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Adult women are twice as likely as men to suffer from affective and anxiety disorders,
although the mechanisms underlying heightened female stress susceptibility are
incompletely understood. Recent findings in mouse Nucleus Accumbens (NAC) suggest
arole for DNA methylation-driven sex differences in genome-wide transcriptional profiles.
However, the role of another epigenetic process —microRNA (miR) regulation—has yet to
be explored. We exposed male and female mice to Subchronic Variable Stress (SCVS),
a stress paradigm that produces depression-like behavior in female, but not male, mice,
and performed next generation mMRNA and miR sequencing on NAc tissue. We applied
a combination of differential expression, miR-mRNA network and functional enrichment
analyses to characterize the transcriptional and post-transcriptional landscape of sex
differences in NAc stress response. We find that male and female mice exhibit largely
non-overlapping miR and mRNA profiles following SCVS. The two sexes also show
enrichment of different molecular pathways and functions. Collectively, our results
suggest that males and females mount fundamentally different transcriptional and
post-transcriptional responses to SCVS and engage sex-specific molecular processes
following stress. These findings have implications for the pathophysiology and treatment
of stress-related disorders in women.

Keywords: depression, stress, sex differences, RNA-Seq, microRNA, nucleus accumbens

INTRODUCTION

Across cultures, adult women are twice as likely as men to suffer from affective and anxiety
disorders including Major Depressive Disorder (MDD, Kessler et al., 1994, 2005; Bebbington, 1998).
This enhanced female susceptibility begins in adolescence, declines post menopause, and is most
pronounced during periods of great hormonal flux (perimenopause, postpartum period, late luteal
phase), suggesting a role for female sex hormones in depression (Deecher et al., 2008; Gobinath
et al,, 2014). Once symptomatic, men and women experience depression differently—men are
more likely to report anger, substance abuse, and risk-taking behavior; whereas women are
more likely to experience somatic symptoms including irritability, fatigue, anhedonia, and
sleep and appetite disturbances (Silverstein, 2002; Martin et al., 2013). Furthermore, women
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display enhanced risk of comorbid anxiety disorders and pain
(Silverstein, 2002; Gobinath et al., 2014). Several studies suggest
that sex differences may extend to treatment response, with
women responding preferentially to selective serotonin reuptake
inhibitors (SSRIs) over tricyclic antidepressants (TCAs), and men
showing either no preference or better response to TCAs vs.
SSRIs (Kornstein et al., 2000; Martenyi et al., 2001; Baca et al,,
2004; Keers and Aitchison, 2010). Despite sex differences in
MDD prevalence, symptoms, and treatment response, female
subjects remain underrepresented in basic research, particularly
in neuroscience (Beery and Zucker, 2011; Clayton and Collins,
2014).

Nevertheless, findings in animal models have yielded insight
into the sexual dimorphism of MDD (Pfau and Russo, 2015).
Stress is a key precipitating factor in the development of
depressed mood and anxiety in human patients (Hammen, 2016;
Pemberton and Fuller Tyszkiewicz, 2016). While adult female
rodents often display greater cognitive resilience to chronic stress
than males (Bowman et al., 2001; Luine, 2002; Conrad et al., 2003;
Kitraki et al., 2004), they show enhanced emotional susceptibility
to numerous stress paradigms (Westenbroek et al., 2003; Dalla
et al., 2008; LaPlant et al., 2009; Sachs et al., 2014; Hodes et al.,
2015a). Sex differences in the ventral striatum are increasingly
implicated in adult female emotional vulnerability. The nucleus
accumbens (NAc), a component structure of the ventral striatum,
is essential for reward and emotion processing, and receives
dense innervation from mood-related structures including the
ventral tegmental area, amygdala, hippocampus, prefrontal
cortex, and hypothalamus (Russo and Nestler, 2013). Recent
studies highlight a role for NAc transcriptional and epigenetic
processes in sex-specific stress responses. Following exposure
to Subchronic Variable Stress (SCVS)—a stress paradigm that
is sufficient to induce depression-like behavior in female mice
but not in male mice—males and females exhibit remarkably
different NAc transcriptional profiles that have been linked to
both Nuclear factor kB (NficB) transcription factor signaling
(LaPlant et al., 2009) and epigenetic regulation by DNA
methyltransferase 3a (Dnmt3a) (Hodes et al., 2015a).

Another potential epigenetic mechanism contributing to
marked sex differences in stress-induced transcriptional patterns
is post-transcriptional regulation by microRNAs (miRs). miRs
are small, endogenous RNAs approximately 22 nucleotides
in length. miRs do not encode proteins, but instead act
to post-transcriptionally regulate the expression of target
mRNA through sequence-specific binding, leading to subsequent
mRNA destabilization or translational repression (Bartel, 2004;
O’Carroll and Schaefer, 2013; Eichhorn et al., 2014). The
evolutionary potency of miRs underscores their importance,
and indeed, bioinformatic predictions estimate that 30%
of mammalian protein-coding mRNAs are subject to miR
regulation (O’Connor et al, 2012). Although the effect on
protein expression of a single miR-mRNA interaction is
modest, miRs can have hundreds of targets, and multiple miRs
can target the same mRNA simultaneously (O’Carroll and
Schaefer, 2013). miRs are highly enriched in the brain—50%
of known mammalian miRs are expressed in the brain—and
have been implicated in numerous neural processes including
circuit formation and plasticity; synaptic function; and neuronal

survival, differentiation, and diversity (O’Carroll and Schaefer,
2013). Dysregulated miRs have been reported in postmortem
brain (Smalheiser et al., 2012; Issler et al., 2014; Lopez et al.,
2014a,b; Maheu et al., 2015), blood (Belzeaux et al., 2012; Li et al.,
2013; Fan et al., 2014; Issler et al., 2014; Lopez et al., 2014a;
Cambkurt et al,, 2015), and dermal fibroblasts (Garbett et al,,
2015) of depressed patients. In preclinical models, miRs have
been implicated in depression-related processes ranging from
glucocorticoid resistance (Uchida et al., 2008; Vreugdenhil et al.,
2009) and corticotropin releasing factor sensitivity (Haramati
etal., 2011), to behavioral resilience (Smalheiser et al., 2011; Dias
etal,, 2014; Issler et al., 2014) and antidepressant efficacy (Baudry
etal., 2010; Issler et al., 2014).

In the present study, we aimed to characterize the NAc
transcriptional and post-transcriptional landscape associated
with sex differences in behavioral response to SCVS. Using RNA
Sequencing (RNA-Seq), we performed an unbiased, genome-
wide bioinformatic analysis of sex-specific miR and mRNA
transcriptome profiles in mouse NAc following exposure to
SCVS. We created miR-mRNA networks to probe and illustrate
the complexity of stress-induced miR regulation in males
and females. We find that male and female mice initiate
fundamentally different transcriptional and post-transcriptional
responses to stress. Furthermore, we report that male mice
are not insensitive to SCVS, but rather mount a consistently
robust transcriptional and post-transcriptional response to stress.
This study provides new insight into the multiple levels of
transcriptional processes that inform sex differences in stress
susceptibility.

MATERIALS AND METHODS

Animals

C57BL/6] male and female mice (Jackson Laboratory, Bar
Harbor, ME) aged 8 weeks were used for all RNA-Seq and
quantitative real-time PCR (qPCR) validation studies. All mice
were shipped to the Icahn School of Medicine at Mount Sinai
(ISMMS) animal facility at 7 weeks of age and were acclimated
to the facility for 1 week prior to SCVS. Mice were group housed
and maintained on a 12-h light/dark cycle in which lights were
on between 7 A.M. and 7 P.M. with ad libitum access to food and
water. All mouse procedures were approved by and performed in
accordance with the National Institute of Health Guide for Care
and Use of Laboratory Animals and the Institutional Animal Care
and Use Committee at the Icahn School of Medicine at Mount
Sinai. Different mouse cohorts were used for RNA-Seq and gPCR
validation studies.

Subchronic Variable Stress (SCVS)

SCVS, which consists of three stressors administered over the
course of 6 days, was performed as described previously (LaPlant
et al., 2009; Hodes et al, 2015a). One unpredictable stressor
was administered for an hour each day, and the stressors were
alternated during the 6 days to prevent habituation. The three
stressors included, in order: foot shock, tail suspension, and
physical restraint. For foot shock stress, 10 same sex mice were
placed in a fear conditioning chamber with electric grid flooring
(Med Associates, St. Albans, VT) and administered 100 random
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0.45 mA, 2s foot shocks. For tail suspension stress, mouse tails
were adhered to a bar, leaving the mice suspended for 1 h in an
inverted position. For physical restraint stress, mice were placed
in a well-ventilated, 50-mL centrifuge tube in the home cage for
1 h. The stressors were repeated in the same order on days 4-
6, such that mice received foot shock stress on days 1 and 4, tail
suspension stress on days 2 and 5, and restraint stress on days
3 and 6. After each stressor, mice were returned to the home
cage until the next stressor or sacrifice. Unstressed controls were
group housed in the home cage until sacrifice. SCVS-induced
depression-like behavior was not assayed prior to sacrifice
to avoid the introduction of testing-induced transcriptional
changes. Furthermore, post-SCVS behavioral phenotypes have
been well documented previously (LaPlant et al., 2009; Hodes
et al., 2015a). The behavioral endpoints of SCVS in female
mice include decreased sucrose preference (Hodes et al., 2015a),
increased latency to eat in the novelty suppressed feeding test
(Hodes et al., 2015a), increased immobility in the forced swim test
(LaPlant et al., 2009; Hodes et al., 2015a), and increased latency
to groom in the splash test (Hodes et al.,, 2015a). In contrast,
male mice behave similarly to unstressed controls across these
behavioral measures (LaPlant et al., 2009; Hodes et al., 2015a).

Estrous Cycle Monitoring

Vaginal lavage was performed on all female animals at sacrifice to
determine estrous cycle stage. A sterile cotton swab moistened
with 0.9% saline was used to collect a sample of vaginal cells
from each animal. The sample was smeared onto a slide, left
to dry overnight, and stained with 1% Toluidine Blue (Sigma-
Aldrich, St. Louis, MO). Cycle stage was determined by visual
inspection of cell morphology under a light microscope and
recorded for each animal. Lavage was only performed at the
point of sacrifice to best facilitate direct comparison of the
sexes. Repeated lavage affects reward-related processes such as
cocaine-stimulated motor behavior, and lavaged rats develop a
conditioned place preference to a lavage-paired compartment
(Walker et al., 2002). Therefore, daily lavage across all 6 days
of the stress and at sacrifice could be potentially confounding.
Furthermore, in an independent cohort of mice, we found that
female mice cycled normally throughout exposure to the stress
protocol (Figure S1) and did not demonstrate a stress-induced
shift in length and duration of the estrous cycle that has been
reported for other chronic stress paradigms (Konkle et al., 2003;
Tou et al., 2004).

Tissue Collection, RNA Extraction, and
cDNA Synthesis

NAc samples were collected from each animal as described
previously (Golden et al., 2013; Hodes et al., 2015a). Twenty-
four hours after the last stressor, animals were rapidly decapitated
and bilateral 14-gauge ventral striatum punches were collected
on ice. Punches were flash frozen on dry ice and stored at —80°C
until RNA extraction. RNA was isolated using homogenization
in Qiazol (Qiagen, Hilden, Germany) followed by chloroform
layer separation. For sequencing, bilateral NAc punches from
5 animals (10 NAc punches) were pooled for each library at
the point of homogenization. Pooling was necessary to yield
sufficient input for miR sequencing, and was controlled for

estrous cycle stage such that all female samples were derived
from mice in estrus and proestrus. Mice in diestrus and metestrus
were excluded from analysis. The aqueous RNA layer was further
processed via miRNeasy mini kit (Qiagen, Hilden, Germany) to
yield separate fractions enriched for small RNA (<200 bp; for
small RNA sequencing) and large RNA (>200 bp; for mRNA
sequencing). RNA and miR quality was assessed by Bioanalyzer
(Agilent, Santa Clara, California). For qPCR validations, total
RNA was extracted and purified (miRNeasy micro kit, Qiagen,
Hilden, Germany) from bilateral NAc punches from individual
animals. The RNA was then analyzed by Nanodrop (Thermo
Fisher Scientific, Waltham, MA), and 500 ng of RNA was
reverse transcribed to cDNA (qScript cDNA Supermix, Quanta
Biosciences, Beverly, MA). cDNA was diluted in nuclease-free
water to 500 uL (1 ng/uL).

Small RNA Sequencing and Differential

Analysis

Small RNA-Seq libraries were generated from enriched small
RNA fractions (<200 bp) according to the instructions
of the Scriptminer Small RNA-Seq Library Preparation Kit
(Epicentre, Madison, WI) with modifications as described in
Dias et al. (2014). Libraries were constructed from pooled
RNA samples (n = 5 mice/library) and run in independent
biological replicates of 3 libraries per sex/stress condition for
a total of 12 libraries. Library size and concentration were
confirmed by Bioanalyzer (Agilent, Santa Clara, CA) prior to
sequencing. Multiplexed libraries were pooled 12 to a lane
and sequenced on a single lane of a HiSeq 2000 sequencer
(lumina, San Diego, CA) with 100 bp single-end reads at the
ISMMS Genomics Core. Raw sequencing reads were processed
by fastx trimmer (http://hannonlab.cshl.edu/fastx_toolkit) to
remove the 3’ adaptor sequence, and sequences shorter than 16
nucleotides were subsequently discarded. Sequencing quality was
assessed by FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc). Sequencing yielded 192 million reads, with
approximately 16 million high quality reads per sample. Reads
were aligned to the mm9 mouse genome using Bowtie short read
aligner (Langmead et al., 2009) and quantified against mature
miRBase release 21 annotation using the HT-Seq Python package
(Anders et al., 2015). Differential analysis was performed using
the voom-limma R package (Law et al., 2014; Ritchie et al., 2015).
A multifactorial, gene-wise linear model with stress and sex as
main factors was fit to expression data to determine the effect of
stress in males and females separately and to control for baseline
variation in miR expression. An uncorrected p < 0.05 and a fold
change threshold of 1.3 were used to determine differential miR
expression, in accordance with the statistical cutoff used for NAc
small RNA-Seq in Dias et al. (2014). Small RNA-Seq data has been
made publicly available in the Gene Expression Omnibus (GEO)
repository under the accession number GSE90962.

mRNA Sequencing and Differential
Analysis

RNA-Seq libraries were generated from large RNA fractions
(>200 bp) with RIN values > 8.8 as described in Feng et al.
(2014). As for small RNA sequencing, libraries were constructed
from pooled RNA samples (n = 5 mice/library) and run in
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independent biological replicates of 3 libraries per sex/stress
condition for a total of 12 libraries. RNA (1 ug) was used for
mRNA library construction according to the instructions of the
TruSeq RNA Library Preparation Kit v2 (Illumina, San Diego,
CA) as described in Hodes et al. (2015a). Libraries were evaluated
by Bioanalyzer (Agilent, Santa Clara, CA) to verify size and
concentration before pooling 12 to a lane and sequencing on
3 lanes of a HiSeq 2000 machine (Illumina, San Diego, CA)
with 50 bp paired-end reads at the ISMMS Genomics Core.
Sequencing yielded >30 million high quality reads per sample.
Short reads were aligned to the Ensembl mus musculus NCBIM37
version 67 reference genome using TopHat2 (Kim et al., 2013).
Quality assessment revealed a >90% mapping rate, with ~10%
of those reads mapping to mitochondrial RNA and <1% aligning
to ribosomal RNA. Individual gene counts for each sample were
obtained using the HTSeq Python package (Anders et al., 2015).
Only genes with >5 reads in at least 80% of samples in any
one of the experimental conditions were included in differential
analysis. Differential analysis was performed using the voom-
limma R package (Law et al,, 2014; Ritchie et al., 2015). A
multifactorial, gene-wise linear model with stress and sex as
main factors was fit to expression data to determine the effect of
stress in males and females separately and to control for baseline
variation in gene expression. An uncorrected p < 0.05 and a
fold change threshold of 1.3 were used to determine differential
gene expression, in accordance with the statistical cutoff used
for NAc RNA-Seq in previously published reports (Hodes et al.,
2015a; Bagot et al., 2016). RNA-Seq data has been made publicly
available in the Gene Expression Omnibus (GEO) repository
under the accession number GSE90962.

Quantitative Overlap

Quantitative overlap analysis was performed as described in
Hodes et al. (2015a) using the SuperExactTest R software
package (Wang et al, 2015). Differentially expressed mRNAs
or miRs were divided into upregulated and downregulated lists.
SuperExactTest R software was utilized to compare lists pairwise,
generating 22 unique comparisons. nRNA/miR identifiers from
each list were extracted for each comparison, and the quantitative
overlap for each list was determined and statistically analyzed via
a Fisher’s Exact test. For all comparisons, significance was set at
p < 0.05 and the number of background mRNAs/miRs was kept
constant to reflect the total number of candidate mRNAs/miRs
analyzed in the differential expression analysis (19,827 mRNAs,
781 miRs).

miR-mRNA Network Analysis

Predicted targets of stress-regulated miRs in males and
females were identified using miRWalk 2.0 (http://zmf.umm.
uni-heidelberg.de/apps/zmf/mirwalk2/), an online archive of
predicted and experimentally validated miR-target interactions
(Dweep et al., 2011; Dweep and Gretz, 2015). miRWalk searches
were customized to yield only target mRNAs predicted by
both the TargetScan and miRWalk algorithms for subsequent
network analysis. Significant association of predicted targets
of stress-regulated miRs within mRNA differential lists was
assessed using chi-squared tests. The frequencies of upregulated,

downregulated, and neutral mRNAs in stressed vs. control groups
were computed from mRNA lists for each sex and were used
as background. Then, for each differentially regulated miR, the
frequencies of upregulated, downregulated and neutral target
genes were computed from the mRNA differential list referencing
the miRWalk predicted target list. A chi-squared test was then
performed for each miR, comparing the frequencies of up,
down and neutral target mRNAs versus that of the background.
Significant miRs surviving this analysis were identified using a
Benjamini-Hochberg adjusted p-value cut-off of p < 0.05. miR-
mRNA relationships were then classified as having a positive
association (both the miR and target mRNA are regulated by
stress in the same direction) or a negative association (the
miR and target mRNA are regulated by stress in opposite
directions). miR-target network visualizations were constructed
using Cytoscape v3.3.0 (cytoscape.org).

Functional Annotation and Pathway

Analysis

Canonical Pathways and Diseases and Functions analyses
were performed on differentially regulated genes and miR-
targeted genes using Qiagen’s Ingenuity Pathway Analysis
(IPA, Qiagen Redwood City, CA, http://www.qiagen.com/
ingenuity). Gene Ontology (GO) analysis was performed on
differentially regulated and miR-targeted genes with Database for
Annotation, Visualization and Integration Discovery (DAVID)
Bioinformatics Resources (https://david.ncifcrf.gov/) using the
DAVID mus musculus background (Huang da et al., 2009a,
2009b). IPA pathways/functions and GO terms were considered
significantly enriched when Fisher’s Exact —-log(p-value) > 1.3.

Quantitative Real-Time PCR

Quantitative real-time PCR (qPCR) biological validations of
RNA-Seq targets were performed on NAc samples from
individual animals. The qPCR reaction mixture consisted of 5
uL PerfeCta SYBR Green SuperMix, ROX (Quanta Biosciences,
Beverly, MA), 1 uL primer (PrimeTime predesigned qPCR
primers, Integrated DNA Technologies, Coralville, IA), 1 uL
nuclease-free water, and 3 uL cDNA template. Samples were
heated to 95°C for 2 min followed by 40 cycles of 95°C for 15
s, 60°C for 33 s, and 72°C for 33s on an Applied Biosystems
7900 RT PCR System (Foster City, CA). Data were analyzed using
the 2=2ACY method (Livak and Schmittgen, 2001). Expression
values were normalized to stably expressed reference genes
(Lsm4, Kcnc2) that were selected from RNA-Seq gene lists based
on their lack of regulation by SCVS. Expression values were
normalized such that control groups show no fold change.

Statistical Analysis

For qPCR validations, differences between stressed and
unstressed groups were compared using unpaired ¢-tests (two-
tailed) or Wilcoxon Mann-Whitney (two-tailed) nonparametric
U-tests when group variances were unequal. All statistical
analyses were performed using GraphPad Prism 5.0 software
(GraphPad Software Inc., La Jolla, CA). Statistical significance
was set at p < 0.05. Grubbs outlier test was performed and
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samples that varied more than two standard deviations from the
mean were removed.

RESULTS

SCVS Induces Largely Non-overlapping
miR Transcriptional Profiles in Male and

Female Mice

Gonadally intact, adult male and female mice were exposed
to SCVS, consisting of 6 consecutive days of 3 alternating,
unpredictable stressors: repeated foot shock, tail suspension,
and physical restraint (Figure 1A). To profile stress-induced
changes to the global NAc miRnome, we performed small RNA-
Seq on NAc tissue collected 24 h after the last stressor. We
compared stressed groups to same sex, unstressed controls in
order to identify sex-specific patterns. Importantly, we controlled
for female estrous cycle by including only females in estrus
or proestrus so as to capture a period of great hormonal flux
in estrogen and progesterone levels (Scharfman and MacLusky,
2008), and therefore recapitulate the peak sensitivity of female
rodents to stress (Viau and Meaney, 1991; Carey et al., 1995;
Bangasser and Valentino, 2014) and women to depression
(Hendrick et al., 1998; Cohen et al.,, 2006; Gobinath et al.,
2014). In males, 42 miRs were regulated by SCVS compared
to unstressed male controls: 25 miRs were upregulated, and
17 miRs were downregulated (Figure 1B, Table S2). In females,
20% fewer miRs—28 miRs—were regulated by SCVS: 18 miRs
were upregulated, and 10 miRs were downregulated (Figure 1B,
Table S2). As illustrated by union maps (Figure 1B) and heatmap
visualizations (Figure 1C), miR transcriptional profiles for males
and females were largely non-overlapping. We submitted male
and female miR differential lists to quantitative overlap analysis,
and found that male and female miRnome profiles showed
significant quantitative overlap only in upregulated miRs (mmu-
miR-7224-3p, mmu-let-7d-3p, mmu-miR-1912-3p; p < 0.02) and
oppositely regulated miRs (mmu-miR-5099, mmu-miR-206-3p;
p < 0.04).

Males Mount a Robust, Sex-Specific

Transcriptional Response to SCVS

We next sought to interrogate the effect of SCVS on gene
expression in the same animals by performing RNA-Seq.
RNA-Seq allowed us to quantify the expression levels of all
polyA-containing transcripts in stressed mice and controls. In
stressed males compared to unstressed control males, 1349
genes were regulated by SCVS (Figure 2A, See Table S3 for
top 20 up and downregulated genes and Data Sheet 2 for
full list). The majority of stress-regulated genes in males were
downregulated (~76% or 1025 genes, vs. 324 upregulated
genes). Strikingly, despite the insufficiency of SCVS to induce
behavioral and neuroendocrine changes in male mice, males
demonstrated a very robust transcriptional response to SCVS,
potentially indicating active resilience mechanisms. In stressed
females compared to unstressed control females, 348 genes were
regulated by SCVS (Figure 2A, See Table S3 for top 20 up
and downregulated genes and Data Sheet 2 for full list). As in

males, the majority of stress-regulated genes in females were
downregulated (~67% or 232 genes, vs. 116 upregulated genes).
Similar to what we observed for miRs, male and female SCVS-
induced genome profiles showed little overlap—approximately
2% of all upregulated genes (9 genes, p = 1.23E™*) and ~3% of all
downregulated genes (39 genes, p = 6.58E~!!) (Figures 2A,B).
In total, 21 genes were regulated in opposite directions. Twelve
genes were upregulated in males and downregulated in females
(p = 4.58E*): Plekha2, Etl4, Chrnad, AC154308.1, St14, Fhi2,
Alas2, Arhgapl5, Adaml18, AC133502.1, Rhox4a, and Chrnb3.
Nine genes were downregulated in males and upregulated in
females (p = 0.15): AL671140.1, Tex16, Gm12494, Nts, UG,
Arhgap36, Ropnll, Tnfsf9, and Fas. As shown in Figures 2C,D,
we performed biological validations of several genes by qPCR:
Mstn [ty;) = 2.86, p = 0.01], Tlrd [tqg = 4.93, p < 0.001],
Fmo2 (U = 3.00, p < 0.001), Tnfaip8I2 [t9) = 3.65, p < 0.01],
Sgkl [t9) = 346, p < 0.01], Npy2r (U = 10.00, p < 0.01),
Crh [tqg) = 2.25, p = 0.04], Fosb [tqs = 2.68, p = 0.02],
Lynxl (U = 24.00, p = 0.09), Drd4 (U = 13.00, p < 0.01),
Adeyl (U = 23.00, p = 0.048), and Reln (U = 17.00, p = 0.02).
Genes for validation were chosen from IPA output for their
involvement in significantly enriched functional networks and
pathways.

Functional Ontology and Pathway Analysis
Reveals Sex Differences in Stress-Induced

Functional Processes

We performed pathway and gene ontology (GO) analysis
on our RNA-Seq mRNA differential lists using IPA and
DAVID tools, respectively (Figure 3, Table S4). We utilized
both tools to capitalize on their respective strengths—IPA
draws from a curated, proprietary knowledgebase of published,
experimentally validated information, while DAVID utilizes a
comprehensive knowledgebase compiled from dozens of publicly
available bio-databases (BioCarta, KEGG, GO, etc.) to maximize
analytic power. Reflecting our finding of minimally overlapping
SCVS-induced genes, we observed enrichment of different
functional processes in males and females. Only one canonical
pathway—Antigen presentation pathway, which encompasses
antigen recognition and processing essential for innate and
adaptive immunity—is represented among significantly enriched
canonical pathways in both males and females (Figure 3A,
Table S3). Among significantly enriched DAVID GO molecular
function terms for males and females, we observed overlap of
five functions—Neurotransmitter receptor activity and binding,
peptide receptor activity and binding, and G-protein coupled
peptide receptor activity—however, different or, in some cases,
oppositely regulated genes were enriched within these pathways
in the two sexes (Figure 3B, Table S3). Overall, we observed
enrichment of several processes relevant to stress and depression,
including inflammatory processes and cytokine activity (Hodes
et al, 2014, 2015b), cAMP and GPCR-mediated signaling
(Duman et al., 1999; Terzi et al., 2009) and ion channel activity
(Friedman et al., 2014). Importantly, we observed overlap of
numerous functional categories between our IPA and DAVID
analyses, with terms including ion homeostasis/channel activity
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FIGURE 1 | Male and female mice show different NAc miR profiles following Subchronic Variable Stress. (A) Schematic of the Subchronic Variable Stress
(SCVS) paradigm. (B) Union maps of significantly upregulated (Left) and downregulated (Right) microRNAs (miRs) in males and females following SCVS. (C) (Left)
Heatmap of miRs differentially regulated by SCVS in females compared to the same miRs in males, (Right) Heatmap of miRs differentially regulated by SCVS in males
compared to the same miRs in females. Yellow indicates upregulation, blue indicates downregulation, and black indicates no change.
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and GPCR signaling appearing in both analyses for males, and
inflammatory processes appearing in both analyses for females.

SCVS Induces Sex Dependent miR-mRNA

Networks

We next sought to overlay miR and mRNA differential lists to
probe the nature and complexity of miR-mRNA interactions in
males and females. In order to accomplish this, we identified
all mRNA targets of SCVS-regulated miRs predicted by both
TargetScan and miRWalk online databases (Lewis et al., 2005).
We then applied a novel chi-squared analysis to measure
enrichment of predicted miR target genes in our RNA-Seq
mRNA differential lists. In females, 7 miRs (25%) survived
the analysis, two downregulated miRs and 5 upregulated miRs
(Figures 4A,B, Table S5). Eighty-three genes, or ~24%, were
miR-targeted (Figure 4C). For simplicity, we illustrated only
miR target genes that satisfy the canonical negative miR-mRNA
target association in network diagrams, however, ~29% of genes
showed only a positive association with targeting miRs, and
~33% of genes showed both positive and negative associations
(Figure 4C). The majority of target genes—48 genes or ~58%—
were targeted by more than one miR, whereas 35 genes (~42%)
were targeted by only one miR (Figure 4C). We performed IPA
(Figure 4D, Table S8) and DAVID (Figure 4E, Table S8) analyses
on miR-targeted genes, finding enrichment of several processes
relevant to depression, including Wnt/3-Catenin signaling (Dias
et al.,, 2014), calcium signaling and immune processes (Hodes
et al., 2014, 2015b). Interestingly, we observed overlap of

significantly regulated canonical pathways (Altered T and B Cell
Signaling in Rheumatoid Arthritis) and GO molecular function
terms (Neurotransmitter receptor activity, binding; Cytokine
activity) between analyses of all SCVS-regulated genes and miR-
targeted genes, indicating an involvement of miRs in prominent
stress-induced molecular processes. In males, 23 miRs (~55%)
survived the analysis, 12 downregulated miRs and 11 upregulated
miRs (Tables S6, S7). Due to the number and size of miR-
mRNA networks in males, we illustrated only the networks
corresponding to the top 3 miRs most strongly downregulated
by SCVS and one of the top 3 miRs most strongly upregulated
by SCVS (Figures 5A,B). The remaining miRs and targeted
mRNAs are listed in Tables S6, S7. Again, we only included
miR target genes with a negative association to the miR of
interest in network illustrations. Six hundred sixty-three genes
(~49%) were miR-targeted (Figure 6A). Of these, 532 genes
(~80%) showed a canonical negative association with at least
1 miR, whereas 131 genes (~20%) showed only a positive
association (Figure 6A). The majority of miR-targeted genes (468
genes, or ~71%) were targeted by more than 1 miR, whereas
195 genes (~29%) were targeted by only 1 miR (Figure 6A).
IPA analysis on miR-targeted genes revealed that, of the 13
significantly enriched canonical pathways for the male miR-
targeted gene list, 7 overlapped with those enriched in the
SCVS male differential gene list (the top 5 enriched pathways
are represented in Figure 6B, the full list is represented in
Table S8). DAVID analysis revealed that 24 of the 35 significantly
enriched GO molecular function terms in the miR-targeted
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FIGURE 3 | Sex differences in pathway enrichment and gene ontology of genes regulated by Subchronic Variable Stress. (A) (Left) The top five
significantly enriched (p < 0.05) IPA canonical pathways in females (top, magenta) and males (bottom, blue), shown as —log(p-value). For pathways significantly
enriched in both sexes, the degree of enrichment of the pathway in the opposite sex is shown in a separate, immediately adjacent bar. (Right) Hand curated list of
genes relevant to depression pathology chosen from significantly enriched IPA Canonical Pathways or from within the top 50 significantly enriched IPA Diseases and
Functions. Upregulated genes are shown in bold font. Enriched pathways/functions in females are colored magenta whereas those for males are colored blue. (B)
(Left) The top five significantly enriched (p < 0.05) GO Molecular Functions in females (top, magenta) and males (bottom, blue) as identified by DAVID, shown
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DISCUSSION

gene list overlapped with those from the full SCVS list, further
illustrating the potential involvement of miR regulation in stress

responsive molecular processes (the top 5 enriched GO terms
are represented in Figure 6C, the full list is represented in
Table S8).

We find that SCVS produces striking sex differences in
NAc transcriptional and post-transcriptional profiles. We
observe male/female overlap of only ~3% of similarly
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FIGURE 4 | Female miR-mRNA networks regulated by Subchronic Variable Stress. (A) Networks of downregulated microRNAs (miRs, blue nodes) surviving
network analysis and their negatively associated, upregulated target genes (yellow nodes). (B) Networks of upregulated miRs (yellow nodes) surviving network analysis
and their negatively associated, downregulated target genes (blue nodes). Blue lines indicate target gene downregulation whereas yellow lines indicate target gene
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significantly enriched (p < 0.05) GO Molecular Functions for female miR-targeted genes as identified by DAVID.

regulated mRNAs and ~4% of similarly regulated miRs
following SCVS. We also find minimal overlap between sexes
in enriched functional processes. Rather than displaying
a resistance to SCVS-induced transcriptional changes that

mirrors the male behavioral response, males mount a robust
transcriptional response to stress. This “active” response
extends to male post-transcriptional profiles and miR-mRNA
networks. These findings provide unique insight into the
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molecular underpinnings of sexual dimorphism in stress
response.

The majority of studies investigating miR regulation of target
mRNAs in psychiatric disease patients and animal models have
used qPCR (Garbett et al., 2015), microarray (Hollander et al.,
2010; Haramati et al.,, 2011; Miller et al., 2012; Tapocik et al.,
2013; Issler et al., 2014; Lopez et al., 2014a), or candidate-based
approaches (Uchida et al., 2008; Baudry et al., 2010; Im and
Kenny, 2012; Maheu et al., 2015; Zhang et al., 2015). We chose
to use RNA-Seq as it is a powerful technique with several key
advantages: single-base resolution, broad dynamic range, low
background, and high reproducibility (Finotello and Di Camillo,
2015). We performed small RNA and mRNA sequencing on
separate size-enriched fractions of RNA from the same NAc
dissections so as to capture the simultaneous expression patterns
of miRs and genes. We then applied an in silico approach to
identify miR-mRNA target interactions.

Our pipeline has several strengths. First, it provides a
complete, unbiased snapshot of NAc transcription and post-
transcriptional regulation in stressed males and females.
Second, we implemented a requirement that miR targets be
predicted by both the TargetScan and miRWalk algorithms to
increase our confidence in miR-target relationships, as target
prediction algorithms can produce false positives (Darnell,
2010). Furthermore, as tissue miR detection does not necessarily
denote appreciable repressive activity (Mullokandov et al., 2012;
La Rocca et al, 2015), we included an additional layer of
anti-correlated miR-mRNA expression networks to support a
functional role for identified miRs. Interestingly, we observed
a non-canonical positive correlation in a substantial proportion

of significant miR-mRNA relationships—61% of miR-targeted
genes in females, and 76% of miR-targeted genes in males had
a positive correlation with at least one targeting miR. miR
activation of targeted genes has been reported (Vasudevan et al.,
2007; Henke et al., 2008; @rom et al., 2008) but is uncommon,
and therefore likely represents alternative and indirect regulatory
mechanisms not captured by our analysis. Alternatively, as the
effect of a single miR on target expression is modest, the net effect
of all targeting miRs on a gene may be negative despite some
positive miR-mRNA relationships. This observation, coupled
with the finding that a majority of miR-targeted genes in males
and females were targeted by multiple miRs, highlights the
complexity of miR regulation and the utility of coordinated miR
activity in fine-tuning gene expression in the brain.

The genome-wide profiles we report corroborate our previous
mRNA findings (Hodes et al, 2015a) and extend them to
the level of post-transcriptional regulation. Collectively, our
results suggest that male mice may be mounting an active,
adaptive NAc transcriptional and post-transcriptional response
that is unique to the male sex. Several recent studies suggest
that a robust transcriptional response contributes to behavioral
resilience. Bagot et al. (2016) report that mice resilient to chronic
social defeat stress display more differentially expressed genes
in NAc compared to controls than do susceptible mice at 48 h
post-defeat. We previously found that following SCVS, females
show a greater induction of the repressive methyltransferase
gene Dnmt3a in NAc (Hodes et al., 2015a). Viral knockdown
of Dnmt3a promoted behavioral resilience, and interestingly
produced a greater percent overlap with male transcriptional
patterns. Smalheiser et al. (2011) reported evidence that robust
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miR responses may also contribute to resilience. They observed
that rats resilient to learned helplessness show significant
regulation of 48% more miRs in cortex than do susceptible rats.
Interestingly, the greater proportion of SCVS-regulated genes in
males than in females was starker in this analysis than in our
previously published RNA-Seq study (60% more genes in males
versus 17% in our previous study, Hodes et al., 2015a). This
difference may be attributable to the fact that we sequenced only
females in estrus and proestrus, and may indicate that females
show an especially dampened NAc transcriptional stress response
during this period of heightened stress sensitivity.

We chose to sequence samples derived from reproductively
intact females in estrus and proestrus due to the hormonal
dynamics of the estrous cycle. The rodent estrous cycle consists of
four phases: proestrus, estrus, metestrus, and diestrus. Estrogen
and progesterone reach peak plasma concentrations during
proestrus, decline in concentration throughout estrus, and are
present at low concentrations in diestrus (Butcher et al., 1974;
Bangasser and Valentino, 2014). Therefore, by studying females
in estrus and proestrus, we intended to best capture a period
characterized by both hormonal fluctuation and high levels of
estrogen and progesterone. Adult women are most susceptible
to depression during periods of great hormonal fluctuation,
including the postpartum period (Hendrick et al., 1998) and
during perimenopause (Cohen et al., 2006; Toffol et al., 2015).
Comparatively, female rodents are most susceptible to stress
during proestrus—when estrogen and progesterone are high—
and exhibit higher plasma corticosterone levels at baseline and
in response to stress in proestrus compared to other cycle stages
(Viau and Meaney, 1991; Carey et al., 1995; Bangasser and
Valentino, 2014). A recent meta-analysis of 311 neuroscience
articles found that female rats at any stage of the estrous
cycle are not more variable than male rats across behavioral,
electrophysiological, neurochemical, and histological measures
(Becker et al,, 2016), further supporting our rationale for
combining females in estrus and proestrus.

Our finding of minimal overlap in genes, miRs, and
functional processes between the sexes suggests that the female
transcriptional and post-transcriptional stress response is not a
blunted male response, but is rather a fundamentally different,
sex-specific response. Females engage different NAc molecular
processes in response to stress than do males, and this likely
has important consequences for behavioral outcome. The sex-
specific patterns we observed mirror and greatly expand upon
those we have previously reported, now highlighting a role
for novel post-transcriptional networks in sex differences in
stress responses (Hodes et al., 2015a). We also observed more
overlapping enriched pathways and GO terms between total
male SCVS and miR-targeted male SCVS gene lists than we
did for female counterparts, indicating that miRs may play a
more prominent role in stress-responsive molecular processes
in males than in females. However, it is important to note that
our female functional enrichment analyses were lower powered
than those for males as our female gene lists were smaller,
potentially exaggerating this effect. Nevertheless, the pronounced
sex differences we observed in these complex miR-gene networks

may shed light on important mechanistic differences governing
sex differences in fundamental NAc neural processes, such as
synaptic plasticity (Forlano and Woolley, 2010; Wissman et al.,
2012) and neuroactive steroid signaling (Becker, 1999; Almey
et al.,, 2015). Furthermore, our analysis revealed enrichment of
pathways in miR-targeted gene lists that may yield future insights
into enhanced female stress vulnerability. For instance, Wnt/f3-
catenin signaling was an enriched IPA canonical pathway for
female miR-targeted genes, and component genes Dkk2, Wnt7b,
and Sox5 were downregulated in the female SCVS gene list. As
Wnt/f3-catenin signaling is necessary for behavioral resilience to
chronic social defeat stress (Dias et al., 2014), downregulation of
this pathway may contribute to enhanced female vulnerability
to SCVS. Our network analysis also highlights miRs for
downstream functional analysis. For example, miR-206-3p—
a miR that survived our network analysis in females—was
oppositely regulated in males and females following SCVS.
Recent studies indicate involvement of miR-206-3p—a known
regulator of BDNF signaling—in rat hippocampal response to
the rapidly acting antidepressant ketamine (Yang et al., 2014),
medial prefrontal cortex-mediated alcohol consumption in rats
(Tapocik et al., 2014) and susceptibility to bipolar disorder in
human subjects (Wang et al., 2014).

In conclusion, we report that male and female mice exhibit
fundamentally different NAc genome-wide responses to SCVS.
Differences span both transcriptional and post-transcriptional
levels, and highlight a potential role for coordinated mRNA
and miR activity in behavioral outcome. These findings inform
our understanding of the enhanced susceptibility of women
to depression and suggest that, as stress response is strikingly
different in males and females, treatment protocols and
target identification strategies should take sex specificity into
account.
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