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Recent research has added new dimensions to our understanding of classical evolution,
according to which evolutionary novelties result from gene mutations inherited from
parents to offspring. Language is surely one such novelty. Together with specific changes
in our genome and epigenome, we suggest that two other (related) mechanisms
may have contributed to the brain rewiring underlying human cognitive evolution and,
specifically, the changes in brain connectivity that prompted the emergence of our
species-specific linguistic abilities: the horizontal transfer of genetic material by viral and
non-viral vectors and the brain/immune system crosstalk (more generally, the dialogue
between the microbiota, the immune system, and the brain).

Keywords: language evolution, HGT, microbiome, immune system, brain, skull, globularity, externalization

INTRODUCTION

Hauser et al. (2002) hypothesized that our Faculty of Language may be decomposed into a core
computational system (the narrow faculty of language or narrow syntax, NS) and two interface
devices; a conceptual-intentional system and an externalization system. In their view, only the
NS was specific to humans. The emergence of NS is thought to be bound to a brain rewiring that
gave rise to a domain-general computational ability, either a recursive capability (Hauser et al.,
2002), or one for combining conceptual units that belong to distinct ‘‘core knowledge systems’’,
presumably linked to the changes that brought about our globular brain and braincase (Spelke,
1994, 2000, 2003; Boeckx, 2010; Boeckx and Benítez-Burraco, 2014a). The core combinatorial
operation in natural language is usually called ‘‘Merge’’ (Chomsky, 1995). As pointed out by Boeckx
and Benítez-Burraco (2014a: 5), merge allows for ‘‘the compositional, freely combining, systematic,
cross-modular semantics that is manifest in all human languages’’.

The retrieval of archaic human genetic materials (Green et al., 2010; McLean et al., 2011; Meyer
et al., 2012; Gokhman et al., 2014; Prüfer et al., 2014; Pääbo, 2014) has uncovered genetic and
epigenetic changes that may have contributed to the emergence of our species-specific mode of
cognition, including our linguistic abilities (see Boeckx and Benítez-Burraco, 2014a,b; Benítez-
Burraco and Boeckx, 2015). However, other changes plausibly contributed to this emergence.
Recent research has shown in particular that RNA regulation of epigenetic processes, RNA editing,
and the controlled mobilization of transposable elements may explain crucial aspects of the
evolution of the human brain and of human cognition (Barry and Mattick, 2012).

Piattelli-Palmarini and Uriagereka (2004: p. 341) suggested that an evolutionary
understanding of our NS should ‘‘link that kind of syntax with the workings of very
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elementary levels of biological organization, such as the structure
of the adaptive immune system and its biochemical base’’.
According to them, ‘‘the evolution of an entire mechanism (such
as NS) which establishes one or more interfaces is most likely
epigenetic in nature, and viral interactions, generally understood,
provide the right level of complexity’’ (p. 359). Appealing to viral
infection built on four facts: (i) viral infection may resemble
epigenetic modifications of the DNA (in contrast, gene changes
are usually either too specific or too general); (ii) viral infections
are commonly tissue-specific (while gene mutations are usually
pleiotropic); (iii) viruses can infect an entire population (whereas
gene mutations spread slowly), thus providing an approach
to how language may be inherited by a group, not just an
individual; and (iv) lastly, viruses can integrate into a host
genome (consequently, modifications brought about by the viral
DNA itself or by the integration event can be subsequently
inherited by the offspring).

We will revisit this hypothesis in light of findings affecting
three factors: (i) there is an intimate crosstalk between the
immune system and the brain (Ziemssen and Kern, 2007; Kokaia
et al., 2012; Ransohoff and Brown, 2012); (ii) horizontal gene
transfer (HGT), including viral transfer, occurs in metazoans
on a previously unsuspected scale (Crisp et al., 2015); this
represents a form of genetic variation that affects the evolution
of species (Koonin and Wolf, 2012; Syvanen, 2012; Baltrus,
2013); and (iii) the tight association between the human body
and its microbiota may affect brain development, function, and
evolution. We expect these factors to have reshaped the primate
brain responsible for modern cognition, contributing to the
emergence of language.

Recent research has shown how bacterial colonization
of the gut is central to postnatal development of systems
that influence brain programming and signaling, particularly
the immune system (Borre et al., 2014). For example, the
developing serotonergic system responds differentially to diverse
microbial colonization patterns because the gut microbiota
reduce the amount of tryptophan available for serotonin
synthesis (O’Mahony et al., 2015). While the involved enzymes
are immune-responsive (O’Mahony et al., 2015), serotonin
contributes to innate and adaptive responses of the immune
system (Baganz and Blakely, 2013). Interestingly, differences in
serotonin levels are a hallmark of cognitive disorders involving
language deficits, like autism (Abramson et al., 1989; Hranilovic
et al., 2007). Neuropsychiatric disorders may also result from
the distortion of serotonin/immune conversations (Baganz and
Blakely, 2013). Microbes colonizing the gut produce other
neuroactive compounds, including GABA and dopamine (Wall
et al., 2014), as well asmolecules with neuromodulatory potential,
like short chain fatty acids (Stilling et al., 2014a). Moreover,
Fitzpatrick (2014) and Stilling et al. (2014a) have argued that
(symbiont) microbes are epigenetic effectors, as they share most
of the features of classical epigenetic mechanisms. Finally, Stilling
et al. (2014b) have suggested that epigenetic mechanismsmediate
host-microbe communication, resulting in changes in brain
adaptation and plasticity.

Properties that are latent and emerge in response to a
change in the environment may be relevant to the evolution

of language, in view of evidence of social transmission and
cultural evolution in language variation and the acquisition of
grammatical properties (Boeckx, 2013; Benítez-Burraco et al.,
under review). While changes in the interactomes of language-
related genes are a condition for ‘‘cognitive modernity’’, as such
they do not entail immediate ‘‘behavioral modernity’’. For that,
the environment arguably had to be of the right kind, exhibiting a
‘‘cultural niche’’ encompassing the social, behavioral, and neural
conditions of human culture (see Tomasello, 2009, 2014). In
a nutshell, human microbiota may be one of these conditions
(Figure 1).

Obviously, we are not claiming that ‘‘a language virus’’ exists,
or that human-specific bacterial symbionts may account for
human-specific cognitive traits. What we hypothesize, instead, is
that these mechanisms (e.g., a modification in our feeding habits
that could have brought about a subtle change in our ancestral
microbiota)may have affected brain development in some crucial
sense. The complex language faculty that anatomically-modern
humans (AMHs) present appears to have resulted from different
kinds of changes, from mutations in key genes to alterations in
the transcriptional profile of others. We expect our hypothesis to
be just one piece of a large puzzle.

In section ‘‘Immune(-like) Mechanisms and language
Evolution,’’ we discuss the convergent (co)-evolution of the
brain and the immune system. We focus on the similar
mechanisms that seem to account for the molecular diversity
observed in both domains, but also on the crosstalk between the
immune system and the brain. We then move to the realm of
pathogens. In sections ‘‘Viral Vectors and Language Evolution’’
and ‘‘Non-Viral Vectors and Language Evolution,’’ we examine
several genes that may have been horizontally transferred to
the human genome and are expected to interact with genes
that we regard as important for language evolution. In section
‘‘Microbiota and Language Evolution,’’ we discuss the broader
effect of the microbiota on brain development and function
and introduce the idea of the language hologenome. Finally,
in section ‘‘From Brain Rewiring to Language Evolution,’’
we speculate on how these findings could help us improve
our current understanding of the linguistic mind and its
evolution.

IMMUNE(-LIKE) MECHANISMS AND
LANGUAGE EVOLUTION

The idea that immune-relatedmechanismsmay have contributed
to the brain rewiring underlying modern syntax boils down
to two facts. First, brain functions result in part from
neurons assembled during development into an exponentially
greater number of networks. This depends on the expression
of molecular cues onto the cell surface of the neurons-
to-be-assembled: tens of thousands of neuronal networks
are characterized by distinctive molecular codes. Changes
in brain wiring and function should be expected from
changes in neural interconnection patterns relying of this
complex code. The mechanisms that allow this diversity
are similar to those regulating the tuning of cell receptor
interactions in the immune system. Second, the immune
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FIGURE 1 | A schematic overview of the different factors involved in language evolution. The language faculty was brought about by changes in the primate
genome and transcriptome. However, environmental cues may have contributed as well to some of the changes facilitating the emergence of modern languages.
Host-pathogen interactions may have affected brain and language evolution via direct effects on brain development and indirect effects on social behavior. For this
figure, pictures have been taken from Wikipedia and subsequently adapted/arranged in a composite figure.

system directly affects brain development. Consequently, we
should expect changes in brain wiring and function from
changes in immune response (for example, after pathogen
infection).

Both parallelisms are worth exploring vis-à-vis language
evolution (Figures 1, 2). Interestingly, brain and immune
complexity appear to have evolved in parallel. Insects have
minimal brains and no adaptive immunity, reptiles have larger
brains and a basic adaptive immunity, mammals have the
largest brains and full adaptive immune systems. Both systems
may have evolved in a convergent fashion, if the requirements
for complex intercellular communication networks ended up
selecting for similarly structured networks in the immune
system and our brains. Then again, actual co-evolution between
the immune system and the brain may have taken place
instead. We would like to highlight two aspects of these broad
parallelisms.

First, many neuronal cell surface receptors involved in
neuronal interactions contain immunoglobulin domains. These
molecules regulate neuronal migration and survival, axon
guidance, and synaptic targeting during development (Maness
and Schachner, 2007). Among those in the immunoglobulin
superfamily that are relevant to language one finds the
ROBO/SLITs signaling proteins (see Boeckx and Benítez-
Burraco, 2014b). Another interesting example is NCAM, which

interacts with VCAM1, a protein bearing a fixed change (D414G)
in AMHs as compared to Neanderthals/Denisovans (Pääbo,
2014, Table S1). NCAM plays a role in axonal/dendritic growth
and synaptic plasticity, and ultimately the development of
cognitive abilities (Prag et al., 2002; Hansen et al., 2008). Aberrant
expression patterns of NCAM or incorrect posttranslational
modifications of the protein have been linked to cognitive
disorders involving schizophrenia-like symptoms (Vawter et al.,
2001; Atz et al., 2007). The gene is a target of RUNX2 (Kuhlwilm
et al., 2013) and FOXP2 (Spiteri et al., 2007), both crucial factors
involved in language development (Boeckx and Benítez-Burraco,
2014a,b).

Before reviewing another aspect of the parallelisms, note that
other surface molecules involved in cell-recognition/adhesion
in brain development/functioning are often endowed with
immunoglobulin-like properties. We expect common molecular
mechanisms explaining diversity in immunoglobulins and
neuronal adhesion molecules. For example, the functional
heterogeneity of these surface molecules amounts to the
independent stochastic expression of given genes’ autosomal
alleles. One instance is DSCAM, a candidate for Down
syndrome defects involved in neural wiring and innate
immunity (Schmucker and Chen, 2009). Another, clustered
protocadherins (Pcdhs), which are arranged in clusters and
expressed by alternative promoter choice. Pcdh isoforms
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FIGURE 2 | The crosstalk between the immune system and the brain. Immune molecules cross the blood–brain barrier on occasion of brain damage. They are
also expressed during brain development, affecting neurogenesis, neuronal migration, axon guidance, and synapse formation. In the adult brain they modulate
activity-dependent refinement of neural circuits and synaptic plasticity (including long-term potentiation, long-term depression, and synaptic scaling), as well as brain
function (including cognition). Because chronic changes in the immune molecules levels are observed in neurodevelopmental disorders (particularly autism and
schizophrenia), they could also contribute to the neurocognitive profile of affected individuals. Adapted from Garay and McAllister (2010; Figure 3).

are further arranged in heteromultimeres that represent
selective binding units for cell-cell interactions (Yagi, 2012,
2013; Sotomayor et al., 2014). Overall, clustered Pcdhs
play critical roles in axonal projection, synaptic formation,
dendritic arborization, and neuronal survival (Chen and
Maniatis, 2013; Hirayama and Yagi, 2013). Some of these
have been related to neurological diseases and cognitive
disorders involving language deficits (for review, see
Hirabayashi and Yagi, 2014). Thus PCDH10 has been linked
to autism (Tsai et al., 2012), while mutations in PCDH19
cause epilepsy and mental retardation (Dibbens et al.,
2008). More to our point, Williams et al. (2006), Chance
and Crow (2007), or Crow (2008) argue that different
chromosomal reorganizations/mutations affecting PCDH11
triggered a modification of the brain lateralization pattern
that contributed to language emergence. Finally, the editing
enzymes may also explain diversity in immunoglobulin and
neuronal adhesion molecules, which could affect language
evolution (see Dong et al., 2012 on the downregulation of
APOBEC3A and APOBEC3C in the inferior parietal lobule
of psychotics; for LINE-1 and Alu elements, immobilized by
these enzymes, as linked to cognitive disorders, see Muotri
et al., 2010; Hancks and Kazazian, 2012; Thomas et al.,
2012).

As a second aspect of crosstalk between the immune
system and the brain (and, for us, the parallelism between
immunity and syntax), note that immunoglobulin cell surface
receptors are also active in the brain (Figure 2). They play
a role in the development of different cell types (Nakahara
et al., 2003) and contribute to the functional establishment in
different brain areas (Andoh and Kuraishi, 2004; Nakamura
et al., 2007). Moreover, their aberrant activation contributes
to the pathogenesis of neurodegenerative conditions (Okun
et al., 2010). For example, in amyotrophic lateral sclerosis
immunoglobulin G (IgG) uptake by motor neurons affects
transmitter release from motor axon terminals (Mohamed
et al., 2002). More generally, most of the molecules whose
production is triggered upon infection play a role in the
normal development of the brain. Thus cytokines modulate
neurogenesis in response to an activated immune system and
seem involved in neurobiological mechanisms associated with
cognitive processes (Borsini et al., 2015; Figure 2). At the
same time, the altered homeostasis of cytokines impacts brain
development and predisposes to mental diseases (Ratnayake
et al., 2013). Ge et al. (2014) link cytokine levels, functional
polymorphisms of immunity-related proteins, and language
impairment. Similarly, the complement, a component of the
defense cascade of innate immunity comprising fluid-phase and
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cell-associated proteins (Wagner and Frank, 2010), also plays a
role in brain wiring and function (Figure 2). This ‘‘complement
activation’’ contributes to the remodeling of synaptic circuits
during early stages of brain development (Eggleton et al., 2000;
Bialas and Stevens, 2013), but it is necessary as well for brain
wiring after birth, a failure in which may result in autism or
schizophrenia (Patterson, 2011). Overall, normal brain-immune
communication is crucial for the development of the brain, while
alterations in brain-immune communication (e.g., caused by
pathogen infections) give rise to neuropsychiatric disorders. This
is, in short, why we expect changes in brain-immune crosstalk
to have contributed to brain rewiring during recent hominin
evolution.

Since the logic of the ‘‘immune syntax’’ hypothesis was ‘‘based
on properties of immune responses to viral intruders’’ (Piattelli-
Palmarini and Uriagereka, 2004: p. 366), we next explore the
putative effects of pathogenic infections on language evolution.
Again, infections can affect a population, thus contributing
to spread innovations, and because microbes can integrate
into the host genome, modifications brought about by their
genetic material or the integration event can be inherited by the
offspring.

VIRAL VECTORS AND LANGUAGE
EVOLUTION

Chronic and neuropathic viral infections produce loss of
neurons and axons that result in neurodegenerative and
neurocognitive diseases (Karim et al., 2014). Viral infection
has been hypothesized to (subtly) contribute, also, to cognitive
developmental disorders. According to Fruntes and Limosin
(2008), prenatal exposure to viruses may cause early brain
damage and an aberrant pattern of neuronal migration and
expression of neural cell adhesion molecules that may result
in schizophrenia. Some viral infections can give rise to loss
of language (Marques et al., 2014). Viruses are hypothesized
to cause this effect by direct brain lesion, by triggering an
autoimmune response during development, or by inducing the
maternal immune activation during growth (Garbett et al.,
2012). Interestingly, viruses that specifically attack the immune
system can produce cognitive impairment too, as commonly
observed in HIV-infected patients (Rosca et al., 2012). Viral
infection can also affect the cellular mechanisms involved
in somatic variation and neuronal diversity within the brain
(with deleterious consequences). For instance, changes in
the splicing profile of MOR induced by the HIV-1 virus
sometimes result in neurocognitive impairment (Dever et al.,
2012).

Importantly, viruses are also able to transfer DNA or
RNA fragments to the host species that may be permanently
integrated in their genomes and be subsequently transmitted
to offspring (Liu et al., 2011). The human genome expresses
multiple genes acquired from or potentially transferred by
viruses (Crisp et al., 2015). A literature search [via PubMed
and OMIM (http://www.ncbi.nlm.nih.gov/omim/)] helped us
determine whether, and if so to what extent, some of these genes
may have contributed to the changes that we believe important

for language evolution (reviewed in Boeckx and Benítez-Burraco,
2014a,b; Benítez-Burraco and Boeckx, 2015). We have relied
as well on computer tools [mostly on String 10 (http://string-
db.org/)] to learn about the robustness of the links we posit. As
for phylogenetic changes, we have relied on available data on
genetic and epigenetic changes that occurred after our split from
Neanderthals and Denisovans.

We have found that several of the genes potentially transferred
from viruses are candidates for cognitive disorders entailing
language deficits, or play a role in aspects of brain development
and function that we believe relevant for language processing,
or interact with some of our candidates for language evolution
(Table 1; Figure 3). Among them, we have found genes that
are upregulated upon RUNX2 transfection [SERPINE1, ELOVL4,
CXCR4, CCR7, GPX2, GPR1, andDHFR (Kuhlwilm et al., 2013)],
and several targets of FOXP2 [FGR, CLEC2D, CCRL2, CXCR4,
and GPR1 (Spiteri et al., 2007)]. RUNX2 is our core candidate
underlying the changes that prompted the globularization of
the human brain, whereas FOXP2 is a renowned gene involved
in vocal learning (Graham and Fisher, 2013). The evolutionary
modification of the interactomes of both genes may have
contributed to the emergence of our language-readiness and
refined the devices involved in the externalization of language
(for details, see Boeckx and Benítez-Burraco, 2014a,b; Benítez-
Burraco and Boeckx, 2015).

If language evolution was affected by changes in the immune
system/brain crosstalk, it is interesting that GPR1 turns out to be
among the genes potentially transferred to humans from viruses.
This gene is expressed in the hippocampus of primates only
(as compared to rodents) and encodes an orphan G protein-
coupled receptor (Marchese et al., 1994). GPR1 functions as a
co-receptor for some viruses, making the cell more susceptible
to infection (Shimizu et al., 1999). This makes us wonder
whether posterior infections or infection-related events affected
the evolution of cognition in primates only, as compared to
other mammals. We also find it interesting that many genes that
were putatively transferred from viruses would encode cytokine-
and chemokine-related proteins. Again, such immune-signaling
molecules and their functional partners do not only mediate
viral infection: they are also expressed in the brain, in whose
development and function they play a role, in synaptic pruning
(Paolicelli et al., 2011), brain disease (Moretti et al., 2015),
and memory and learning (Williamson and Bilbo, 2013); see
e.g., van der Meer et al. (2000) on CCR2 and CXCR4, two of
the genes in Crisp et al.’s (2015) list. It should be established
whether any of these genes played a role in the evolution of the
memory and learning capacities presupposed in the faculty of
language.

Other transferred genes (present in primates only) are
endogenous retroviruses (HERVs). These are non-coding DNA
remnants of retroviral infections occurred during primate
evolution (Antony et al., 2004). While HERV activity pertains
to individual genomic variation associated to chromosomal
rearrangements (Weckselblatt and Rudd, 2015), it may
also account for evolutionary differences across species, as
accumulation of retroelements parallels the increment of
evolutionary complexity of the host species (Kidwell, 2002).
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TABLE 1 | Genes discussed in sections 3 and 4.

Core candidate genes
for language evolution

Top-25 GO biological processes of
core candidates genes for language
evolution

Viral genes important for
language evolution

Non-viral genes important
for language evolution

ABL1 Nervous system development CCR2 AHNAK
AKT1 Neurogenesis CCR7 AHNAK2
APOE Generation of neurons CCRL2 AL158821.1
ARX Organ development CLEC2D AL356585.1
ASCL1 System development CXCR4 AP4E1
AUTS2 Central nervous system development DHFR ASTN2
BMP2 Multicellular organismal development EBLN2 CARNS1
BMP7 Anatomical structure morphogenesis ELOVL4 CDKL5
CBL Regulation of developmental process ERVFRD-1 CENPF
CDC42 Cellular developmental process ERVW-1 CYP26A1
CEBPB Anatomical structure development FGR CYP26C1
CITED2 Cell differentiation GPR1 DAZ2
CMIP Regulation of multicellular organismal

development
GPX1 FAM230A

CNTNAP2 Single-organism developmental process GPX2 FLJ22447
CREBBP Developmental process SERPINE1 GIMAP8
CTNNB1 Head development SRC GOLGB1
DISP1 Cell development XCR1 HAS1
DLL1 Neuron differentiation YES1 HAS3
DLX1 Brain development IL4I1
DLX2 Regulation of multicellular organismal

process
IRG1

DLX5 Tissue development LMO7
DLX6 Forebrain development MAP6
DYRK1A Regulation of cell differentiation MSRA
EGR1 Regulation of cell development MT-ND4L
EP300 Regulation of gland development MYO10
ERBB4 NQO1
FEZF2 PADI2
FMR1 PADI3
FOXG1 PLAU
FOXO1 RAD21-AS1
FOXP1 RIMKLA
FOXP2 RTL1
FOXP2 SERPINB2
GAD1
GBX2
GLI3
GTF2I
HES1
LHX2
MAPK1
MECP2
MEF2A
NCAM1
NCOA6
NFASC
NKX2–1
NODAL
NRG1
OTX2
PAX6
POU3F2
PTEN
ROBO1
ROBO2
RUNX2
SATB2
SHH
SIRT1

(Continued)
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TABLE 1 | (Continued).

Core candidate genes
for language evolution

Top-25 GO biological processes of
core candidates genes for language
evolution

Viral genes important for
language evolution

Non-viral genes important
for language evolution

SLIT1
SLIT2
SOLH
SPAG5
SRGAP2
SRGAP3
SRPX2
TBR1
TP53
TSC1
VCAM1
ZBTB20

The first column contains core candidates for the evolution of language as posited by Boeckx and Benítez-Burraco (2014a,b) and Benítez-Burraco and Boeckx (2015).

The second provides a GO classification of these genes according to Panther (http://pantherdb.org); only the top-25 functions after a Bonferroni correction have been

included. The last two columns include the horizontally-transferred genes from viruses and non-viral organisms, respectively, highlighted here as potential new candidates

for language evolution.

In all vertebrates, there is evidence of transposable element-
mediated genomic rearrangements potentially associated with or
subsequent to speciation events, which suggests that these are
drivers of genomic and biological diversity in vertebrates (Böhne
et al., 2008). Interestingly, HERVs travel in waves of infection
and subsequently transition from exogenous to endogenous
forms (Ishida et al., 2015). Curiously, the emergence of HERVs
coincided with that of adaptive immunity (Litman et al., 2010).
Although the vast majority of retroviruses have been inactivated,
some are still expressed in different tissues (Seifarth et al., 2005;
Yi et al., 2006), playing regulatory functions and more (Bannert
and Kurth, 2006). Activation or upregulation of HERVs have
been linked to AMH-specific neurocognitive conditions like
autism (Balestrieri et al., 2012) or schizophrenia (Frank et al.,
2005), which helps us illustrate how HERVs may have affected
genes involved in language evolution.

According to Suntsova et al. (2013) HERVs may serve as
tissue-specific enhancers for brain-related genes involved in
schizophrenia—specifically PRODH, which codes for a proline
dehydrogenase enzyme that plays a role in neuromediator
synthesis in the brain. The mechanism involves the transcription
factor SOX2, regulated by RUNX2 (Yoon et al., 2014). At
the same time, SOX2 regulates PQ15P1, a gene linked to
developmental delay, intellectual disability and microcephaly (Li
et al., 2013), which interacts with POU3F2 (Li et al., 2013). Intron
8 of FOXP2 contains an AMH-specific substitution that affects
a binding site for POU3F2 (Maricic et al., 2013). Moreover,
schizophrenia has been claimed to result from epigenetic changes
that deregulate HERV-activity (Diem et al., 2012). Importantly,
among the environmental factors causing these epigenetic
changes one finds viral infections, which can deregulate the
epigenetic control naturally involved in silencing HERVs via the
transactivation of endogenous retroviruses (Perron and Lang,
2010). We believe it is worth exploring whether any of these
effects played a role in language evolution.

Among the genes that may have been transferred to primates
we found XCR1, which encodes a chemokine receptor belonging
to the G protein-coupled receptor superfamily (Heiber et al.,
1995) and is a FOXP2 target (Vernes et al., 2011). Additionally,
ERVW-1 and ERVFRD-1 are found in all primates except
tarsiers. ERVW-1 encodes syncytin 1, a membrane protein that
contributes towards immune tolerance and is found upregulated
in astrocytes and glial cells of individuals with multiple
sclerosis (Antony et al., 2004). ERVFRD-1 encodes syncytin 2, a
membrane protein with inmunosuppresive activity (Blaise et al.,
2003). Similarly, EBLN2 (found only in macaques, gibbons, and
the great apes) encodes a protein akin to the Borna disease
viruses (Horie et al., 2010). One gene was transferred to our
genome after our split from the great apes; namely, AP001468.1.
Unfortunately, it encodes a protein of unknown function.

To be clear: we are not claiming that all those genes were
transferred to (and spread among) modern humans by a viral
vector and that these events allowed modern language to emerge
and spread so quickly. Most of the genes highlighted were
transferred before the split of great apes from other mammals.
However, because some of these are functionally related to genes
that show differences when comparing AMHs to Neanderthals
and/or Denisovans, we shouldn’t discard differences between
hominin species regarding the functions these genes contribute
to. Such may be the case of SRC, for instance, which is
functionally related to VCAN: the specific blockade of Src
activity abolishes versican-1-induced differentiation of PC12
cells into neurons (Wu et al., 2004). Versican-1 is involved
in neurite outgrowth of hippocampal neurons (Xiang et al.,
2006) and shows a fixed N3042D change in AMHs (Pääbo,
2014; Table S1). Similarly, two human-specific conserved
deletions (hCONDELs; although shared with Neanderthals) exist
upstream YES1 and downstream GPX1, respectively (McLean
et al., 2011)—which are two of the genes highlighted by Crisp
et al. (2015).
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FIGURE 3 | Functional links predicted by String 10 among candidates for the evolution of language (nodes in gray) and the horizontally-transferred
genes from viruses highlighted here as potential new candidates (nodes in green). Stronger associations between proteins are represented by thicker lines.
The medium confidence value was 0.0400 [a 40% probability that a predicted link exists between two enzymes in the same metabolic map in the KEGG database
(http://www.genome.jp/kegg/pathway.html)]. String 10 predicts associations between proteins that derive from a limited set of databases: genomic context,
high-throughput experiments, conserved coexpression, and the knowledge previously gained from text mining (Szklarczyk et al., 2015). This is why the figure does
not represent a fully connected graph (evidence for additional links are provided in the main text). Importantly, the diagram only represents the potential connectivity
between the involved proteins, which has to be mapped onto particular biochemical networks, signaling pathways, cellular properties, aspects of neuronal function,
or cell-types of interest that can be confidently related to aspects of language development and function (see Table 1).

Most changes implicated in language evolution are expected
to have impacted the transcriptome. Regulatory switching due to
the horizontal transfer of regulatory regions have been attested

in bacteria (Nijveen et al., 2012; Oren et al., 2014). It may be
transposable elements that harbor these regulatory elements,
allowing them to move across strains (Siddique et al., 2011).
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Also, the consequences for gene regulation of the viral infections
occurred during our recent history are worth mentioning.
For example, HERVs are endowed with transcriptional activity
enabling them to function as alternative promoters or enhancers,
ultimately to modify the expression of neighboring genes (Le
Dantec et al., 2015). Additionally, viral infections can modify
the brain epigenetic landscape, as HERVs illustrate. Thus, we
should expect the impact of viral infections on brain function and
evolution to go beyond the roles reviewed above.

Most epigenetic changes brought about by viruses affect
the expression of host immune genes, to render the immune
responses inactive to their antigens (Adhya and Basu, 2010).
However, viral infection per se may induce changes in the brain
epigenetic landscape even in the latent phase. For example, latent
HIV-1 is associated with increased levels of BCL11B, a chromatin
modifier encoded by one the genes regulated by RUNX2, which
may result in abnormal transcriptomes (Kuhlwilm et al., 2013).
Exogenous factors exacerbate the impact of viral infections on
epigenetic modification of the brain (Desplats et al., 2013).
For instance, HIV-1 infection in conjunction with drug abuse
brings about changes in the expression of DNMT1 (a key
enzyme responsible for DNA methylation), which result in
differential methylation on genes related to neurodegeneration
and dopamine metabolism in the frontostriatal circuits. Drugs
too can cause epigenetic changes at the viral promoter, resulting
in altered gene expression (Shirazi et al., 2013). One has
to wonder whether such mechanisms contributed to changes
required for the emergence of language-readiness.

NON-VIRAL VECTORS AND LANGUAGE
EVOLUTION

The logic of Piattelli-Palmarini and Uriagereka’s hypothesis
applies to any infectious vector that may transfer genetic material.
There is growing evidence suggesting that the microbiota impact
brain development and function and, ultimately, cognition
and behavior (Cryan and Dinan, 2012 and see ‘‘Introduction’’
Section). Nearly 150 genes from other organisms are expressed
in human cells (Crisp et al., 2015). Following the modus
operandi described in section ‘‘Viral Vectors and Language
Evolution,’’ we have found among them language-related genes,
including targets of RUNX2 (CENPF, SERPINB2, IL4I1,AHNAK,
GOLGB1, NQO1, AHNAK2, RTL1, and LMO7) and FOXP2
(HAS1 and PLAU) (Spiteri et al., 2007; Figure 4).

Other genes are functionally related to genes in the
interactomes that we believe important for language evolution
(Figure 4) or give rise to language or cognitive disorders
entailing aberrantmodes of thinking whenmutated. Thus,MAP6
encodes a protein that binds to and stabilizes microtubules
and has been related to schizophrenia (Shimizu et al., 2006).
In mice, deletion of Map6 gives rise to synaptic defects and
brain dysfunctions, ultimately to cognitive deficits similar to
those observed in schizophrenics (Volle et al., 2013). CDKL5
has been related to Rett-like syndrome and X-linked West
syndrome, two cognitive disorders entailing language deficits
(Kalscheuer et al., 2003; Tao et al., 2004; Scala et al., 2005).
Mutations or deletions in AP4E1 cause a syndrome involving

microcephaly, facial dysmorphisms, cognitive impairment and
speech delay (Abou Jamra et al., 2011; Moreno-De-Luca et al.,
2011).MYO10 controls the direction and morphogenesis of cells
during radial cortical neuronal migration (Ju et al., 2014). Also
of interest are two isoforms of the hyaluronan synthase, encoded
by HAS1 and HAS3. HAS1 is upregulated in astrocytes during
normal brain aging (Cargill et al., 2012), whereas Has3(–/–)
mice exhibit altered neuronal activity and seizures (Arranz et al.,
2014). Lastly, ASTN2 regulates the levels of ASTN1, a neuron-
glial ligand important for glial-guided neuronal migration, a
key step in the development of laminar architecture of cortical
regions of the mammalian brain (Wilson et al., 2010). Mutations
in ASTN2 have been related to neurodevelopmental disorders,
including autism spectrum disorder and speech delay (Lionel
et al., 2014), and to Alzheimer’s disease (AD; Wang et al.,
2015a).

Several of the genes transferred from non-viral organisms are
involved in the metabolism of retinoic acid in the brain. Retinoic
acid controls brain changes relevant to language development,
in connection with FOXP2 (for review, see Benítez-Burraco
and Boeckx, 2014), which potentiates retinoic acid induction
of genes involved in neural differentiation (Devanna et al.,
2014). Two of the three all-trans retinoic acid—degrading
cytochromes, CYP26A1 and CYP26C1, remove retinoic acid in
the forebrain to ensure proper head development (Ribes et al.,
2007; Uehara et al., 2007). Both genes are also involved in
the regulation of retinoid signaling across multiple connected
song nuclei and auditory brain regions in songbirds, modulating
the circuitry that underlies the acquisition and production
of learned vocalizations (Roeske et al., 2014). Another gene
worth highlighting is MSRA, which is regulated by retinoic
acid (Pascual et al., 2009) and regulates COMT activity (hence
dopamine levels) in the brain (COMT is a strong candidate for
several cognitive disorders, including schizophrenia; Moskovitz
et al., 2014). Finally, among the genes transferred from bacteria
we have found IRG1. This is an interferon-stimulated gene
regulated bymicroRNA that reduces the susceptibility of neurons
from specific areas of the brain to viral infection (Cho et al.,
2013).

Although these genes were transferred between the common
ancestors of Chordata and the primates, they are functionally
related to genes involved in language evolution (Figure 4),
some of which have changed after our split from Neanderthals
and Denisovans. However, a handful were transferred later.
Found in primates only, except tarsiers, FAM230A contains a
site of frequent translocations and micro-deletions in DiGeorge
syndrome (Kurahashi et al., 2007), a complex disease involving
language deficits (Swillen et al., 1999; Glaser et al., 2002).
MT-ND4L is found in great apes only and encodes the
subunit 4L of the mitochondrial NADH dehydrogenase. Two
genes of unknown function (AL356585.1 and AL158821.1)
are shared by gorillas, chimpanzees and humans, whereas
two are found in chimpanzees and humans only: DAZ2, a
member of the DAZ gene family involved in spermatogenesis,
and RAD21-AS1, which encodes a ncRNA (RAD21), is highly
expressed in human fetal cerebral cortex, and is thought to
play a key role in brain development (Pemberton et al., 2007).
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FIGURE 4 | Functional links predicted by String 10 among core candidates for language evolution (nodes in gray) and the horizontally-transferred
genes from non-viral organisms highlighted here as potential new candidates for language evolution (nodes in red). The medium confidence value was
0.0400. The caveats noted for Figure 3 apply.

Finally, FLJ22447 was transferred to humans only, although
before the split from Neanderthals/Denisovans (Gokhman
et al., 2014, Table S2). This gene encodes an ncRNA that
interacts with FUS, an RNA/DNA binding protein involved
in transcription, DNA repair, and RNA splicing, which
has been related to frontotemporal dementia (Wang et al.,
2015b).

Some of the genes transferred from other organisms may be
differentially regulated in AMHs, as compared to other close
hominins, resulting from several factors. First, from human-
specific deletions, like the one affecting the region upstream
PADI3 (McLean et al., 2011). Second, from differences in
methylation patterns, like those expected for MSRA, involved
in COMT action (Moskovitz et al., 2014); PADI2, involved in
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the catabolism of myelin basic protein (Asaga et al., 2002);
GIMAP8, linked to AD (Ishigami et al., 2005) and multiple
sclerosis (Mastronardi et al., 2007); CARNS1, which catalyzes
the biosynthesis of homocarnosine (Drozak et al., 2010); and
FLJ22447 (Gokhman et al., 2014, Table S2). Third, differential
regulation may result from differences across hominin species
in timing of expression: this could be the case of genes
regulated by MEF2A (Liu et al., 2012a), like CDKL5 (reviewed
above) and RIMKLA, which encodes N-acetylaspartylglutamate
synthetase II, an enzyme synthesizing the neurotransmitters N-
acetylaspartylglutamylglutamate and N-acetylaspartylglutamate
(Neale et al., 2011). Lastly, differential regulation can arise from
poorly understood interactions with the microbiome during
development (not just evolution).

MICROBIOTA AND LANGUAGE
EVOLUTION

The impact of microbiota in the host (neuro)development
transcends the effect of horizontally-acquired genes.
Accordingly, we should expect some impact on language
evolution (Figure 1). Microbiota may modulate the host
transcriptome via the interaction with RNA editing enzymes
(Schellekens et al., 2012) or RNA methylation enzymes (Zheng
et al., 2013), its effects on histone acetylation levels (MacFabe
et al., 2011) or its mimicry of the host epigenetic machinery via
specific proteins (Bhavsar et al., 2007) or ncRNAs (Liu et al.,
2012b). The microbial and host genomes can be regarded as an
extended genome or hologenome, as the former complements
missing components of the latter (see Rosenberg and Zilber-
Rosenberg, 2014). We should thus study the genomes of
our microbial endosymbionts if seeking a full account of the
language gene network (or language hologenome). For example,
changes in the gut microbiota may have allowed changes in
the gastrointestinal tract that contributed to the emergence of
larger brains within the primate lineage (Aiello and Wheeler,
1995). Moreover, since different microbiota are maintained by
closely related species in the same environment (Franzenburg
et al., 2013), cognitive differences between closely related
hominin species may be partially due to the effect of differential
microbiota on brain development and function. Language has
a social dimension that affects its acquisition by children and
perhaps some of its core properties; interestingly, changes in
the social environment affect the individual microbiota and the
immune response (O’Mahony et al., 2009). Importantly, recent
research suggests that viruses too are part of the microbiota
(Virgin, 2014).

At the same time, because they are easily transmissible, aspects
of social behavior may have evolved to facilitate the transfer
of beneficial microbes that protect from pathogens (Lombardo,
2008; Montiel-Castro et al., 2013, 2014). Cognitive diseases
involving social dysfunction (e.g., autism) entail alterations in
microbiota composition and function, as attested in humans
(Ming et al., 2012) and animal models for the diseases
(Hsiao et al., 2013; Desbonnet et al., 2014). There seems to
also exist a critical period for the acquisition of microbiota-
dependent social abilities, because some time after weaning,

germ-free animals that lack social cognition are unable to
achieve conspecific recognition memory even after microbiota
replenishment (Desbonnet et al., 2014). As Stilling et al.
(2014b: p. 11) puts it, ‘‘the microbiome represents a further
interface for environmental influence and a dynamic source
for transgenerational developmental regulation [M]icrobiota . . .

accelerate short-term environmental adaptation and may be
especially helpful in unifying different theories of host-microbe
co-evolution and the evolution of the ‘social brain’.’’ In short, we
expect themicrobiota to account for some aspects of the ‘‘cultural
niche’’ that allowed the transition from modern cognition to
modern behavior and thus full-fledged languages.

FROM BRAIN REWIRING TO LANGUAGE
EVOLUTION

What is, in the end, the connection between the ‘‘wetware’’ and
‘‘mindware’’ that results in observed behaviors, whether low-level
activities of bacterial genes or the high-level accomplishments
of human cognition and culture? After reminding us of
the Synaptic Plasticity Hypothesis (SPH, that during memory
formation, synapses undergo activity-dependent alterations),
Gallistel and King (2009; p. 278 and ff.) separate (a) the role of
extracting behavioral information from an animal’s experience
from (b) the ability to carry this information in time in a
computationally accessible format. Rejecting the idea that SPH
entails synaptic conductance, they suggest that memory should
be implemented ‘‘at the sub-molecular level’’: ‘‘Given how much
of the requisite machinery is already realized . . . in DNA
and RNA . . . [It would be] . . . curious if a basic function
that could be better implemented at the lowest possible level
of structure . . . were found to be implemented instead at
the circuit level, . . . requiring orders of magnitude more
physical resources.’’ They then emphasize the speed of neural
computation, particularly ‘‘given that signals travel eight orders
of magnitude more slowly in the nervous system than they
do in a conventional computer.’’ It is worth clarifying this
point.

Presupposed throughout this work is the Computational
Theory of Mind (CTM; Fodor, 1975, 1994, 1998): the mind can
be seen as an information-processing system, ‘‘thinking’’ being
a computational process (a logical manipulation of symbolic
representations). In a system of this nature, as Gallistel and King
put it: ‘‘most of the signal flow is to and fro between memory,
where the symbols reside when not entering computations,
and the processing machinery that implements [them]’’. They
then reason: ‘‘Given that signals travel slowly in neural tissue,
the only way to minimize the time consumed in transferring
information frommemory to the processing machinery and back
again is to place . . . memory [and] processing machinery as
close together as is physically possible.’’ After quoting Feynman’s
(1960) dictum that ‘‘There is plenty of room at the bottom,’’
Gallistel and King conclude that, in a neurobiological context this
pushes the computational system to the realm of nucleic acid . . .

Gallistel and King are not speaking of human cognition—they
are analysing animal cognition in general. If the place to
carry information forward in time within animal minds is ‘‘at
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the bottom’’, that should be where the evolution of complex
computation, of the sort presupposed in language, must have
proceeded; this of course is the idea behind the ‘‘immune syntax’’.

Second, it is worth noting some of the parallels that exist
between the well-known properties of the immune system and
NS as presently understood, as advanced by Piattelli-Palmarini
andUriagereka (2004) and see Piattelli-Palmarini andUriagereka
(2008):

1. Adaptive immunity creates immunological memory after an
initial response to a specific pathogen, and leads to a response
to subsequent encounters with that pathogen. Similarly, the
computational system creates a lexical memory after an
initial response to an acquired word, allowing for a recall to
subsequent encounters with that very word.

2. There are two main classes of adaptive immune responses:
antibody responses and cell mediated immune response that
are also carried by two different lymphocytes (B cells and T
cells). Similarly, there are two main broad classes of words:
nouns and verbs, which are arguably carried by two different
lexical dimensions.

3. Pathogen-specific sensors are ‘‘acquired’’ during the lifetime
of the organism (the acquired response is said to be ‘‘adaptive’’
because it prepares the body’s immune system for future
infections). Similarly, lexical items are acquired during the
lifetime of the human organism (the acquired response could
be said to be ‘‘adaptive’’ in that it prepares the linguistic system
for future encounters with words).

4. Because of accelerated somatic mutations and irreversible
genetic recombination of antigen receptor gene segments,
a few genes generate a vast number of different antigen
receptors. Similarly, because of Merge, a few lexical items
generates a vast number of different sentences.

This may be just a case of convergent evolution, but it
may be well an example of real crosstalk between the immune
system and the brain. Piattelli-Palmarini and Uriagereka went
into further similarities, but since presenting those would require
us to delve more deeply into the nature of NS computations,
(1) through (4) are enough to make the point. Coincidences or
metaphors? Perhaps. During the last 150 years, neurolinguistics
has attempted to map language to the brain, usefully so.
Nonetheless, as Poeppel (2012) notes, mapping is not explaining.
Key components of our description of language, even those as
basic as memory, are still elusive. Currently, neurolinguistics is
trying to distill language into a set of computational primitives
(otherwise not specific to language) that form the basis for more
complex representations and computations. Our speculation
should be seen in that light.

One promising approach is the decomposition of language
into a suite (or grammar) of endogenous brain rhythms (see
Giraud and Poeppel, 2012 on speech). Brain oscillations are
primitive units of brain function and are conserved across species
while, at the same time, vary across disorders (Buzsáki and
Watson, 2012; Buzsáki et al., 2013). Because we agree with
Gallistel and King that whatever goes on ‘‘at the bottom’’ (nucleic
interactions and more) may be closer to the CTM than the still
vague associations of neurophysiology, it may worth exploring

this complex parallel play between the immune system, the brain,
the genome, and the microbiome.

CONCLUSIONS

The complex evolutionary process resulting in the emergence of
syntax (language in a complex sense) did not only depend
on mutations occurred in particular genes, important
for brain development and function. As noted by many
(Enard et al., 2002; Khaitovich et al., 2006; Sikela, 2006;
Vallender et al., 2008; Varki et al., 2008), most such
mutations probably affected the transcriptome, involving
changes in the epigenetic landscape of the primate brain.
In this article, we have built on a hypothesis put forth by
Piattelli-Palmarini and Uriagereka, ‘‘the immune syntax’’,
to explore another source of variation that may have
contributed to the emergence of modern cognition and
language: host-pathogen(-like) interactions occurred during
evolution.

Because of the growing interest in genes potentially involved
in language evolution, we have focused on genes that may
have been transferred by other organisms to the human
genome (though other mechanisms may have played a role).
Literature-based assembly of gene-to-gene interactions (and
their evolutionary consequences) has limitations. The links
we have highlighted must be experimentally tested in ways
that we ourselves cannot undertake, in order to prove their
putative biological meaningfulness regarding brain development
and cognitive evolution. Some sources of evidence we have
used are stronger than others (e.g., data on direct protein
to protein interactions as compared to data on genes that
are up- or down-regulated after gene transfection). We also
expect the vast literature and datasets to be selectively
biased as they focus on given genes, processes, or different
methods of interest. As a consequence, the genes we have
highlighted should be regarded as mere candidates for future
research.

We believe the links reviewed are robust in light of our current
knowledge of the biological underpinnings of the language
faculty, and meaningful for research on its evolution. For all its
admitted limitations, our research may offer signposts for the
future of this topic, at a stage of research in cognitive biology that
is early enough to be fascinating, but hopefully not too early to be
reckless.
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