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miRNAs play important roles in modulating gene expression in varying cellular
processes and disease pathogenesis, including neurodegenerative diseases. Several
miRNAs are expressed in the brain, control brain development and are identified as
important biomarkers in the pathogenesis of motor—and neuro-cognitive diseases
such as Alzheimer’s (AD), Huntington’s and Parkinson’s diseases (PD) and amyotrophic
lateral sclerosis. These remarkable miRNAs could be used as diagnostic markers
and therapeutic targeting potential for many stressful and untreatable progressive
neurodegenerative diseases. To modulate these miRNA activities, there are currently
two strategies involved; first one is to therapeutically restore the suppressed miRNA
level by miRNA mimics (agonist), and the other one is to inhibit miRNA function by
using anti-miR (antagonist) to repress overactive miRNA function. However, RNAi-based
therapeutics often faces in vivo instability because naked nucleic acids are subject
to enzyme degradation before reaching the target sites. Therefore, an effective, safe
and stable bio-responsive delivery system is necessary to protect the nucleic acids
from serum degradation and assist their entrance to the cells. Since neuronal cells
are non-regenerating, to design engineered miRNAs to be delivered to the central
nervous system (CNS) for long term gene expression and knockdown is representing
an enormous challenge for scientists. This article provides an insight summary on some
of the innovative strategies employed to deliver miRNA into target cells. These viral and
non-viral carrier systems hold promise in RNA therapy delivery for neurodegenerative
diseases.
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INTRODUCTION

miRNAs play important roles in modulating gene expression in varying cellular processes and
disease pathogenesis. miRNAs are small endogenous non-coding RNAs that can regulate gene
expression by entering the RNAi pathway through interacting with complementary mRNAs at
the post-transcriptional level by base-pairing and repress translation of target mRNAs. Specifically,
they act as sequence-targeting guides which associate with the RNA-induced silencing complex

Abbreviations: AD, Alzheimer disease; AuNP, Gold nanoparticle; BBB, Blood–brain barrier; CNS, Central nervous
system; CNT, Carbon nanotubes; HA, Hyaluronic acid; LNP, Lipid nanoparticle; NP, Nanoparticle; PAMAM,
Poly(amido amine); PD, Parkinson’s disease; PEG, Polyethylneglycol; PEI, Polyethylenimines; PLGA, Poly(lactic acid-
co-glycolic acid); PLL, Poly-L-lysine; rAAV, Recombinant adeno-associated virus.
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(RISC) to knockdown the mRNAs (Fiore et al., 2011). Since
the first miRNA replacement therapy entering phase 1 clinical
trial in ClinicalTrials.gov (2013b), miRNAs have been extensively
studied as a promising therapeutic drug class with proved
extraordinary results in cancers and many other diseases,
including neurodegenerative diseases. For example, miR-145 is
recognized as a tumor-suppressor in several types of cancers
including lung, prostate, gastric and breast cancers (Hu et al.,
2016; Takahara et al., 2016; Tang et al., 2016; Zhang Y. et al.,
2016). Viral infection also strongly influences the quantity and
distribution of miRNAs within the host cells (Sharma and
Singh, 2016). miR-612, miR-3654 and miR-3651 were reported
to actively involve immune responses in peripheral blood of
myasthenia gravis patients (Barzago et al., 2016). The ongoing
miRNA-based vaccine researches aiming to put an end to the
spread of Ebola virus infection was another example (Golkar
et al., 2016). Numerous studies have demonstrated the potential
of using miRNA-targeted therapy in improving hyperlipidemia,
atherosclerosis and angiogenesis (Lovren et al., 2012; Lippi
et al., 2013; Lima et al., 2016). Furthermore, there were growing
evidences showing their crucial involvement in regulating
a variety of pathogenic mechanisms in multiple sclerosis,
leukodystrophies and perinatal hypoxia-ischemia (Galloway and
Moore, 2016).

miRNA AS THERAPEUTICS IN
NEURODEGENERATIVE DISEASE

It is estimated that 70% of known miRNAs are expressed in
the brain and control brain development by regulating essential
signaling pathways required in synaptogenesis, neuronal
plasticity, neurite outgrowth and memory processes (Nadim
et al., 2016). Several miRNAs are identified as important
biomarkers in the pathogenesis of motor and neuro-cognitive
diseases such as Alzheimer’s (AD), Huntington’s and Parkinson’s
diseases (PD) and amyotrophic lateral sclerosis. For instance,
a study of expression profiling of 328 miRNAs in the anterior
temporal cortex in AD patients showed evidence of decreased
expression in 13 miRNAs (Hébert et al., 2008). Other important
miRNAs, including miR-153 and miR-339-5p were found
significantly lowered in autopsied AD brain tissues (Long
et al., 2012, 2014). On the other hand, over expression of
miRNA 34a in the hippocampus was proved to be involved
in anxiety-like behavior in patients with AD (Zhang Y. L.
et al., 2016). Upregulating of miR-9, miR-25b and miR-128 but
down-regulating of miR-124a in hippocampal region was also
observed in AD brain samples (Hugon and Paquet, 2008). An
interesting finding of miR-34c, which is required for memory
function, suggests that targeting miR-34c could be a suitable
approach to treat memory impairment in AD (Zovoilis et al.,
2011). Overexpression of miR-182 in lateral amygdala was also
reported to disrupt long-term amygdala-dependent memory
formation (Griggs et al., 2013).

The abundant miR-133b in the mid-brain of PD patients was
the first miRNA reported to be deficient in dopamine neurons
(Kim et al., 2007). The decreased expression of miR-34b and
miR-34c in the brain was found to associate with cell death with

altered mitochondrial activity and oxidative stress in PD (Junn
and Mouradian, 2012). Furthermore, loss of miR-155 occurred
in correspondence to reduce pro-inflammatory responses to
α-synuclein and block α-synucle in-induced neurodegeneration
in PD (Thome et al., 2016). The role of miRNA-125b was also
correlated as a keymediator in sustaining inflammatory signaling
in microglia (Parisi et al., 2016).

Despite the fact that miRNAs are important regulators in
modulating brain functions in neurodegenerative diseases, it
is very challenging to deliver these miRNAs into the central
nervous system (CNS) because the blood–brain barrier (BBB)
hinders the accumulation of active compounds in the CNS, thus
limits their transfection efficiency. To modulate these miRNA
activities, there are currently two strategies involved; first one
is to therapeutically restore the suppressed miRNA level by
miRNA mimics (agonist), and the other one is to inhibit miRNA
function by using anti-miR (antagonist) to repress overactive
miRNA function (van Rooij and Kauppinen, 2014). In general,
RNAi-based therapeutics often has a problem of poor stability
because naked nucleic acids are subject to enzyme degradation
before reaching the target sites. For that reason, an effective,
safe and stable bio-responsive delivery system is necessary to
protect the nucleic acids from serum degradation and assist
their entrance into the cells (Chen et al., 2015). To efficiently
deliver miRNAs into the body system in a safe and controlled
manner without losing the payload before entering the cell
targets still remains an ultimate challenge today. In vivo delivery
of miRNA mimics may also generate considerable risks when
they are taken by non-target tissues that do not express the
miRNAof interest, resulting in potential off-target unwanted side
effects.

The oligonucleotide-based therapy in neurodegenerative
diseases that entered clinical trials was published in 2014.
The delivery platform in these trials was mainly naked ASO
delivery without vectors (Magen and Hornstein, 2014). Since
that time, no significant new developments have been done. A
summary of new miRNA studies entering clinical trials in the
past 2 years was presented in Table 1. None of them was miRNA
therapeutics.

The following sections provide an insight summary on some
of the innovative strategies used to deliver miRNA into target
cells, mostly in cancers. However, these research results could
be inspired for the application of many miRNA therapeutic
strategies for neurodegenerative diseases.

VECTOR SYSTEMS TO DELIVER miRNAs

Viral Vector Systems
One of the older strategies was to use viruses as vectors
for miRNA delivery into neurons of the mammalian brain.
The selection of the appropriate serotype of vector depended
on numerous factors like target specific tropism, efficient
transgene expression and the ability to cross the BBB.
Many viruses have been exposed for this purpose with
promising transfection efficiencies in the past. For example,
recombinant adeno-associated virus (rAAV) was used as
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TABLE 1 | Clinical trials studied miRNA and neurodegenerative diseases that were registered in 2014–2016.

Condition Study type Study design Studied RNA ClinicalTrials.gov
Identifier

Sponsor
country

Ref.

Alzheimer’s disease Observational Cross-sectional case
control

miRNA 107 NCT01819545 China 2013a

Amyotrophic lateral sclerosis Observational Prospective cohort miRNA expression NCT01992029 France 2013c
Mild cognitive impairment
Alzheimer disease, Parkinson
disease

Intervention Behavioral: 3 months
exercise intervention
program

Role for myokines and miRNAs NCT02253732 Slovakia 2014

Glioma, neurofibromatosis type 1 Observational Prospective case-only miRNA expression patterns NCT01595139 USA 2012

mediators for delivery miRNA134 in mice resulting in almost
100% transduction efficiency (Christensen et al., 2010). rAAV
can target non-dividing cells and show transgene expression in
a long term with relatively non-pathogenic and considered safe
nature (Beutler and Reinhardt, 2009). Clinical trials of rAAV
gene therapy in PD also showed that they were well tolerated
in the human CNS and expressed persistence of transgenes in a
long-term (Kaplitt et al., 2007; Marks et al., 2008).

Other viral vectors such as adenovirus, retrovirus and
lentivirus have also been widely researched. Compared to AAVs,
adenoviruses are easy to produce and may incorporate large
transgenes with a high level of expression that can activate
stronger dose-dependent innate and adaptive immune responses
(Nayak and Herzog, 2010). Transduction with adenovirus
vectors showed more efficient expression of therapeutic genes in
the liver, but a lesser extent in the lung and brain (Carnero et al.,
2011).

On the other hand, the modification of lentivirus tropism
has been made toward astrocytes with neuron-specific
miR124 to eliminate residual expression in neuronal cells
for cell type-specific gene transfer to the CNS (Colin et al., 2009).
Effective transfection of recombinant human miRNA-7-3 gene
into human glioma U251 cells to suppress glioma cell growth by
lentiviral vectors were also reported (Dong et al., 2012). Recently,
lentivirus-mediated miRNA-210 has been delivered in ischemic
mouse brain and demonstrated the improvement of long-term
outcomes for stroke therapy (Zeng et al., 2016).

A possible commonly held notion is that viruses are bioactive.
They simply attach to a receptor on the cell surface and are easily
taken into host cells. However, there are many drawbacks of
using viruses as carrying vehicles, especially the safety concern
due to the immunogenicity and the risk of triggering an
oncogenic transformation by viruses. In addition, viral vectors
initiate innate immunity and antigen specific adaptive immune
responses leading to reduced efficiency of gene transfer. At
high vector doses, transient innate immune responses were seen
in naïve mouse brain parenchyma in one study (Lowenstein
et al., 2007). Injections of additional doses to the opposite
hemisphere demonstrated significantly greater immune response
and lower transgene expression. In gene therapy, each vector
system generates its own immunological responses; some are
more active to innate immunity and others to adaptive immunity.
Furthermore, pharmaceutical scale productions of high-quality
and quantity viral vectors also impose another concern, leading
to limit their applicability.

Non-Viral Vector Systems
Past research evidences indicated that non-viral vehicles were
stable, non-immunogenic, and easy to be modified to meet
specific needs for overcoming the physicochemical and biological
barriers, subsequently achieving higher transfection efficiency.
Here, some of the most popular novel non-viral gene vectors
were reviewed, yet others were also available throughout various
literature resources.

Lipid-Based Carriers
Cationic liposomes
Liposomes are lipid-based vesicles made of amphiphilic
phospholipid bilayers with an aqueous core. Research
results showed that liposomes could be used as a promising
tool for targeted gene delivery (Alvarez-Erviti et al., 2011;
Pinzón-Daza et al., 2013). When they are made charged
with cationic lipids, such as cholesterol, dioleoylphosphatidyl
ethanolamine, phosphatidylcholine and unsaturated fatty acids,
they are able to form ion pairs with anionic phospholipids
on the endosomal membrane, thus promoting the release of
encapsulated miRNAs after endocytosis. A typical cationic
liposome usually comprises of cationic lipids, neutral lipids
and Polyethylneglycol (PEG)-lipids. Neutral lipids, also called
‘‘helper lipids’’ which are used to increase the stability and
decrease the toxicity of the cationic lipids (Wang et al.,
2013). For example, a cationic lipoplexes-based carrier system
for miR-29b delivery was reported to be able to suppress
tumorigenicity by restoration of miR-29b in non-small–cell
lung cancer. These lipids contained a cationic lipid, 1, 2-di-O-
octadecenyl-3-trimethylammonium propane, a neutral lipid,
cholesterol and d-α-Tocopheryl PEG 1000 succinate which was
formulated as empty liposome used to entrap the therapeutic
agent miR-29b.

The positively charged lipoplexes proved to facilitate
the interaction with the negatively charged cell membrane,
providing more efficient cellular uptake to target multiple
oncogenes in non-small–cell lung cancer A549 cells (Wu et al.,
2013). Similarly, a cationic liposome vehicle composed of a
cationic lipid 2-dioleyloxy-N,N-dimethyl-3-aminopropane,
egg phosphatidylcholine and cholesterol was developed for
systemic delivery of exogenous miR-122 mimic in hepatocellular
carcinoma therapy, resulting in a significant inhibition of
expression of miR-122 target genes. PEG was attached on the
surface of the Lipid nanoparticle (LNP) to increase the in vivo
stability and circulation half-life time (Hsu et al., 2013).
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Another interesting study showed the development of bubble
liposomes to be used as a diagnostic and therapeutic system.
Bubble liposomes contained a cationic lipid, 1,2-distearoyl-
3-dimethylammonium-propane that entrapped ultrasound
echo-contrast gas inside the core vesicle. miRNAs were then
loaded onto the surface of these bubble liposomes. The results
suggested that miRNA-bubble liposomes could be detected by
diagnostic ultrasound at an ischemic target site. And miR-126
was delivered following therapeutic ultrasound, leading to
the induction of angiogenic factors and improved blood flow
in angiogenic treatment. The combination of ultrasound and
bubble liposomes systemic delivery was proved to be a useful tool
for ultrasound imaging and miRNA delivery (Endo-Takahashi
et al., 2014).

Cationic lipid nanoparticles (LNP)
A targeted delivery of miR125a-5p via LNP platform for
the treatment of HER2 positive metastatic breast cancer
was investigated. First, a lipid solution mixture composed
of L-phosphatidylcholine, 1,2-dipalmitoyl-sn-glycero-3-
phopshoethanolamine and cholesterol was mechanically
extruded to create unilamellar vesicles of LNP, followed by
conjugation of Hyaluronic acid (HA) on the surface of the
LNP. The formulation was finalized by lyophilization. To entrap
the miRNA, lyophilized lipid powder was rehydrated with
FITC-Dextran tagged human miR125a-5p mimic solution. A
mono-dispersed population of nanoparticles (NPs) was obtained
using this method of preparation (Hayward et al., 2016). This
type of fabrication might be tested for miRNAs of interests for
neurodegenerative diseases.

Gold Nanoparticles (AuNPs)
Gold Nanoparticles (AuNPs) have shape-dependent optical and
electronic features, high affinity for biomolecules and are feasible
for surface modification. One study indicated that by surface
modification with thiolated RNAs, these AuNPs could be used
to deliver hsa-miR-145 to facilitate the delivery of miRNA
into prostate/breast cancer cells (Ekin et al., 2014). Another
layer-by-layer technique was also described using alternating
charged polyelectrolytes to prepare multilayered siRNA coated
AuNPs. In this method, poly-L-lysine (PLL), a positively charged
polyelectrolyte, was coated onto the surface of AuNPs first. Then
siRNA was added and conjugated on the surface of the PLL-
AuNPs. Up to four layers of PLL and three layers of siRNA
were coated by this assembly approach. The results showed that
siRNA was released gradually and achieved more than 80% gene
silencing effect which was found to correlate with the number of
siRNA layers (Lee et al., 2011). These techniques could be also
applied for CNS miRNAs.

Cationic Polymer-Based Carriers
Bioresponsive hyperbranched polymers
Polycation-based NP delivery systems were shown in many
studies to be able to improve both extracellular and intracellular
delivery of RNAi-based drugs. A bioresponsive hyperbranched
polymer delivery system response to the cytoplasmic redox
conditions was reported. The cationic poly(amido amine;

PAMAM) hyperbranched polymers containing reducible and
non-reducible linkage units were synthesized to form inter-
polyelectrolyte polyplexes with miRNA which exhibited redox-
activated disassembly in response to the redox potential gradient
between the extracellular and intracellular environment. This
system could facilitate endosomal rupture, triggered release
and maximum intracellular target interaction for gene silencing
(Rahbek et al., 2010).

Hyaluronic acid-chitosan nanoparticles
HA is a natural anionic polysaccharide, which can be recognized
by cells and improve cellular uptake through HA receptor-
mediated endocytosis. A novel approach that can simultaneously
deliver miR-34a and doxorubicin into HA-chitosan NPs
against triple negative breast cancer was studied. Anionic HA
and cationic chitosan were used as the driving forces to
encapsulate negatively charged miR-34a and positively charged
doxorubicin through a cross-linker tripolyphosphate (Deng et al.,
2014).

Poly(lactic acid-co-glycolic) acid (PLGA) nanoparticles
miR-124 is known to associate with various brain pathologies and
neurodegenerative disorders. Significant decrease of miR-124
is usually found in PD (Gong et al., 2016); therefore, by
increasing miR-124 intracellular levels to promote neurogenesis
of neural stem cells in sub-ventricular zone of the brain through
induction of miR-124 regulated neuronal differentiation might
improve functional outcome in PD. A study used biocompatible
and traceable Poly(lactic acid-co-glycolic acid; PLGA) NPs
containing perfluoro-1,5-crown ether that can be tracked by
19F-MRI. Protamine sulfate was then surface conjugated to
complex miR-124 to enhance the brain repair in PD mice
models. The results showed remarkable decreased expression
of Sox9 and Jagged1, two miR-124 targets and stemness-
related genes. Use of miR-124-PLGA NPs demonstrated a new
theranostic approach for neurodegenerative diseases (Saraiva
et al., 2016).

Hydrogels
Hydrogels have porous hydrophilic networks that are able to
take up large amounts of fluids while maintaining their semisolid
morphology (El-Sherbiny and Yacoub, 2013). The high water
content and soft nature of hydrogels promote faster drug release
from the gel matrix. A combination of a miRNA mimic and
an antagomiR together with another miRNA, which was a
complement of the replacement strand, was assembled into
triple-helix structures in one study. These triple helices were
then conjugated to dendrimers and mixed with dextran aldehyde
to form an adhesive hydrogel. This nano-hydrogel containing
therapeutic miRs could be injected directly onto the surface of
tumors with high efficiency (Conde et al., 2016).

Polyethylenimines nanoplexes
Polyethylenimines (PEIs) are highly positively charged polymers
that are able to form nano-complexes with small RNAs to achieve
RNA protection and improve intracellular release by the ‘‘proton
sponge effect’’, leading to increased membrane permeability
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(Höbel and Aigner, 2013). However, non-modified PEI may
cause cytotoxicity due to high charge density. Thus modification
of PEI might improve the physicochemical properties of PEI.
A study of reducible PEI was reported by synthesis of high
molecular weight PEI (25,000 Da) with cetyl bromide, and then
conjugated with PLGA polymer and cross-linked with HA to
facilitate the cellular uptake of tumor-suppressor miR-145 (Liang
et al., 2016).

Another study used ionized polysaccharide from a Chinese
medicine Angelica sinensis by chemical modification of a
branched low molecular weight PEI (1200 Da) to form NPs
for loading plasmid DNA encoding transforming growth factor
beta 1 into mesenchymal stem cells. The results showed a greater
transfection efficiency and less toxic comparing to Lipofectamine
2000 and PEI (25 kDa; Deng et al., 2013).

Carbon-Based Carriers
Another novel nanocarrier system was formed by self-assembled
protamine sulfate-functionalized nanodiamonds for miRNA-203
delivery in esophageal cancer (Cao et al., 2013). Nanodiamonds
are carbon-based NPs with stable inert core sizes of 2–8 nm.
They are non-toxic, highly biocompatible and are capable of
loading peptides, small molecules, antibodies, DNAs and RNAs
with high efficiency and low toxicity (Zhao et al., 2016). However,
unmodified nanodiamonds normally tend to agglomerate and
precipitate in solution. In this study, protamine sulfate was first
adsorbed on the surface of nanodiamond NPs to create positively
charged NPs. Then negatively charged miR-203 mimics was
attached to the positively charged surface of nanodiamond NPs
through electrostatic interactions. The results showed a higher
transfection efficiency obtained by this system when compared
with the ‘‘gold standard’’ PEI 25K.

Another strategy was to use polymer functionalized carbon
nanotubes (CNTs) as effective means to regulate target gene
expression and angiogenesis. CNTs were coated with two
different polymers, PEI or PAMAM, to improve the electrostatic
interaction of CNTs with the negatively charged siRNAs or
plasmid DNA, followed by conjugation of miR-503. The results
showed an increasing nucleic acids loading and improving cell
uptake (Masotti et al., 2016).

Mesoporous Silica Nanoparticles
A smart system based on mesoporous silica NPs capable of
simultaneous delivery and controlled release of anti-miRs and
small molecule into target cells was developed. Mesoporous silica
NPs possessed advantages of high surface areas, large loading
capacity, chemically modifiable surfaces and low toxicity. This
system was intended to be stimuli-responsive to the amounts of

the expression levels of endogenous miR-122 in hepatocellular
carcinoma cells (Yu et al., 2015).

Magnetic Nanoparticles
An iron oxide nanocomposite NPs, termed magnetic reagent
for efficient transfection (MagRET) comprised of a maghemite
core that is surface treated with lanthanide Ce3/4+ cations
was fabricated as gene carrier. PEI was then attached to
this maghemite core to form an antisense miRNAs NP
complex for silencing several types of RNAs, including miRNAs
(Lellouche et al., 2015). Another system contained a combination
of a cationic chondroitin sulfate conjugated with PEI and
superparamagnetic iron oxide NPs (SPION) for magnetofection
in glioblastoma multiform therapy. Chondroitin sulfate has the
capacity of targeting CD44 which enhances its crossing BBB. It
has been reported not only gliomas express the CD44 but also
brain micro vascular endothelial cells do. An external magnetic
field was applied to guide the therapeutic genes in the form of
magnetoplexes to the surface of target cells for more efficient
plasmid DNA delivery (Lo et al., 2015).

Cationic Dendrimers
PAMAM was the first dendritic molecule used as gene carrier.
The surface of the PAMAMdendrimer is highly cationic charged,
resulting in electrostatic interaction with the negatively charged
nucleic acid. The dendrimer/nucleic acid nanocomplexes can be
further conjugated with targeting ligands such as transferrin and
lactoferrin for the delivery of plasmid DNA into the brain with
a high brain penetration capability of targeting BBB (Dehshahri
and Sadeghpour, 2015).

CONCLUSION

Current available data indicated significant regulatory roles
of miRNAs in the pathogenesis of neurodegeneration. These
remarkable miRNAs could be used as diagnostic markers and
therapeutics for many progressive neurodegenerative diseases.
However, more researches should be performed on the
pharmacokinetics of miRNA in the body to understand the
threshold copies of miRNA that should be replaced or repressed
in each disease state. To design specific miRNAs carriers for long
term gene expression and knockdown in CNS is representing an
enormous challenge for scientists to overcome.
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