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Non-invasivemolecular imaging techniques can enhance diagnosis to achieve successful

treatment, as well as reveal underlying pathogenic mechanisms in disorders such as

multiple sclerosis (MS). The cooperation of advancedmultimodal imaging techniques and

increased knowledge of the MS disease mechanism allows both monitoring of neuronal

network and therapeutic outcome as well as the tools to discover novel therapeutic

targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms

to better achieve precision medicine. Traditionally, magnetic resonance imaging (MRI)

has been considered the golden standard in MS research and diagnosis. However,

positron emission tomography (PET) imaging can provide functional information of

molecular biology in detail even prior to anatomic changes, allowing close follow up of

disease progression and treatment response. The recent findings support three major

neuroinflammation components in MS: astrogliosis, cytokine elevation, and significant

changes in specific proteins, which offer a great variety of specific targets for imaging

purposes. Regardless of the fact that imaging of astrocyte function is still a young field

and in need for development of suitable imaging ligands, recent studies have shown

that inflammation and astrocyte activation are related to progression of MS. MS is a

complex disease, which requires understanding of disease mechanisms for successful

treatment. PET is a precise non-invasive imaging method for biochemical functions and

has potential to enhance early and accurate diagnosis for precision therapy of MS. In this

review we focus on modulation of different receptor systems and inflammatory aspect

of MS, especially on activation of glial cells, and summarize the recent findings of PET

imaging in MS and present the most potent targets for new biomarkers with the main

focus on experimental MS research.
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INTRODUCTION

Multiple sclerosis (MS) is the most common disabling neurologic
disease of young people, afflicting approximately a quarter of
million Americans (Anderson et al., 1992; Islam et al., 2006;
Brody, 2012; Ransohoff et al., 2015). It occurs more in women
than in men by a ratio of nearly 2 to 1, and it strikes most
often between the ages of 20 and 40 (Compston and Coles,
2008). MS results from the immune-driven demyelination of the
central nervous system (CNS), which leads to axonal damage
and progressive loss of neurological functions (Sofroniew and
Vinters, 2010; Malpass, 2012; Sofroniew, 2015). Based on clinical
characteristics, MS pathology can be divided into three different
disease courses: relapsing-remitting (RR), secondary progressive
(SP), and primary progressive (PP) (Goodin, 2014). Initially,
most MS patients exhibit a RR-MS disease course (Morales
et al., 2006), experiencing heterogeneous symptoms such as
ataxia, visual disturbances, paresthesia, and muscle weakness
(Ellwardt and Zipp, 2014). However, eventually the majority of
these patients develop SP-MS characterized by the progressive
and irreversible accumulation of neurological disability (Lublin
and Reingold, 1996). PP-MS patients have continuous disease
progression from onset, without relapses or remissions (Morales
et al., 2006; Lopez-Diego and Weiner, 2008).

Recent findings of the innate and the adaptive immune system
of CNS have shaken up the classical view of MS as being
strictly an autoimmune disease of the white matter (Weiner,
2008; Gandhi et al., 2010; Hemmer et al., 2015). The studies
have revealed the important role of infiltrating immune cells
from the periphery as well as the role of resident activated
glial cells leading ultimately to the T cells and macrophages
reaction against myelin (see Figure 1) (Frohman et al., 2006;
Compston and Coles, 2008). These advances have switched
the focus of MS research toward neurodegenerative aspects of
the disease, occurring early in the pathological process (Kiferle
et al., 2011). Despite the recent progresses in the field of
MS therapeutic strategies there is no curative treatment for
progressive MS (Lopez-Diego and Weiner, 2008; Derwenskus
and Lublin, 2014). Therefore, identifying new specific biomarkers
for MS could reveal new potential drug targets and diagnostic
markers. Moreover, there is an unmet clinical need for methods
to monitor different mechanisms of disease pathogenesis in MS
patients, therefore advanced non-invasive molecular imaging
technologies are needed to expand our understanding of the
controversial aspects of the MS pathology (Kiferle et al., 2011;
Jacobs and Tavitian, 2012).

Historically, MRI has overruled other imaging technologies
in the diagnosis of MS (Traboulsee and Li, 2006; Barkhof and
Filippi, 2009). The classical McDonald criterion for MS diagnosis
requires objective dissemination of lesions in time and space
(Filippi and Rocca, 2011). The literature analysis has shown
that the sensitivity of MRI has been between 35 and 100%,
and specificity has been between 36 and 92% depending on
the research protocol (Schäffler et al., 2011; Tillema and Pirko,
2013). Overall, T2-weighted MRI is effective way to detect MS
lesions, but because the signal reflects the water content, it
does not provide reliable information about the myelin content

(Ge, 2006; Poloni et al., 2011). T1-weighted imaging together
with contrast agents such as gadolinium-DTPA has increased
the lesion detection sensitivity, however, signal frequency is
associated with the opening of the blood brain barrier (BBB;
Lund et al., 2013). This leads to the problem that MRI can
vary greatly in terms of sensitivity and specificity, especially in
MS-related pathological pathways (Barkhof et al., 2009; Lövblad
et al., 2010). Early diagnosis and treatment is effective for
the therapy and decreases the financial burden of the disease
(Noyes et al., 2011; Guo et al., 2014). The annual mean cost
is around $47,000 per MS patient, which arises to a national
cost of about $13 billion in US per year (Olek, 2012). The
disease modifying treatments (DMTs, typically used first-line
interferon betas and glatiramer acetate) have been available for
the last 25 years and are estimated to account for one third
of the total cost. Unfortunately, these treatments suppress the
disease only for a few years (Hartung et al., 2015) and the
spectrum of treatment options is narrow (Oh and O’Connor,
2015). Conventional MRI gives anatomical information from the
progressed lesions in the brain of MS patients but lacks the power
to provide target for drug discovery and more specific molecular
markers when compared to imaging modalities like positron
emission tomography (PET; Filippi et al., 2012; Matthews et al.,
2012).

PET research field is emerging and the researchers have
been successful in developing novel tracers for multiple different
aspects of MS to enhance understanding the pathophysiology
of the disease. In this review, we summarize PET imaging in
MS research and introduce some of the most potent imaging
targets and applications that have been successfully investigated
in inflammation and which can be implemented especially to
astrocyte activation related pathways, which are presently of high
interest in MS research (Maragakis and Rothstein, 2006; Nair
et al., 2008; Miljković et al., 2011; Nash et al., 2011; Mayo et al.,
2014).

PET IMAGING TECHNIQUES

PET imaging is based on detection of isotope labeled tracers,
which emit beta radiation (see Table 1). These tracers are
administered into the subjects to monitor underlying biological
processes (Kiferle et al., 2011). The radioisotope undergoes
positron emission decay and emits positron, which travels into
surrounding tissue until it interacts with an electron and the
annihilation process takes part (see Figure 2). The formed two
photons travel in approximately opposite directions and can
be detected with the imaging device as a coincidence pair.
Each detected coincident forms a line of response (LOR) where
the point of origin is the location of annihilation event. The
combination of LORs can be used for reconstruction of images
to provide 3-dimensional (3D) distribution of the radiolabeled
tracer (Gambhir, 2002).

The clinical history of positron emission techniques started
in 1952 when Gordon Brownell was able to localize brain
tumors from patients (Brownell and Sweet, 1953). Further
technical progression led to 3D tomographical positron imaging
by 1971 (Pizer et al., 1971). However, even today PET suffers
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FIGURE 1 | Basic mechanism of the development of MS includes a variety of inflammatory responses and activation of specific cell types. Modified

from Criste et al. (2014) and Friese et al. (2014).

TABLE 1 | Properties of discussed positron emitting radio-isotopes.

Isotope Half-life Production Positron range Maximum positron

(min) method in (mm) energy (MeV)

11C 20.3 Cyclotron 1.1 0.96

13N 9.97 Cyclotron 1.5 1.19

18F 109.8 Cyclotron 0.6 0.64

64Cu 764 Cyclotron 0.6 0.65

68Ga 67.8 Generator 2.9 1.89

82Rb 1.26 Generator 5.9 3.15

Saha et al., 1994; Partridge et al., 2006; Miller et al., 2008; Jødal et al., 2012.

from high cost because the production of radiopharmaceutical
agents increase the imaging cost compared to CT or MRI,
both which became available later. After the development of
[18F]fluorodeoxy glucose ([18F]FDG) PET imaging received
more significant clinical role especially in oncological diagnosis
(Portnow et al., 2013). In MS however, MRI has been regarded
as the golden standard in assessing patients (Filippi et al., 2012;
Miller et al., 2012). Combined PET/MRI imaging with high
specificity to MS lesions, would have a potential to become
a practical tool in clinics to follow up the treatment of MS
patients and increase cost-effectiveness. This approach could
reveal an optimized treatment regimen; increase the treatment
effectiveness and safety of patients, especially in early stage
and patients with aggressive disease (Catana et al., 2013).
When comparing these two imaging techniques, PET imaging
has at least four major advantages over conventional MR
imaging: (Massoud, 2003; Kiferle et al., 2011; Poloni et al.,
2011; Jacobs and Tavitian, 2012; Miller et al., 2012; Torigian
et al., 2013; Faria Dde et al., 2014; Jadvar and Colletti, 2014;
Bodini et al., 2015) (1) Specific information of disease mechanism

and molecular contributors, (2) Enhance development of new
medicines and therapeutic targets, (3) Efficient allocation of new
costly therapeutics and personalized medicine, and (4) Improved
prognostic method for the MS patients.

Although the first clinical positron emission imaging studies
were done over 60 years ago, the spectrum of applications
of PET imaging is still limited due to the high cost and
lack of validated traces and state-of-the-art facilities including
availability of cyclotrons and automated radiopharmaceutical
production laboratories (Jones et al., 2012). Complete knowledge
about pharmacokinetic and pharmacodynamic properties of
injected tracers can assure the correct interpretation of the images
from preclinical and clinical studies. Overall, PET is an extremely
powerful technology and the in vivo receptor occupancy can
help answer many vital questions in the MS research (Matthews
et al., 2012; Bodini et al., 2015). Furthermore, PET offers
an opportunity for the detection of enzyme reactions, ligand-
receptor interactions, cellular metabolism, cell proliferation,
protein-protein interactions, as well as gene and cell therapy
(Herschman, 2003; Ono, 2009; Thorek et al., 2013). The
development of new PET tracers is challenging because the
binding affinity and selectivity of the tracer have to be high
and the dissociation must be fast enough to obtain the binding
equilibrium in time frame of scan (1–2 h) (Hicks, 2006; Sharma
et al., 2010). The tracer should penetrate the BBB, but too
lipophilic compound might have strong non-specific binding
(Liu et al., 2008). The optimal radiotracer should have minimum
amount of unwanted metabolism and fast synthetic method
(usually in single half-life of the radioisotope).

PET imaging systems have been developed also for small
animals enhancing significantly basic research. Modern
micro-PET instrumentation (resolution < 1 mm) is rapidly
expanding the use of non-invasive PET imaging techniques in
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FIGURE 2 | Schematic diagram of positron detection. Modified from Brownell (2008).

basic research. These advances have been progressively translated
to human studies (Herschman, 2003; Liang et al., 2007; Lancelot
and Zimmer, 2010). PET imaging offers tools to evaluate a great
variety of molecular aspects of MS and neurodegeneration in
animal models as well as in clinics (see Figures 3, 4).

PRECLINICAL MODELS FOR MS

Several animal models are used to study mechanisms of
disease pathogenesis relevant for MS (Furlan et al., 2009;
Denic et al., 2011; Ransohoff, 2012). Experimental autoimmune
encephalomyelitis (EAE) is the most vividly used animal
model especially to study the inflammation aspects of MS. In
this model, rodents are immunized with myelin antigens to
activate peripheral antigen specific T-cells, which travel to CNS
and induce formation of demyelinating lesion (Baxter, 2007;
Constantinescu et al., 2011). Based on the hypothesis that viral
infections may cause MS, virus-induced demyelination animal
models are also used to study the disease (Gilden, 2005; Owens
et al., 2011; Tselis, 2012). A disadvantage of this model is
that the experimental disease manifests months after the initial
infection (Olson et al., 2001; Fatima et al., 2010). Demyelination
and spontaneous remyelination processes relevant to MS are
predominantly studied using toxin-induced models (Blakemore
and Franklin, 2008). The induction with copper chelating
agent, Cuprizone [oxalic acid bis(cyclohexylidene hydrazide)],
is one of the frequently used methods, since it is highly
reproducible, relatively simple, induces fast demyelination, and
the model has spontaneous remyelination after halting the toxin
exposure (Torkildsen et al., 2008; Kipp et al., 2009). The focal
demyelination lesions are commonly induced with ethidium
bromide and lysolecithin (Woodruff and Franklin, 1999). The
small size of the disease model increases the technical aspects for
imaging technology. In the following chapters we will discuss the
current tracers designed to detect the main pathological features
of MS.

FIGURE 3 | 3-Nitropropionic acid (3-NP, a naturally occurring plant

toxin and mycotoxin) could be involved to the development of MS. This

study demonstrates the advantages of PET imaging where specific tracers can

be used to reveal different time dependent neurochemical processes. In this

case significant decrease of glucose metabolism imaged by 18F-FDG,

decrease of dopamine D2 receptor function imaged by 11C-raclopride and

decrease of dopamine transporter function imaged with 11C-CFT follow after

3-NP administration. Modified from Brownell et al. (2004).

PET IMAGING OF AXONAL
DEGENERATION

The complex network of conditions leading to neuroaxonal
degeneration and neuronal loss contribute the permanent
disability related to MS pathology (Friese et al., 2014). Even
though during the earlier days of MS research, axonal loss was
considered to be late-occurring, it is now discovered to happen
also in the early stages of MS (Trapp and Nave, 2008; Trapp
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FIGURE 4 | PET images show distribution of [11C]PBR28 in the brain of an EAE mouse model. Fused CT images show the boundaries of the skull. Enhanced

accumulation of [11C]PBR28 in the hind brain and cerebellum is an indication of regionally activated microglia. Modified from Radu et al. (2007) and Arsenault et al.

(2014).

and Stys, 2009). In the earlier phases of the disease axonal
damage can occur acutely in the new inflammatory lesions.
Whereas later in the disease progression axonal damage is usually
related to chronic and demyelinated regions and there is only
little if any active inflammation present (Criste et al., 2014). In
addition, there is growing amount of evidence from both MRI
and histological studies proposing that the axonal degeneration
contributes to the development of clinical disability (Edgar and
Nave, 2009; Nave, 2010). These interesting facts further highlight
the need of specific markers for imaging of disease stage.

Currently, the most promising marker for neuronal integrity
is benzodiazepine site on the GABAA receptor (Sigel and Buhr,
1997). Flumazenil, antagonist for benzodiazepine site, has been
already labeled with 18F and 11C (Suzuki et al., 1985; TheMICAD
Research Team, 2004). Interestingly, in MS patients the axonal
reduction has been demonstrated with the use of [11C]flumazenil
(Barkhof et al., 2009). Furthermore, it has been shown that focal
brain inflammation causes reduced GABAA mediated inhibition
in neurons (Rossi et al., 2012). In addition, the inhibition is also
induced in gray matter in the acute relapsing phases of MS (Rossi
et al., 2012). Rossi et al. suggest that neurodegeneration in white
and gray matter lesions are accompanied by a loss of GABAA

receptors. PET could visualize this with radiolabeled flumazenil.
However, this strategy remains yet to be tested.

Another cell type, which suffers from axonal loss during MS,
is cholinergic neurons (D’Intino et al., 2005). Degradation of
these neurons can, at least party, contribute to the cognitive
impairment of the MS patients (Kooi et al., 2011). Interestingly,
when assessing the acetylcolinesterase (AChE) activity by
[11C]MP4A (11C-methyl-4-piper-idinylpropionate), an inverse
correlation with the activity of AChE and cognitive impairment
was observed in MS patients (Virta et al., 2011). This result is
contradicting the demonstrated positive response seen in MS
patients with AChE inhibitors (Krupp et al., 2004; Tsao and
Heilman, 2005). However, it has been hypothesized that the
controversial results with increased AChE expression might be
due to induction by inflammatory response in glial cells (Virta
et al., 2011).

In addition, the reduction of glucose metabolism in the
degenerated regions has shown correlation between disease
activity, hypo-metabolism and specific cognitive functions
during the MS progression (Bakshi et al., 1998). [18F]FDG
has some valuable characteristics for monitoring cognitive and
mental dysfunctions associated with MS (Paulesu et al., 1996;
Zarei, 2003; Buck et al., 2012; Colasanti et al., 2014).

PET IMAGING OF DEMYELINATION

Demyelination, the pathological removal of myelin sheaths
surrounding the axons, has been thought to be an integral part
of axonal degeneration, as chronic CNS demyelination has been
demonstrated to lead to axonal pathology and degeneration
(Wilkins et al., 2010). However, these two events can happen
independently from one another as axonal degeneration has been
demonstrated to occur without myelin loss (Nave, 2010) and
recently it has been demonstrated that the loss of myelin does
not necessarily lead to axonal degeneration (Smith et al., 2013).

Classically in MS, demyelination is thought to cause the
axonal dysfunction and disease-related pathogen conditions
(Lucchinetti et al., 2000). On the other hand, spontaneous
remyelination, executed by oligodendrocytes that mature
from oligodendrocyte precursor cells, may occur following
demyelination, presumably allowing a partial, if not complete,
recovery from disability (Brück, 2005; Compston and Coles,
2008). Both adaptive and innate immune systems control the fine
balance between demyelination and remyelination during MS
and determine the outcome of the disease (Zhang et al., 2013).
However, recently researchers have demonstrated early loss of
both neurons and oligodendrocytes, leading to the question
whether inflammatory demyelination is primary or secondary in
the disease process of MS (Trapp and Nave, 2008). Remyelination
is usually seen to occur in the early phases of the disease, whereas
in the later phases it fails to recover the demyelinated areas
leading to chronic demyelinated lesions (Chang et al., 2002;
Kuhlmann et al., 2008).
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Several tracers have been developed to target the β-sheet
structures of intact myelin (Wu et al., 2006; Mallik et al.,
2014). The first tracer, [11C]BMB (1,4-bis(p-aminostyryl)-
[11C]2-methoxy benzene), had significant off-target affinity
toward white and gray matter (Stankoff et al., 2006). Some
of these downsides have been overcome with Congo red
derivatives (e.q. [11C]CIC, Case Imaging Compound) and
thioflavine-T derivatives (e.q. [11C]PIB, N-methyl-[11C]2-(4′-
methylaminophenyl)-6-hydroxybenzothyazole). Moreover, these
tracers have more reliable production and BBB penetration
(Wang et al., 2009; Stankoff et al., 2011). Recent comparisons
between these series and new [11C]MeDAS, (N-[11C]methyl-4,4′-
diaminostilbene) tracers prefer the latter compound as the most
promising ligand so far to detect MS-like lesions and spinal
cord imaging (de Paula Faria et al., 2014b). [11C]MeDAS has
been successfully used to image acute focal neuroinflammation in
the brain, lyso-phosphatidyl choline induced focal demyelination
in the spinal cord and EAE rodent models of MS (Wu et al.,
2013). Furthermore, [11C]MeDAS was also able to highlight
both demyelination and remyelination processes in cuprizone
mouse model (de Paula Faria et al., 2014b). Interestingly, the
uptake of [11C]MeDAS was not interfered by inflammation (Wu
et al., 2013). The current literature suggest that [11C]MeDAS
is the most preferred PET agent so far to highlight the lesions
as well as the myelin content in the spinal cord in motor
disability related MS (de Paula Faria et al., 2014a). To this
point the only PET tracer used to image myelin in MS patients
is [11C]PIB, a tracer widely utilized to visualize β-amyloid
plaques in Alzheimer’s disease (Stankoff et al., 2011; Zhang et al.,
2014).

Altogether, PET imaging of myelin integrity shows great
potential in animal models of MS. It is interesting to validate
these methods in patients, especially now that new remyelination
therapies are introduced in clinical trials (Brugarolas and Popko,
2014).

PET IMAGING OF MICROGLIAL
ACTIVATION

Neuroinflammation is a common characteristic of numerous
neurodegenerative disorders, including MS (Glass et al., 2010).
Reactive states of astrocytes (astrogliosis), and microglia
(microgliosis), as well as the infiltration of the lymphocytes
are the hallmarks of neuroinflammation (Carson et al.,
2006). Although factors inducing inflammation vary between
CNS related diseases, there is evidence that convergence
mechanisms are accountable for the sensing, transduction, and
amplification of inflammatory processes that eventually lead to
the production of neurotoxic mediators (Glass et al., 2010).
In fact, neuroinflammation is a highly dynamic and complex
process combining local and systemic reactions of multiple
cell types, chemical signals, and signaling pathways to adaptive
response for restoring tissue homeostasis (Medzhitov, 2008;
Aguzzi et al., 2013; Naegele and Martin, 2014). In the following,
we will discuss the PET tracers used to visualize microglial and
astrocytic activation.

Microglia are of mesenchymal origin and constantly monitor
the extracellular environment as well as interact closely with
astrocytes and neurons (Yamasaki et al., 2014; Michell-Robinson
et al., 2015). As macrophages in the periphery, microglia are
the first line of defense against infections or insults in the
CNS (Olson et al., 2001; Hanisch and Kettenmann, 2007; Nau
et al., 2014). Upon activation, microglia acquire an amoeboid
appearance and secrete pro-inflammatory molecules such as
interleukin 1β, interferon γ, and tumor necrosis factor-α (TNFα)
(Boche et al., 2013): a classically activated M1 state (Mills
et al., 2000; Martinez and Gordon, 2014). The aim of the pro-
inflammatory reaction is to clear the hazardous material and
correct the inflicted damage (Gordon, 2003; Martinez et al.,
2009). Usually, the pro-inflammatory reaction is down-regulated
by the anti-inflammatory molecules (Tambuyzer et al., 2009;
Scheller et al., 2011). In addition to pro-inflammatory molecules,
microglia can release trophic and anti-inflammatory factors such
as interleukins 4 and 10 as well as insulin-like growth factor
1 (Cherry et al., 2014). These factors are aimed to contribute
to the repair and limitation of the inflammation (Mantovani
et al., 2004; Hanisch and Kettenmann, 2007; Michelucci et al.,
2009). Astrocytes and inflammatory T-cell subsets surrounding
microglia influence the state of microglia, and determine whether
they are releasing pro- or anti-inflammatory factors (Shih, 2006;
Goverman, 2009; Mayo et al., 2012, 2014; Quintana et al., 2014).

The role of microglial activation in MS progression has
remained enigmatic (Correale, 2014). However, several theories
have been offered. The first theory suggests that inflammatory
processes similar to those observed in RR-MS cause the brain
damage (Kutzelnigg and Lassmann, 2014). However, during the
progressive disease stages, a microenvironment is created within
the brain favoring the homing and retention of inflammatory
cells, finally resulting in the failure of disease-modifying therapies
(Frischer et al., 2009). According to the second theory, MS
starts out as an inflammatory disease and after several years,
neurodegeneration, a process autonomous of inflammatory
response, becomes the mechanism responsible for progression
of the disease (Meuth et al., 2008; Kutzelnigg and Lassmann,
2014). Finally, MS could be seen primarily as a neurodegenerative
disease, where inflammation occurs as a secondary response,
augmenting and modifying progressive stages (Kassmann et al.,
2007; Fitzner and Simons, 2010). Needless to say, these theories
are not mutually exclusive. Furthermore, it has been postulated
that the lack of understanding the exact microglial function
during course ofMS, has led to the absence of therapies for SP-MS
(Correale, 2014). Altogether, this clearly demonstrates the need
for a consensus and better understanding ofmicroglial activation,
which can only be achieved by using appropriate methodology.

Inflammation related PET studies in MS are traditionally
focused on monitoring changes in glucose metabolism and the
presence of activated microglia/macrophages in sclerotic lesions
(Schiepers et al., 1997; Kiferle et al., 2011). [18F]FDGwas recently
used to evaluate the inflammation in the spinal cord in the EAE
ratmodel (Buck et al., 2012). However, the basal uptake of glucose
is elevated in the brain reducing the usability of [18F]FDG as
a marker for brain lesions. Results of different stage patients
indicate that [18F]FDG could be used to classify white matter
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lesions as either acute (hyper metabolism) or chronic (hypo
metabolism) based on the glucose consumption (Paulesu et al.,
1996; Dimitrakopoulou-Strauss et al., 2004; Buck et al., 2012). It
is obvious that more specific markers are required to image the
inflammation related metabolism in MS.

The majority of current PET tracers used to detect
microglial activation utilize the expression of the peripheral
benzodiazepine receptor (PBR), also known as the translocator
protein TSPO (18 kDa) (Ryu et al., 2005; Ching et al., 2012).
Translocator protein is expressed in the outer mitochondrial
membrane. It was assumed to contribute through the cholesterol
transportation into mitochondria regulating the rate of the
synthesis of neurosteroids. However, these views have recently
been challenged (Rupprecht et al., 2010; Selvaraj and Stocco,
2015). Gene-expression studies in the brain of rodents, primates,
and humans have shown that TSPO expression is nearly absent
in microglia patrolling the intact CNS parenchyma but rapidly
increases in inflammation (Venneti et al., 2008; Ching et al.,
2012). TSPO is highly expressed in activated microglia, in the
choroid plexus and in reactive astrocytes, but its expression
is globally low in the normal brain (Chauveau et al., 2008;
Banati et al., 2014; Liu et al., 2014). These findings indicate that
TSPO is a biomarker and an attractive target for the imaging
microglial activation and reactive gliosis in cerebral inflammation
(Rupprecht et al., 2010; Ching et al., 2012).

The isoquinoline carboxamide derivate PK11195 (N-butan-2-
yl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide), a
nonbenzodiazepine ligand specifically binding to TSPO, has
been widely used for its functional characterization and for
the identification of its cellular origin in brain tissue (Banati
et al., 1997, 2000; Chauveau et al., 2008). The issues regarding
sensitivity and specificity of traditional PK11195 has been
discussed (Venneti et al., 2008; Dickens et al., 2014; Boutin et al.,
2015). Fortunately, recently developed radioligands such as DPA-
714 (James et al., 2008; Chauveau et al., 2009), PBR28 (Imaizumi
et al., 2007), PBR111 (Van Camp et al., 2010), SSR18075
(Chauveau et al., 2011), CLINME (Arlicot et al., 2008; Van Camp
et al., 2010), andGE-180 (Dickens et al., 2014) have demonstrated
better binding potency and bioavailability compared to the
classical PK11195 and could overcome the problems of the
classical tracers in MS and its models. A number of other TSPO
targeting tracers have been developed to study the inflammation
including but not limiting to DAA1106, FE-DAA1106, DPA-
713, and vinpocetine, and reviewed by (Chauveau et al., 2008;
James et al., 2008; Winkeler et al., 2010; Ciarmiello, 2011; Kiferle
et al., 2011). Microglial activation was demonstrated in clinical
MS studies with [11C]PK11195, unfortunately only in a limited
number of patients (Banati et al., 2000; Debruyne et al., 2003;
Versijpt et al., 2005; Vas et al., 2008). Radiotracer binding was
increased in areas of acute and relapse-associated inflammation
detected by classical Gd-DTPA enhanced T1-weighted MRI
imaging (Rissanen et al., 2014). Interestingly, a significant
increase in [11C]PK11195 binding was observed in activated
microglia outside the histopathologically or MRI defined borders
of MS plaques in both cerebral central gray-matter areas,
which are not normally reported as sites of pathology in MS,
as well as in normal appearing white matter (Banati et al.,

2000; Debruyne et al., 2003). Unfortunately, 2nd generation
TSPO targeting agents suffer from unexpected low binding
status in over 30% of the population, which limits their use in
clinics and demands genetic testing of the TSPO polymorphism.
However, clinical studies have shown increased uptake with 18F-
PBR111 and 11C-PBR28 in white matter lesions but not with
all 2nd generation compounds like 18F-FEDAA1106. Additional
studies are required to further investigate the specificity of these
radiotracers for activated microglia over other activated glial
cells. Overall, imaging of microglial activation in MS patients
may serve as a complementary biomarker for disease progress
(Abourbeh et al., 2012; Airas et al., 2015).

The type 2 cannabinoid receptor (CB2R) is part of the human
endocannabinoid system and is involved in both central and
peripheral inflammatory processes (Ehrhart et al., 2005; Pacher,
2006; Chiurchiù et al., 2014). CB2R can be found in immune cells,
such as macrophages, perivascular T lymphocytes, astrocytes
and reactive microglia, and it is thought to mediate anti-
inflammatory as well as immunomodulatory effects (Docagne
et al., 2008; Rodgers et al., 2013). 2-oxoquinoline and oxadiazolyle
derivatives have been synthesized and radiolabeled with 11C
and 18F, representing promising candidates for brain imaging
in mice (Evens et al., 2009; Teodoro et al., 2013; Slavik et al.,
2015). CB2R is almost undetectable in a healthy brain, whereas
it is expressed in the activated glial cells (Stella, 2004; Cabral
et al., 2008; Atwood and Mackie, 2010). This demonstrates that
the effective PET ligands for CB receptors have the potential
to act as biomarkers in the studies of pathophysiology of MS
(Sanchez-Pernaute et al., 2008; Evens et al., 2009; Horti et al.,
2010; Turkman et al., 2011; Vandeputte et al., 2011). In addition,
new microglial targets, like P2X purinoceptor 7 (P2X7; Yiangou
et al., 2006; Monif et al., 2009) and matrix metalloproteinases
(Wagner et al., 2007; Iwama et al., 2011), have been explored for
imaging of MS.

Overall, the benefits of PET contribute to the understanding of
personalized status of MS patients, disease profiling, prognosis,
and response, which are all combined in precision medicine.
Specific biomarkers are the backbone for capturing the different
aspects of MS heterogeneity, which could be useful for diagnosis,
treatment stratification, and personalization of the therapeutic
approach. Simplified, the precision medicine aims to provide
the right drug with the right dose for the right indication
in the right patient at the right time. Such as the case with
the current 2nd generation TSPO markers, precision medicine
relies on variability of genes, environment and life style of each
person rather than on the data from large clinical trials. The
customization of the treatment is based on the characterization
of the genotype and phenotype induced effects on imaging in
the individual patient. Biomedical imaging offers a great tool for
mapping data from biomarkers, genomics, and physiology. There
is a great interest for the monitoring of microglial activation in
MS. However, the recent results with TSPO ligands suggest that
the reactive astrocytes might increase the signal levels in MS
(Lavisse et al., 2012). Since the role of reactive astrocytes in MS
is recently of great interest, more specific markers are needed for
reliable imaging of neuroinflammation (Rostami and Ciric, 2014;
Zeis et al., 2015).
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IMAGING ASTROCYTE ACTIVATION

Astrocytes are one of the most abundant cell types in the
CNS. They have complex function ranging from supporting the
surrounding neurons to the regulation of synaptic activity and
BBB integrity (Sofroniew and Vinters, 2010). Although astrocytes
are not immune cells per-se they can in specific conditions, such
as in CNS inflammation, exert both pro- and anti-inflammatory
effects on microglia (Min et al., 2006; Farina et al., 2007;
Sofroniew, 2015).

Astrocytes were regarded to be non-participating bystanders
in MS, responding secondarily to insults by undergoing
astrogliosis and producing a glial scar (Brosnan and Raine, 2013).
However, since the T-cell mediated immunity has been strongly
associated with MS there are several plausible means by which
astrocytes could contribute to autoimmunity. Astrocytes may
facilitate immune cell extravasation into the CNS by releasing
chemokines. They can modulate the activity of innate immune
cells, such as microglia and inflammatory monocytes recruited to
the CNS, by boosting their ability to promote neurodegeneration.
Finally, astrocytes also have direct neurodegenerative functions
mediated by the production of TNFα and nitric oxide (NO).
However, these actions can also represent potential mechanisms
by which astrocytes could reduce inflammation to promote
remyelination (Claycomb et al., 2013).

Activation of glial cells is a common feature ofMS as discussed
earlier. Acetate is reported to accumulate into astrocytes and
the [11C]acetate accumulation is increased in MS lesions
(Takata et al., 2014). However, brain uptake of [11C]acetate
is insufficient for obtaining a quantitative image of astrocytes’
oxidative metabolism (Okada et al., 2013). To overcome this
drawback benzyl [11C]acetate has been synthesized (Okada et al.,
2013). Although the quantitative measurement remains under
development, acetate is specific for astrocyte lipid metabolism
(Brekke et al., 2015) and could serve as a marker for activated
astrocyte metabolism in MS (Takata et al., 2014). In addition,
18F labeled derivative of acetate could increase the signal to noise
ratio compared to 11C analog. It is expected that this tracer will
be used in MS (Ponde et al., 2007).

One critical function of astrocytes is acting as sentinels and
monitoring the BBB, a complex barrier composed of endothelial
cells, astrocytes, pericytes, and myeloid cells such as perivascular
macrophages and mast cells (Abbott et al., 2006). BBB functions
as an anatomical mechanism for the highly selective passage of
water, ions, nutrients, and cells from peripheral circulation into
and out of the brain parenchyma (Abbott et al., 2006; Daneman
and Rescigno, 2009; Larochelle et al., 2011). Under inflammatory
conditions the BBB opens and it enables higher leukocyte passage
into the CNS (Claycomb et al., 2013). Astrocytes play a critical
role in shielding and protecting the CNS under inflammatory
conditions (Voskuhl et al., 2009). Furthermore, astrocyte ablation
has been shown to cause enhanced monocyte, but not T-cell,
migration into the CNS (Toft-Hansen et al., 2011). To date, there
is no clinically relevant PET tracer for BBB integrity, although
several candidates have been proposed [13N]glutamate, [82Rb]Cl,
or 68Gallium-ethylene-diamine-tetra-acetic acid (EDTA) (Saha
et al., 1994; Wunder et al., 2012).

Imaging of astrocyte function is still a young field and it
needs development of suitable imaging ligands. Astrocytes are
involved in several neurological diseases and the main obstacle
using imaging techniques has been the lack of proper tracers.

TARGETS FOR PET IMAGING IN MS

The recent increased availability of PET tracers to assess
activated glial cells, disease pathology, and signaling pathways
give PET a promising role in MS research. Since the underlying
mechanisms of neurodegeneration and regeneration are still
poorly understood the non-invasive techniques will enhance
understanding these processes to develop better drug candidates,
early diagnosis, and reliable monitoring of the treatment
response. Several possible targets for PET imaging in MS are
discussed in this section. These candidates may serve as more
specific targets and may reveal some of the missing links in MS
treatment and pathology, especially in the glial cell mediated
actions.

Neuroinflammation is a dynamic and complex adaptive
response process, which involves multiple cell types and
various signaling routes, pathways, and receptors (Singhal
et al., 2014). As discussed earlier, neuroinflammation can
be imaged in MS. However, new tracers are needed to
gain practical importance in clinics. The greatest potential
may lay in the imaging of the dynamic interplay between
neuroinflammation and the molecular mechanisms that
contributes to the disease progression. The recent findings
support three major neuroinflammation components in MS:
astrogliosis, cytokine elevation, and significant changes in
specific proteins, which offer a great variety of specific targets for
imaging purposes.

TNF-α is associated with self-propagation of
neuroinflammation and the expression of TNF-α is elevated
in MS patients (Rossi et al., 2014). Microglia, inflammatory
monocytes recruited to the CNS and astrocytes are major sources
of TNF-α in CNS, interestingly proposing TNF-α expression as
a marker in MS (Welser-Alves and Milner, 2013). PET tracers,
like [64Cu]DOTA-etanercept and [64Cu]pegylated dimeric
c(RGDyK), have been developed to target TNF-α in both acute
and chronic inflammation in mice (Cao et al., 2007). TNF-α may
be a target for MS imaging in the future. Overall, cytokines are
highly related to oxidative stress in the brain (Di Penta et al.,
2013). The expression of inducible nitric oxide synthase (iNOS)
is increased in MS lesions, increasing generation of NO as well as
reactive nitrogen species like peroxynitrite (Kröncke et al., 1998;
Ortiz et al., 2013). The accumulation of these molecules induces
lipid peroxidation, resulting in damage to DNA and neuronal
degeneration (Haider et al., 2011).

In the healthy CNS tissues, the expression levels of iNOS
are low but become highly expressed in astrocytes and
neurons during inflammation (Saha and Pahan, 2006). In
chronic pathology the reactive nitrogen species produced
by iNOS are not efficiently eliminated, which leads to
cellular dysfunctions (Fulda et al., 2010). The number of
tracers for iNOS is minimal and the current [18F]NOS
(6-(1/2)(2-[18F]fluoropropyl)-4-methylpyridin-2-amine) needs
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further modification and improvement. Importantly, the
feasibility of iNOS PET imaging has been demonstrated in
human inflammation (Herrero et al., 2012; Huang et al., 2015).
In addition, active iNOS enzyme has been demonstrated in
astrocytes in both acute and chronic active MS lesions and might
therefore be an interesting target for imaging purposes (Liu et al.,
2001).

The expression of another proinflammatory cytokine
mediator, cyclooxygenase-2 (COX-2), is extensively increased
in MS lesions and it has been tightly linked to increased iNOS
expression (Rose et al., 2004). Furthermore, COX-2 expression
was found in the cells expressing microglial marker, highlighting
the importance of immune-derived cells. COX-2 has also been
suggested to act as a link between neuroinflammation and
glutamate mediated neuronal excitotoxicity (Kelley et al., 1999).
These facts clearly indicate a need for methods to detect COX-2
expression. PET tracers for COX-2 have been developed, but
the in vivo imaging properties have not been very effective
(de Vries et al., 2003, 2008; Takashima-Hirano et al., 2011;
Ji et al., 2013). The most promising COX-2 tracer so far is
[11C]Rofecoxib (4-(4-methylsulfonylphenyl)-3-phenyl-5H-
furan-2-one), demonstrating in vitro usability, but lacking
necessary affinity for in vivo studies (Ji et al., 2013). Nevertheless,
cyclooxygenases is presently an important target for PET tracer
development.

Besides stimulating production of reactive oxygen species,
cytokines are known to modulate the lipid metabolism and
increase the production of neurodegeneration promoters such
as eicosanoids and ceramides (Adibhatla and Hatcher, 2007).
As previously mentioned, acetate is converted into fatty acid
by acetyl-CoA synthase and [11C]acetate PET has proven
useful for imaging in several diseases (Grassi et al., 2012).
In addition, acetate is preferentially absorbed into astrocytes
by the monocarboxylate transporter, which is overexpressed
in MS (Nijland et al., 2014). Moreover, bioactive lipids exert
significant effects on inflammation during autoimmunity targets
or regulators of the immune response (Rinaldi et al., 2009).
In addition, the appearance of cytosolic lipid synthesis is
one the corner stones of macrophage foam cell formation
(Matthäus et al., 2012). The intracellular concentrations of
different individual lipids or the receptors involved the synthesis
of particular bioactive lipids could reveal novel aspects of
the disease progression (Mayo et al., 2014). Recently β-1,4-
galactosyltransferase 6 (B4GALT6) was found to promote
astrocyte activation and neuroinflammation during chronic EAE.
The lactosylceramide (LacCer) synthesized by B4GALT6 in
astrocytes controls the production of chemokines and cytokines,
such as CCL2 and GM-CSF, which regulates the recruitment and
activation of inflammatory monocytes and microglia and clearly
highlights the importance of a specific lipid profile for disease
progression (Mayo et al., 2014).

In summary, comprehensive profiling of lipid metabolism and
the BBB function are likely to reveal new targets for therapeutic
intervention in MS as well as for other neurological disorders
where astrocyte activation contributes to disease pathology (Neu
and Woelk, 1982; Pannu et al., 2005; Adibhatla and Hatcher,
2007; Wheeler et al., 2008; Kooij et al., 2012; Prüss et al., 2013).

The imaging of specific bioactive lipids, receptors or enzymes
that are involved in their synthesis may be novel targets for PET
imaging.

BIOMARKERS FOR THE EARLY PHASES
OF MS

In the search of better treatments for MS, cerebrospinal fluid
(CSF) biomarkers have been used to identify high risk MS
patients as well as patients with other neuronal disorders.
Recently, high levels of astrocyte derived chitinase 3-like protein
1 (CHI3L1) were associated with the strong prediction of MS.
This finding further demonstrates the increased importance of
astrocyte activation and the specific role of astrocyte as a source
for biomarkers in MS, already at the early disease phase.

The activated lipid metabolism in astrocytes demands
increased acetate and lipid transportation (Lev, 2012). ATP
and glutamate stimulation can significantly enhance the
dynamin-independent endocytosis and their receptors control
the microglial physiology and pathology (Jiang and Chen,
2009). For example ATP related purinergic receptors control
microglial cytokine release among several other functions
(Sperlágh and Illes, 2007). Moreover, purinergic pathways
regulate neuroinflammation (Burnstock, 2008). The increasing
evidence suggests that the P2X7 receptor is an interesting
neuroinflammation associated molecular target (Lister et al.,
2007; Monif et al., 2009; Gandelman et al., 2010). PET tracers
have been developed to image P2X7 receptor, [11C]A-740003
(N-[1-[[(Cyanoamino)(5-quinolinylamino)methylene]amino]-
2,2-dimethylpropyl]-3,4-dimethoxybenzeneacetamide) and
[11C]GSK1482160 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-
1-[11C]methyl-5-oxopyrro-lidine-2-carboxamide; Janssen et al.,
2014; Gao et al., 2015). Purinergic system might serve as a
sensitive target for MS imaging.

Furthermore, the adenosine receptors, whose expression is
modulated by microglial activation, moderate immune function
(Haskó et al., 2008; Orr et al., 2009; Domercq et al., 2013; Luongo
et al., 2014). Especially A2A receptors are up-regulated during
inflammation (Rissanen et al., 2013). It is clear that adenosine
signaling play a significant role in MS as a neuromodulator
and the clinical studies with [11C]TMSX (7-methyl-[11C]-(E)-
8-(3,4,5-Trimethoxystyryl)-1,3,7-trimethylxanthine) PET will
likely open new perspective to develop new tracers to this target
in the future (Rissanen et al., 2015).

In addition, the cholinergic system shows decreased function
in MS patients (Kooi et al., 2011). PET imaging studies of
cholinergic activity may define which patient will respond to the
treatment which will further increase the knowledge of MS. A
similar approach has been already used in Alzheimer’s disease
using radiolabeled choline derivatives and these techniques could
be easily transferred to MS clinical research (Volkow et al., 2001;
Rinne, 2003; Kooi et al., 2011).

The cannabinoid receptors CB2 are expressed in very
low levels in a healthy brain, but the expression increases
during microglial activation (Benito et al., 2007). CB2 is an
interesting target for PET imaging in MS models especially
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with [11C]A836339 (2,2,3,3-Tetramethylcyclopropanecarboxylic
acid [3-(2-[11C]methoxyethyl)-4,5-dimethyl-3H-thiazol-(2Z)-
ylidene]amide) and [11C]NE40. Recently there has been great
progress in developing new tracers for this target (Docagne et al.,
2008; Horti et al., 2010; Evens et al., 2011, 2012; Slavik et al.,
2015; Yrjölä et al., 2015).

During inflammation microglia will release glutamate in
response to the production of reactive oxygen species (ROS; Bal-
Price and Brown, 2001; Brown and Neher, 2010; Takaki et al.,
2012). The cysteine-glutamate exchange modulates the release
of ROS and cytokines which impairs the function of glutamate
transporters and leads to increased extracellular glutamate levels
as well as excitotoxicity (Rao et al., 2003; Matute et al., 2006).
Metabotropic glutamate receptors (mGluRs) are transmembrane
proteins that are expressed in glial cells and play a pivotal role in
cell function and glial-neuronal co-operation (Kritis et al., 2015).
Immunohistochemical analyses have revealed that mGluR5 is
expressed in reactive astrocytes surrounding the MS lesion site
and the expression is higher than in non-activated astrocytes
(Geurts et al., 2003). In addition, the activation of mGluR5
reduced the microglial activation in an inflammation model
(Byrnes et al., 2009; Loane et al., 2009). During the last 15 years
the subtype selective allosteric modulators have been identified
for different mGluRs (see Figure 5; Zhang and Brownell, 2012).
Many PET tracers have been synthesized by radiolabeling the
derivatives of MPEP and MTEP and to date over 15 mGluR5
targeting PET ligands have been reported (Mu et al., 2010; Zhang
and Brownell, 2012). Tracers like [18F]FPEB ((3-[18F]Fluoro-5-
(2-pyridinylethynyl)benzonitrile) have been already developed
for automated synthesis and evaluated in humans (Lim et al.,
2014).

Monoamine oxidase type B located in the outer membrane of
mitochondria and is expressed in astrocytes, where its activity
is increased in neurodegenerative diseases (Mallajosyula et al.,
2008; Veitinger et al., 2014). It catalyzes the deamination reaction
thus modulating neurotransmitter concentrations and has been

FIGURE 5 | Coronal and sagittal sections of fused PET and CT images

in 10 days old pups of mice. PET studies using [18F]FPEB show enhanced

mGluR5 expression in the brain of the pups, whose mothers were injected

with LPS compared to saline injection (control). Coronal slices show highest

accumulation in the hippocampal area of the mouse, whose mother had LPS

administration. Sagittal images show spine based on CT images and high

accumulation of [18F]FPEB in the brain and gut. Modified from Arsenault et al.

(2014).

a major target for drug development, especially in movement
related diseases (Talati et al., 2009; Deftereos et al., 2012). The
11C-L-deprenyl indicates increased monoamine oxidase type B
content in reactive and proliferating astrocytes in AD (Gulyás
et al., 2011). Results from the MS patients studies are likely to
be published soon (Hurley, 2015).

The above exploration shows that the combined PET imaging
of activated microglia and astrocytes is presently of special
interest in MS research.

PET AS A TOOL FOR PRECISION
MEDICINE IN MS

More specific features of MS lesions have been described in
parallel with the identification of body fluid markers such as
CHI3L1 and B4GALT6. Recent progress with biomarkers and
imaging tracers suggests that precision medicine is becoming a
reality in MS. The prevalence of MS is increasing and there is
relatively little data available to personalize the treatments and
increase the cost effectiveness. Sophisticated tools are needed
to handle the complex data to obtain more detailed insight
of the clinical status of the patient’s condition. The combined
information from various biomarkers and imaging studies can be
used to predict the disease evolution individually. PET imaging
can provide precise data for the cross-roads of multiple fields,
like biomedical imaging, pharmacology, neurology, genomics etc.
Achieving precision medicine in MS requires high quality data,
large samples, and consistent interdisciplinary approach.

CONCLUSION

Inflammation and glial activation play an important role
in numerous neurodegenerative diseases, such as Alzheimer’s
disease, Parkinson disease, amyotrophic lateral sclerosis and
MS. Although factors inducing inflammation vary between
diseases, there is evidence of greatly converging mechanisms
for the sensing, transduction, and amplification of inflammatory
processes that eventually lead to the production of neurotoxic
mediators. PET imaging provides a powerful method for
dynamic imaging of these events. The full potential of PET is not
yet recognized, mainly due to the lack of validated tracers; the
complicated and costly process of validating new tracers needs
partnerships, human resources, expertise, funding, and access
to patients, but it is something that needs to be focused on to
obtain the essential information of the biological processes in
disease pathology. This will ultimately produce more reliable
diagnosis, better treatments and effective prevention methods
for MS. The role of PET imaging will increase in clinics, when
onsite cyclotrons, the development of new tracers, and imaging
equipment become available.

[18F]-FDG is still the most extensively used PET imaging
tracer for inflammation even though it tends to produce
controversial results. New imaging tracers for TSPO
([11C]PK11195, [11C]PBR28, etc.) have gained a great interest
for detection of inflammation and evaluation of therapy. Using
these new tracers, PET imaging has greatly improved our
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TABLE 2 | Examples of PET tracers in MS research.

MS

characteristic

Target Compound Structure Stage in MS imaging References

Axonal

degeneration

GABAA receptor 18F-flumazenil

(Ki ∼6.0 nM)

Clinical studies in MS

patients are ongoing.

Banati et al., 1997, 2000;

Ohyama et al., 1999;

Barkhof et al., 2009;

Pascual et al., 2012

11C-MP4A Clinical studies in AD

patients.

Virta et al., 2011; Garibotto

et al., 2013; Lund et al.,

2013

11C-Ro15-4513 Subtype specific ligand. No

studies with MS patients.

Halldin et al., 1992; Quelch

et al., 2015

Glucose metabolism 18F-FDG Studies with MS patients

conducted.

Kuhlmann, 2002; Buck

et al., 2012; Maffione et al.,

2014; Rudroff et al., 2014

Demyelination and

remyelinination

Choline metabolism 11C-Choline Clinically approved for

cancer imaging.

Stankoff et al., 2006, 2011

11C-BMB Studies with MS patients

conducted.

Stankoff et al., 2006, 2011

11C-CIC Studies with preclinical MS

rodent models.

Wang et al., 2009; de Paula

Faria et al., 2014a,b;

Ellwardt and Zipp, 2014

11C-PIB

(Ki ∼1.9 nM)

Studies with MS patients. de Paula Faria et al.,

2014a,b

11C-MeDAS Studies with MS mouse

models.

Wu et al., 2010, 2013; de

Paula Faria et al., 2014a,b

Glial activation TSPO 11C-PK11195

(Ki ∼9.3 nM)

Studies with MS patients

and early stage MS m

patients conducted.

Debruyne et al., 2003;

Versijpt et al., 2005; Politis

et al., 2012; Rissanen et al.,

2014; Giannetti et al., 2015

11C-DAA1106

(Ki ∼0.28 nM)

Preclinical models. Clinical

studies have been

conducted with healthy

volunteers.

Maeda et al., 2004; Venneti

et al., 2008; Brody et al.,

2014

(Continued)
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TABLE 2 | Continued

MS

characteristic

Target Compound Structure Stage in MS imaging References

18F-FE-

DAA1106

(Ki ∼0.08 nM)

Clinical studies in MS

patients conducted.

Ji et al., 2008; Takano et al.,

2013

11C-DPA-713

(Ki ∼4.7 nM)

Preclinical models in MS.

Clinical studies with healthy

patients and patients with

inflammation.

Boutin et al., 2007a; Endres

et al., 2009; Coughlin et al.,

2014

18F-DPA-714

(Ki ∼7.0 nM)

Preclinical models in MS.

Clinical studies in AD

patients.

Peyronneau et al., 2013;

Golla et al., 2015

18F-PBR28

(Ki ∼4.6 nM)

Clinical studies in MS

patients.

Oh et al., 2011; Moon et al.,

2014; Park et al., 2015

18F-PBR111

(Ki ∼4.5 nM)

Clinical studies in MS

patients.

Mattner et al., 2013;

Colasanti et al., 2014

11C-CLINME

(Ki ∼8.5 nM)

Preclinical in MS. Clinical

studies with

acuteneuroinflammation.

Boutin et al., 2007b; Van

Camp et al., 2010

11C-vinpocetine Clinical studies in MS

patients.

Vas et al., 2008; Oh et al.,

2011

(Continued)
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TABLE 2 | Continued

MS

characteristic

Target Compound Structure Stage in MS imaging References

18F-GE180

(Ki ∼0.87 nM)

Preclinical studies in MS

models. Clinical studies with

inflammation.

Wadsworth et al., 2012;

Dickens et al., 2014; Airas

et al., 2015

CB2r 8F-GW405833 Preclinical models. Vandeputte et al., 2011

11C-A-836339 Preclinical models. Horti et al., 2010

11C-KD2 Preclinical models. Mu et al., 2013

P2X7 receptor 11C-A-740003 Rodent baseline. Janssen et al., 2014

Matrix

metalloproteinases

18F-

CGS27023A

Preclinical models. Wagner et al., 2007, 2009

18F-CGS25966 Preclinical models. Wagner et al., 2007

Monoamine oxidase

type B

11C-l-deprenyl Peclinical models. Clinical

studies in ALS patients.

Johansson et al., 2007;

Gulyás et al., 2011

(Continued)
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TABLE 2 | Continued

MS

characteristic

Target Compound Structure Stage in MS imaging References

Lipid metabolism 18F-Acetate Preclinical models. Marik et al., 2009

11C-Acetate Clinical studies in MS

patients.

Takata et al., 2014

Metabotropic

glutamate receptor

subtype 5

11C-ABP688 Clinical studies. No MS

studies.

Ametamey et al., 2006;

DeLorenzo et al., 2015

11C-MPEP No MS imaging published. Yu et al., 2005

18F-FBEP Clinically validated. No MS

imaging published.

Wang et al., 2007; Wong

et al., 2013

Induced nitric oxide

synthetase

18F-NOS No MS imaging published.

Clinical studies with

inflammation.

Herrero et al., 2012

Cyclooxygenase-2 11C-Rofecoxib Preclinical evaluation with

inflammation model.

de Vries et al., 2008

understanding of the mechanism of inflammation and increased
the diagnostic specificity and accuracy of inflammation. As
summarized in Table 2, various radiopharmaceutical approaches
have been developed for PET imaging to detect inflammation,
including biomarkers targeting to specific receptors and lipid
metabolism.

So far, the clinical PET studies in MS are limited to
evaluation of two biological processes: glucose metabolism and
inflammation. It is clear that the use of combined PET/MR
imaging is increasing also in MS research. One of the main
interests is to develop combined imaging markers and methods
for MS pathology to stage, cell type and record activity related
changes in lesions. However, presently PET imaging is relatively
expensive and it also requires sophisticated quantification,
which demands special software and skilled operators. MS
is a complex disease, which remains difficult to treat before
more specific disease mechanisms are revealed. PET research
community is looking for the first ligands to be recommended
for routine clinical practice in MS diagnosis and follow up
of therapy. PET has already shown to be one of the most
sophisticated, sensitive, reliable, effective, and safest tools for

the monitoring of several cancers in clinics and there is no
reason why it could not be same in the neurodegenerative
disorders as well. Clinical imaging and researchmodalities should
be combined to expand the knowledge of clinical findings,
genetics, phenotyping, pharmacology, and drug targeting.
Advanced imaging technologies, including PET, could be used
to reveal the causes of MS rather than concentrating on
correlations. MS is a complex and heterogeneous disease, which
could benefit from precision medicine in the future. The
genomic approach can be used to individualize the imaging
data as presently done with 2nd generation TSPO markers
([11C]PBR28 etc.). Astrocyte activation and their ability to
modulate the complex neuronal network and inflammation
related pathways have a great potential to reveal disease
stage specific markers for personalized medicine. Despite the
astrocyte related research in MS is still in early stages, and the
recent promising results suggest new techniques to diagnose,
monitor and treat this cruel disease. The combined pathogenic
characteristics of MS are still unknown and the key to
prevent and cure this devastating disease is still waiting for
discovery.
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