associates or links with the
natural biological inhibitor IκB. The NF-κB function and nuclear
translocation ability are sequestered in the cytoplasm and nuclear
compartments, respectively (Verma et al., 1995; Baeuerle and
Baltimore, 1996). The IκB family members include IκBα, IκBβ,
p105/IκBγ (precursor of p50), p100 (precursor of p52), and IκBε

(Li and Nabel, 1997;Whiteside et al., 1997). Each shares a series of
ankyrin repeats which sequester NF-κB in the cytosol by masking
its nuclear localization signal (NLS) and also prevents NF-κB
from binding to DNA by masking its DNA binding domain.
Treatment of cells with various stimuli activates IκB kinase
complex, for example, leading to the phosphorylation of serines
32 and 36 of IκBα or serines 19 and 23 of IκBβ (DiDonato et al.,
1997; Mercurio et al., 1997; Regnier et al., 1997; Zandi et al.,
1997). These phosphorylation events target IκB for ubiquitin-
dependent degradation through the 26S proteasome complex,
resulting in the release and nuclear translocation of NF-κB
(Finco and Baldwin, 1995; Thanos and Maniatis, 1995). Briefly,
NF-κB is expressed ubiquitously in the cytoplasm of almost all
cell types. The activated NF-κB will translocate from cytoplasm
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to nucleus and the NF-κB-dimer can bind to the κB site of
promoter. In this classical pathway, inhibitor of κB kinase (IKK)β
is required for NF-κB activation (Tak et al., 2001), whereas IKKα

is redundant (Vallabhapurapu and Karin, 2009). However, the
canonical NF-κB pathway is essential for both acute and chronic
inflammatory responses. Moreover, this pathway is implicated
in cell proliferation and survival, demonstrated by constitutively
active NF-κB signaling in many tissues (Ben-Neriah and Karin,
2011).

The non-canonical NF-κB pathway (Figure 1), can be
triggered by the activation of members of the TNF-receptor
superfamily including B cell activating factor (BAF), belonging
to the TNF family receptor, CD40, lymphotoxin β (LTβ) receptor,
and receptor activator of NF-κB (RANK). Of note, these receptors
trigger not only the non-canonical NF-κB pathway, but also the
canonical pathway, simultaneously. The non-canonical NF-κB
pathway is strictly dependent on IKKα homodimers and unlike
the canonical pathway, the IKKβ or IKKγ is not involved in the
IκB phosphorylation (Sun, 2012). To regulate the non-canonical
pathway, expression of NF-κB inducing kinase (NIK) plays a
role as the most important kinase. In the steady state, TNF
receptor-associated factor (TRAF)3 mediates recruitment of NIK
to TRAF2, which leads to NIK ubiquitination and continuous
degradation. Consequently, endogenous levels of NIK are very
low and the NF-κB complex is retained in the cytoplasm and
kept inactive. Upon activation of the non-canonical NF-κB
pathway, TRAF2 induces proteolysis of TRAF3. Degradation of
TRAF3 prevents targeting of newly synthesized NIK, resulting in
NIK release and accumulation. Subsequently, NIK induces p100
phosphorylation by IKKα homodimers and partial degradation
to release p52. Next, mainly p52-RelB heterodimers translocate
to the nucleus, leading to transcription of target genes.
Whereas canonical NF-κB activation is rapid and independent
of protein synthesis, non-canonical NF-κB activation requires
NIK synthesis and accumulation. Consequently, the kinetics of
this pathway are considerably slower (Vallabhapurapu and Karin,
2009; Sun, 2012).

There are cross-talks between these two pathways. IKKα

has, for instance, been described to also have nuclear functions
and serve as a regulator of canonical NF-κB-dependent gene
expression through control of promoter-associated histone
phosphorylation exposed to cytokines (Anest et al., 2003;
Yamamoto et al., 2003). It has been demonstrated that the
activated canonical pathway not only initiated the signal
transduction of NF-κB but also suppressed basal non-canonical
signaling in immune cells (Gray et al., 2014). Interestingly,
under certain circumstances and other stimuli (including TNF)
can also activate non-canonical NF-κB signaling in specific cell
types (Zhang et al., 2014), and IKKα is critical for interferon-α
production induced by TLR 7 and 9 (Hoshino et al., 2006).

THE NF-κB FAMILY MEMBERS IN THE
BRAIN LOCATION

The expression of NF-κB transcription factors is abundant in
the brain. The basal levels of NF-κB expression have been

identified in the brain where their amounts are higher than
those of peripheral tissues. Several lines of evidence indicate
that constitutively activated NF-κB is found in glutamatergic
neurons of the central nervous system (CNS), such as cerebral
cortex (layers 2, 4, and 5) and hippocampus (granule cells and
pyramidal neurons of CA1 and CA3; Kaltschmidt et al., 1993,
1994, 1995). A number of studies also show constitutive NF-κB
activity in various rodent brain regions such as amygdala, cerebral
cortex, cerebellum, hippocampus, hypothalamus, and olfactory
lobes (Schmidt-Ullrich et al., 1996). Among members of NF-κB,
all of the complexes of c-Rel/p65, p50/p65 heterodimer, and p50
homodimers are detected in the developing rat brain (Bakalkin
et al., 1993). While to analyze the distribution of NF-κB, the
released p65 and p50 NF-κB subunits are abundantly expressed
in neurons. Moreover, p50/p65 heterodimers are located in the
cell nucleus and exhibit constitutive activity in the adult brain
(Kaltschmidt et al., 2005; Meffert and Baltimore, 2005). In the
developed rodent brain, the p50/p65 heterodimeric variant of
NF-κB is converted to the major κB-binding complex (Schmidt-
Ullrich et al., 1996; Meffert et al., 2003). It is important for the
neuronal physiological characteristics, for example, constitutive
NF-κB activity in glutamatergic neurons of the hippocampus
and cerebral cortex can be suppressed by N-methyl-D-aspartate,
and to a lesser extent AMPA, glutamate receptor antagonists, as
well as L-type Ca2+ channel blockers (Lilienbaum and Israel,
2003; Meffert et al., 2003). These studies suggest that constitutive
NF-κB activity is modulated by physiological basal synaptic
transmission. However, inducible NF-κB is detected in synapses,
glutamatergic stimulation activates retrograde transport of p65
protein from synapses to the cell nucleus (Kaltschmidt et al., 1993;
Meberg et al., 1996; Meffert et al., 2003). Thus, NF-κB is involved
in translation of short-lasting synaptic signals to persistent
changes in gene expression (Wellmann et al., 2001; Meffert et al.,
2003). The activated IKK ant it’s product, phosphorylated IκBα,
were detected within the axon initial segment, the site where
action potentials are generated (Schultz et al., 2006), suggesting
that constitutive NF-κB activation is involved in the processing
of neuronal information.

NF-κB and NEUROINFLAMMATORY
MEDIATORS

At the molecular level, inflammation is regulated by numerous
molecules and factors, including adhesion molecules
[intercellular adhesion molecule (ICAM-1), vascular cell
adhesion molecule (VCAM)-1, endothelial-leukocyte adhesion
molecule (ELAM)-1], chemokines (such as monocyte
chemoattractant protein 1, IL-8), cytokines (IL-1, IL-2, IL-
6, IL-12, TNF-α, TNF-β), signal transducer and activator of
transcription (STAT)-3, proinflammatory enzymes [COX-2,
5-LOX, 12-LOX, matrix metalloproteinases (MMPs), prostate-
specific antigen (PSA), C-reactive protein], vascular endothelial
growth factor (VEGF), and proinflammatory transcription
factors NF-κB (Aggarwal, 2004). Among these mediators, NF-κB
is the central regulator of inflammation (Lukiw and Bazan,
1998; Aggarwal, 2004; Ahn and Aggarwal, 2005). For example:
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IL-1β treatment can induce COX-2 expression in canine tracheal
smooth muscle cells (Yang et al., 2002) and ICAM-1 expression
in human rheumatoid arthritis synovial fibroblasts (Yang et al.,
2010), respectively. LPS, to mimic the bacterial infection, and
endothelin-1 also can induce COX-2 and PGE2 expression in
mouse brain microvascular endothelial (bEnd.3) cells (Shih
and Yang, 2010; Lin et al., 2013). TNF-α can induce ICAM-1
expression in osteoblast-like MC3T3-E1 cells (Tsai et al., 2014).
All of these target proteins syntheses are mediated through
NF-κB-dependent signaling pathway.

NF-κB has been shown to activate more than 500 genes,
which are implicated in inflammation related responses (Gupta
et al., 2010a,b). The NF-κB family is suggested to be
the most extensively studied target in inflammation issue
for its critical role (Chen and Greene, 2004; Lin and
Karin, 2007). In neuroinflammation, NF-κB can be transiently
activated by various stimuli, like acute alcohol exposure, which
induces neuroinflammatory responses in mice (Yakovleva et al.,
2011). The role of NF-κB is critical in the regulation of
neuroinflammation-associated disease pathogenesis (Niranjan,
2013).

NF-κB: A NEUROPROTECTIVE ROLE OR
A NEUROTOXIC ROLE

In the CNS, NF-κB transcription factors are key players in a
number of physiological processes such as neurogenesis (Koo
et al., 2010), neuritogenesis (Rolls et al., 2007), and synaptic
plasticity which related to learning and memory (Levenson et al.,
2004; O’Riordan et al., 2006; Ahn et al., 2008). A number of
studies also provide evidence that activation of NF-κB protects
neurons against the different injuries such as excitotoxicity
(Mattson, 2005), and oxidative stress (Sarnico et al., 2009b),
as well as amyloid β peptide toxicity (Barger et al., 1995;
Kaltschmidt et al., 1997) and exerts as a cellular defense
program. Apoptotic cortical neurons have been observed to
be rescued by overexpression of p65, while enhanced damage
by IκB super-repressor or dominant negative NF-κB-inducing
kinase (NIK; Bhakar et al., 2002). NF-κB is constitutively active,
and involved in neuronal injury as well as neuroprotection
in neuron cell bodies, however, NF-κB is present in a latent
form at the synapse. Only when NF-κB is activated, it can
be transported to the neuron cell nucleus (Yakovleva et al.,
2011).

Besides neurons, the roles of NF-κB in astroglia/microglia
have been studied in relation to brain injury (O’Neill and
Kaltschmidt, 1997; Block et al., 2007; Kaltschmidt and
Kaltschmidt, 2009). Briefly, NF-κB is present in a latent
form in glia of naive animals (Schmidt-Ullrich et al., 1996;
Bhakar et al., 2002). NF-κB may be activated under pathological
conditions such as exposure to HIV-1 Tat or amyloid β

peptide (Aβ) leading to the production of nitric oxide (Akama
et al., 1998; El-Hage et al., 2008). It has been shown that glia
responses to injury triggered by endogenous ligands for TLR
and TLR signaling are mediated through the NF-κB (Akira
and Takeda, 2004). Moreover, inhibition of astroglial NF-κB

signaling leads to reduced chemokine expression and leukocyte
entry into the injured CNS (Brambilla et al., 2005; Khorooshi
et al., 2008). NF-κB has been shown to play the regulatory
role of astrocytes on immune and inflammatory responses
(Farina et al., 2007). Microgliosis is a common pathologically
neurodegenerative disorder. Microglial activation of NF-κB plays
a central role associated with the release reactive oxygen species
and proinflammatory cytokines (such as IL-1β, interferon-γ, and
TNF-α) that can cause secondary neurotoxicity (Kaltschmidt
et al., 1993; Block et al., 2007). Briefly, in glia, NF-κB is
inducible and regulates inflammatory processes that exacerbate
inflammation-induced neurodegeneration (Yakovleva et al.,
2011). NF-κB has been also demonstrated as a major signal
transducer affecting cellular permeability, endocytosis, and
intracellular trafficking at the level of the blood–brain barrier
(Stone et al., 2011). Activation of NF-κB signaling by LPS has
been shown to induce inflammatory target protein COX-2 and
PGE2 production leading to cerebral vascular inflammation (Pan
et al., 2010; Shih and Yang, 2010). All of above studies show that
NF-κB transcription factors are abundant in the brain where they
have diverse functions among neurons, glia, and cerebral blood
vessels.

EFFECTS OF NF-κB ON
INFLAMMATORY-ASSOCIATED WITH
PAIN

Constitutive activation of NF-κB is detected mostly in
glutamatergic neurons. NF-κB in glia has a lower basal
activity and is highly inducible, which plays a crucial role
in brain inflammation (Kaltschmidt and Kaltschmidt, 2009).
A role of glial NF-κB in pain research has attracted more
attention. Pain signaling can arise from the activation of specific
high-threshold PNS neurons (nociceptors) and could serve
as a sensing mechanism to prevent further injury. In clinic,
pain signaling can arise not only from damage to the nervous
system (neuropathic pain), but also from chronic inflammation
(inflammatory pain). Interestingly, an impairment of acute and
inflammatory nociception has been revealed in p50−/− mice in a
previous study (Niederberger et al., 2007). Moreover, inhibition
of astroglial NF-κB can reduce inflammation and therefore
improve functional recovery after spinal cord injury (Brambilla
et al., 2005). All of these data suggests that NF-κB plays a crucial
role on inflammatory pain in CNS.

DIFFERENT NF-κB COMPLEXES
DIFFERENTIALLY REGULATE
NEURONAL SURVIVAL IN BRAIN
DAMAGE: p50/RelA vs. p50/c-Rel

In recent years, NF-κB dysregulation has been shown to link
to neurodegenerative mechanisms that occur in brain during
trauma or ischemia (Bethea et al., 1998; Schneider et al., 1999), as
well as in the brain of patients suffered by PD (Hunot et al., 1997;
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Ghosh et al., 2007) or AD (Boissiere et al., 1997; Kaltschmidt
et al., 1997; Lukiw and Bazan, 1998). These CNS diseases are
associated with neuroinflammatory mediators. More evidence
has shown that the neuronal response to external stimuli relies
on a differential activation of NF-κB dimers. RelA or c-Rel
expression produces opposite effects on neuron survival (Pizzi
et al., 2002, 2005b; Sarnico et al., 2009b).

Among the members of NF-κB, the RelA subunit,
composing the activated p50/RelA dimer, and its post-
transcriptional modifications play a pivotal role in the onset
of neurodegenerative processes triggered by ischemic insults
(Inta et al., 2006; Sarnico et al., 2009a,b) as well as glutamate
(Pizzi et al., 2002) or Aβ toxicity (Pizzi et al., 2005b; Inta et al.,
2006; Lanzillotta et al., 2010). In ischemic stroke, activated
RelA induces the expression of the 1B isoform of the divalent
metal transporter-1(1B/DMT1) which can exert as an upstream
response for iron accumulation and contributing to neuronal
cell death after injury (Ingrassia et al., 2012). Notably, RelA is
demonstrated as a most contributing subunit in degenerative
changes associated with senescence in a mice model (Tilstra
et al., 2012).

RelA has been demonstrated to contributing to neuronal cell
death, while the overexpression of c-Rel factor can limit the cell
death. The c-Rel factor is reduced in neurons exposed to oxygen–
glucose deprivation (OGD), interestingly, the overexpression of
c-Rel prevents neuronal loss in cortical neurons exposed to OGD.
This protective effect involves in increasing the transcription
of Bcl-xL gene (Pizzi et al., 2009; Sarnico et al., 2009a,b).
Similarly, knocking down c-Rel expression exacerbated neuronal
susceptibility to OGD-mediated damage (Pizzi et al., 2009).
Further, knocking out c-Rel expression appeared insensitive to

neuroprotective activity of leptin, a c-Rel inducer capable to
limit cortical damage in wild-type mice and mice brain ischemia
(Valerio et al., 2006, 2009). Therefore, the c-Rel subunit within
activated NF-κB dimers also counteracts the ischemic injury
acting as an innate mechanism of neuroprotection (Sarnico et al.,
2009a,b). In addition, overexpression of c-Rel in cultured neurons
promotes anti-apoptotic effects by inducing the transcription of
manganese superoxide dismutase (MnSOD; Chen et al., 2000;
Bernard et al., 2001; Pizzi et al., 2005a). On the viewpoint
of disease events, the deficiency of c-Rel induces an age-
related behavioral Parkinsonism in mice, with degeneration of
nigral dopaminergic (DA) neurons and development of a PD-
like neuropathology (Baiguera et al., 2012). Recent evidence
has shown that activation of NF-κB drives the systemic and
brain aging processes in mice (Adler et al., 2007; Zhang et al.,
2013). In brain ischemic tissue of mice subjected to permanent
middle cerebral artery occlusion (MCAO) and in primary cortical
neurons exposed to OGD, NF-κB followed a pattern of increasing
p50/RelA dimmer (Crack et al., 2006; Inta et al., 2006) and
decreasing c-Rel-containing dimmers (Sarnico et al., 2009b).
Inhibition of c-Rel-containing dimers and activation of p50/RelA
are key events in the pathogenesis of brain injury. These data
strongly suggested that NF-κB transcription factors have diverse
functions that depend on the composition of the NF-κB complex
(Lanzillotta et al., 2015).

CONCLUSION

The role of NF-κB is critical in the regulation of
neuroinflammation-associated disease pathogenesis. NF-κB

FIGURE 2 | The role of NF-κB in neurological damage. Chemical/mechanical stimulation (such as glutamate excitotoxicity, bacteria/virus infection, ischemic/
hemorrhagic stroke, or oxidative stress) to the brain/spinal cord tissue results in initial injury, including glutamate neuron-excitotoxicity, and cytokine-mediated
inflammation which increase oxidative stress linking to neuroinflammatory response. NF-κB transcription factors are abundant in the brain where they have diverse
functions between neuron, glia, and cerebral blood vessels. Constitutive NF-κB transduction factors are responsible for neurogenesis, neuritogenesis, synaptic
plasticity, learning, and memory. Either glial or endothelial inducible NF-κB activation was implicated in neuroinflammation-associated pathogenesis related to
secondary neuronal damage, while p50/RelA and p50/c-Rel subunit within activated NF-κB dimers play different roles on neuronal pathogenesis in neuron. The
p50/RelA enhances damage by inducing the expression of the 1B isoform of the divalent metal transporter-1(1B/DMT1), p50/c-Rel protects against the damage by
increasing the transcription of gene of Bcl-Xl or MnSOD. NF-κB transcription factors have diverse functions that depend on the composition of the NF-κB complex
and cell types.
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transcription factors are abundant and constitutive activation
in brain where they have diverse functions among neurons,
glia, and cerebral blood vessels. These functional diversions
are dependent on the recruitment of components of the
NF-κB dimer formation. Especially, c-Rel containing NF-κB
dimers can induce the Bcl-xL and MnSOD expression and
exert as anti-apoptotic effects while the pro-apoptotic effect
elicited by NF-κB p50/RelA dimer. The imbalance of NF-κB
dimer formation between RelA and c-Rel might result in the
pathological process in certain neurons. The roles of NF-κB
in neurological damage have been illustrated in Figure 2. The
detail signal transduction pathways in different compositions
of the NF-κB complex remain to be clarified. Obviously much
more work is required to elucidate the role of NF-κB in
the neuroinflammatory signaling pathways, which in turn will
enable us to devise a therapeutic approach to neuroinflammation

based on a new concept of inflammation as a strategic tool
by which inflammatory neuronal cells can be made more
susceptible to drugs than normal cells. By understanding the
signal transduction pathways mediating the induction of NF-κB
in neuronal cells, it may be possible to manipulate these diseases
for therapeutic gain.
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