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Amyotrophic Lateral Sclerosis (ALS) is a highly debilitating disease caused by
progressive degeneration of motorneurons (MNs). Due to the wide variety of genes and
mutations identified in ALS, a highly varied etiology could ultimately converge to produce
similar clinical symptoms. A major hypothesis in ALS research is the “distal axonopathy”
with pathological changes occurring at the neuromuscular junction (NMJ), at very early
stages of the disease, prior to MNs degeneration and onset of clinical symptoms. The
NMJ is a highly specialized cholinergic synapse, allowing signaling between muscle and
nerve necessary for skeletal muscle function. This nerve-muscle contact is characterized
by the clustering of the collagen-tailed form of acetylcholinesterase (ColQ-AChE),
together with other components of the extracellular matrix (ECM) and specific key
molecules in the NMJ formation. Interestingly, in addition to their cholinergic role AChE is
thought to play several “non-classical” roles that do not require catalytic function, most
prominent among these is the facilitation of neurite growth, NMJ formation and survival.
In all this context, abnormalities of AChE content have been found in plasma of ALS
patients, in which AChE changes may reflect the neuromuscular disruption. We review
these findings and particularly the evidences of changes of AChE at neuromuscular
synapse in the pre-symptomatic stages of ALS.

Keywords: amyotrophic lateral sclerosis (ALS), axonopathy, neuromuscular junction (NMJ), acetylcholinesterase
(AChE), collagen tail subunit of asymmetric acetylcholinesterase (ColQ)

NEUROMUSCULAR JUNCTION (NMJ) FORMATION AND
STABILIZATION

The vertebrate neuromuscular junction (NMJ) is a ‘‘tripartite’’ synapse, composed by
the presynaptic motorneuron (MN), the postsynaptic muscle, and the synapse-associated
glial cells (terminal Schwann cells, TSC; Castonguay et al., 2001; Jessen and Mirsky,
2005). Thus, the NMJ is a specialized cholinergic synapse that permits the transmission
of action potentials from MNs to muscle. Impairment of NMJ function results in muscle
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weakness or paralysis. In the NMJ, the transmitter acetylcholine
(ACh) is released from the MN towards the postsynaptic muscle
membrane, folded with crests carrying ACh receptors (AChRs),
and troughs with a high density of voltage-gated sodium channels
(Flucher and Daniels, 1989; Figure 1A). The muscle fibers are
tightly wrapped by a basal lamina containing extracellular matrix
(ECM) material (Griffin and Thompson, 2008).

NMJ formation requires interactions between pre- and
postsynaptic components during embryonic development.When
motor axons reach their final target, muscle fibers already present
clusters of AChRs (Yang et al., 2000) which may represent
a preferential zone for innervation (Kim and Burden, 2008).
Upon contact with muscles, motor axons innervate muscle fibers
extensively to generate NMJs (for review Wu et al., 2010). The
NMJ specialization is mediated by key molecular mechanisms.
Agrin is a glycoprotein synthesized in MNs and released into
synaptic clefts. Agrin binds its receptor low-density lipoprotein
receptor-related protein 4 (Lrp4) to activate the muscle-specific
tyrosine kinase receptor (MuSK). Once phosphorylated, MuSK
recruits rapsyn, a cytoplasmic scaffolding protein expressed
constitutively in myotubes and tightly bonded to AChRs (Lee
et al., 2009). Thus, new AChRs are recruited at the NMJ (Sanes
and Lichtman, 2001; Figure 1B). The postsynaptic structure
is then maintained by a sub-synaptic apparatus provided by
the actin cytoskeleton and the dystrophin-glycoprotein complex
(DGC), a transmembrane complex of proteins linking the actin
cytoskeleton of the muscle to the basal lamina (Bartoli et al.,
2001).

At the NMJ, acetylcholinesterase (AChE) rapidly degrades
ACh, thus terminating synaptic transmission (Taylor and
Radić, 1994). AChE is presented as a protein complex
consisting of three catalytic tetramers covalently linked to a
non-catalytic subunit: a three-stranded collagen-like tail, called
ColQ (Rotundo, 2003; Massoulié and Millard, 2009). ColQ
is composed of a central collagenous domain flanked by
non-collagenous N and C-terminus domains (Krejci et al., 1997).
ColQ interacts with AChE, through the N-terminus (Bon et al.,
1997), to perlecan (a heparan sulfate proteoglycan) through the
collagen domain (Peng et al., 1999; Arikawa-Hirasawa et al.,
2002) and to MuSK through the C-terminus (Cartaud et al.,
2004). In turn, perlecan binds to DGC that, as seen before, links
the ECM to the cytoskeleton.

ACETYLCHOLINESTERASE (AChE)

Vertebrates possess two types of ChEs: AChE and
butylcholinesterase (BChE). AChE is a crucial enzyme for
nerve functions, hydrolyzing ACh in the synaptic cleft, while the
function of BChE and its role in the regulation of AChE levels is
still under discussion.

AChE exists as three distinct variants coming from alternative
exon splicing, each of them with a different C-terminal
sequence which determines the possibility to form different
oligomeric species (Taylor and Radić, 1994; Massoulié, 2002;
Meshorer et al., 2004). The main AChE mRNA transcript in
brain and muscle tissues is the AChE-T (tail) variant which
subunits constitute the AChE-ColQ complexes. Alternative

AChE-H (hydrophobic) and AChE-R (readthrough) variants
are less represented. Based on their quaternary structure
and on hydrodynamic properties, AChE-T appears under
several globular forms: amphiphilic G1, amphiphilic G2,
non-amphiphilic G4 and the membrane anchored amphiphilic
tetramers bound through the transmembrane subunit Proline
Rich Membrane Anchor (PRiMA). The main form at NMJs
is asymmetrical, consisting of 1 or 3 tetramers of AChE (A4,
A8 or A12) attached to ColQ (for review, see Massoulié
et al., 2005). In addition, three more variants exist coming
from the 5′-end splicing (Meshorer et al., 2004), called
‘‘N-extended’’ species: N-AChE-T, N-AChE-H and N-AChE-R
(Muñoz-Delgado et al., 2010). It results in a complex scenario
where multiple forms of the same protein may be regulated
by different mechanisms and display different biological
roles.

AChE-ColQ COMPLEX AT THE NMJ

ColQ deficiency brings to a drastically decreased AChE
localization at NMJs (Feng et al., 1999), causing congenital
myasthenic syndrome with AChE deficiency (Donger et al.,
1998; Ohno et al., 1998, 2013; Schreiner et al., 2007).
However, despite its cholinergic role, AChE-ColQ exerts
multifunctional roles thanks to the ability of ColQ to binds
several partners. Interestingly, AChR clusters are smaller
and more densely packed in ColQ-deficient mouse in both
muscle cells and in vivo NMJs (Sigoillot et al., 2010). In
addition, recent in vitro studies in absence of ColQ revealed
the down regulation of several ECM mRNAs (Sigoillot
et al., 2016). Laminins, collagens, proteoglycans and other
glycoproteins, but also metalloproteases, and other modulators
are decreased in ColQ−/− myotubes. Thus, ColQ may modify
the postsynaptic differentiation through the regulation of major
ECM components.

Also AChE regulates the fate of AChR: in AChE mutant
mice the absence of AChE causes a decrease in AChRs
density (Adler et al., 2004). Interestingly, BChE can associate
with ColQ (Krejci et al., 1997; Feng et al., 1999), but its
depletion does not give any phenotype at the NMJ (Li et al.,
2006), confirming the specificity of AChE action. Although
the catalytic action of AChE in the nervous system has been
characterized many years ago, its role in development remains
enigmatic. Many evidences, led to the hypothesis that AChE
may play non-classical roles, which can be relevant during neural
development. In this regard, it has been shown that AChE
expression occurs largely before the onset of synaptogenesis,
and in the absence of ACh (Layer and Kaulich, 1991; Small
et al., 1992, 1995). Moreover, AChE shares sequence homologies
with several cell-adhesion proteins, called cholinesterase-like
proteins, catalytically inactive but implicated in protein–protein
interactions (de la Escalera et al., 1990; Krejci et al., 1991;
Grifman et al., 1998; Grisaru et al., 1999). The existence of these
proteins provided a convincing reason to assume that AChE
itself may be engaged in protein interactions contributing to the
formation of cellular junctions by binding other extracellular
ligands.
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FIGURE 1 | Schematic presentation of a neuromuscular junction (NMJ) and the molecules involved in its development. (A) Local specialization in the
presynaptic motor nerve terminal where vesicles fuse with the terminal membrane and release Acetylcholine (ACh) neurotransmitter into the synaptic cleft are shown.
Postsynaptic organization in the skeletal muscle membrane include several folds with ACh receptors (AChRs; red) at the crest and voltage-gated sodium channels
(Nav1.4- brown) in the troughs of the folds. The localization and high concentration of AChR and Nav 1.4 are important for efficient neuromuscular transmission. The
entire complex of proteins associated with the AChRs partially represented in B is summarized within the blue pentagon. (B) The agrin-Lrp4-MuSK complex is
essential for the formation of the NMJ. Neural agrin binds to Lrp4 inducing the activation by phosphorylation of muscle-specific tyrosine kinase receptor (MuSK; red
arrow). AChE-ColQ complex is localized to the synaptic basal lamina and is essential for the inactivation of ACh. Also ColQ binds MuSK and Perlecan taking part in
the stabilization of the extracellular matrix (ECM). One activated, MuSK binds rapsyn (blue arrow) which in turn links AChRs and dystroglycan. The entire structure is
finally attached to the actin cytoskeleton (to simplify the figure, the orange arrow represents the network of proteins and pathways responsible for this interaction)
forming the lipid raft at the crest of the muscle membrane folds.

Zebrafish has provided an excellent system to investigate
the roles of AChE in vivo due to the absence of BChE gene
(Bertrand et al., 2001), while AChE gene is widely expressed
throughout development (Hanneman and Westerfield, 1989).
A missense mutation in the zebrafish AChE gene, achesb55,
was able to abolish ACh hydrolysis. The mutant embryos
showed a progressive motility defect and severe reductions in
the formation of muscle AChR clusters (Behra et al., 2002).
They also had defects in muscle fiber development, with
decrease in primary sensory neuron survival and dendritic
growth. These defects collectively supported non-classical roles
of AChE. Another mutation on AChE gene in zebrafish, the
zim (ach), gave rise to a protein, lacking both the catalytic
site and the C-terminal neuritogenic domain (Downes and
Granato, 2004). This mutation did not cause any motor
projections deficit, demonstrating that AChE activity was not
required for motor axon growth. However, both mutants
did display a decrease in AChR clusters at NMJ. Further
experiments on mutant mice presenting deletions of exons
5 and 6 in the AChE gene in the muscles, (mutation which
transforms anchored AChE into a soluble enzyme (Camp
et al., 2005), with consequent absence of AChE from the
NMJ basal lamina (Girard et al., 2006)), were presenting
AChR clusters markedly fragmented with a tetanic fade of

muscles contraction (Girard et al., 2006). Taken together,
these results demonstrated that AChE is dispensable for
regulating the stability of neuromuscular synapses. However,
the molecular mechanisms behind this regulation remain
unknown.

EARLY SIGN FOR NMJ DESTRUCTION IN
AMYOTROPHIC LATERAL SCLEROSIS
(ALS)

Amyotrophic Lateral Sclerosis (ALS) is caused by progressive
degeneration of upper and lower MNs with rapid clinical course.
Denervated muscles weaken, atrophy and death usually occurs
due to respiratory failure in patients within 2–5 years. Despite
our knowledge above the genetic causes for this disease, a
major question is still opened: Where does MN dysfunction
begin? Both dying-forward and dying-back hypothesis have been
considered (Kiernan et al., 2011). While the first one proposes
an anterograde degeneration of MNs via glutamate excitotoxicity
from the cortex, the second raises the possibility that ALS
starts distally at the nerve terminal or at the NMJ and progress
towards the cell body. In this complicated scenario, the best is to
consider back and forward-dying processes as two independent
mechanisms that happen simultaneously.
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Due to the difficulties in studying human cases, because
of the impossibility of obtaining pathological presymptomatic
samples, transgenic mice expressing human mutated genes have
provided an opportunity to investigate the early stages of the
disease. In particular, the human SOD1G93A transgenic mouse is
the most commonly used model of ALS (Dupuis and Loeffler,
2009). This animal loses MNs, develops progressive paralysis
and dies at 4–5 months of age (Gruzman et al., 2007; Turner
and Talbot, 2008). Thus, using this model Fischer et al. (2003)
observed denervation at the NMJ by day 47, followed by loss
of motor axons between days 47 and 80, and loss of MNs
cell bodies after day 80. Interestingly, MNs in hSOD1G93A

mice showed diminished retrograde uptake and transport before
the manifestation of clinical ALS symptoms (Parkhouse et al.,
2008; Bilsland et al., 2010). These results, plus other relevant
data discussed by Dadon-Nachum et al. (2011), implied that
hSOD1G93A dysfunction is actually a ‘‘dying-back’’ phenomena
where distal components are affected early before neuronal
degeneration, and symptoms onset.

Also, several results suggested that synapse-specific
mechanisms are partly responsible for selective synaptic
loss before MNs degeneration. MNs are generally divided into
two classes: fast-fatigable (FF) and slow (S) (Heckman and
Enoka, 2012). A third kind of MNs exists, the fast-fatigue-
resistant (FFR), considered an intermediate phenotype between
FF and S MNs, but little is known about its physiology (Stifani,
2014). In hSOD1G93A mouse the FF MNs synapses degenerates
while S-MNs synapses remain preserved (Pun et al., 2006). Also
the whole muscle and motor unit isometric contractile forces are
reduced, 50 days before the onset of clinical symptoms (Hegedus
et al., 2007).

Interestingly, the high constitutive expression of hSOD1G93A

at the MNs alone is not sufficient to develop early onset of ALS
in mouse (Pramatarova et al., 2001; Lino et al., 2002). Notably,
the transgenic overexpression of hSOD1G93A at the skeletal
muscle, develops progressive muscle atrophy with mitochondrial
dysfunction (Dobrowolny et al., 2008); suggesting the role of
muscles in disease initiation. This potential role is highlighted
by the therapeutic benefit of muscle-targeted treatments. Indeed,
the muscle expression of neurotrophic factors delays disease
onset, improves locomotor performance, and increases lifespan
(Mohajeri et al., 1999; Acsadi et al., 2002; Azzouz et al.,
2004; Dobrowolny et al., 2005; Li et al., 2007). Very recently,
morphological and pathological changes at hSOD1G93A mouse
NMJs architecture have been described as pre-symptomatic
hallmarks of the disease (Clark et al., 2016). These observations
point to an active role of the muscle fiber and identify the NMJ
as a major player in the initiation and progression of ALS.

Further evidences of early dysfunction at the NMJ come from
the FUS (FUsed in Sarcoma) mutant mice (Sharma et al., 2016).
In particular, in the hFUSP525L mouse lines, where the human
FUSP525L (found in patients with an aggressive and juvenile-
onset form of ALS) mutation is conditionally expressed in MNs,
the progressive degeneration is preceded by early (day p20)
and selective (FF MNs) motor axons retraction. Also, the NMJs
are precociously changed with a drastic reduction of synaptic
vesicles and pre- and postsynaptic mitochondria, which appeared

dilated and vacuolated as described in mutant hSOD1G93A and
hTDP43A315T transgenic models of ALS (Magrané et al., 2013).

Very recently, an additional mouse model for ALS has
been described carrying the human mutated C9orf72 with the
hexanucleotide repeat-expansion at the first intron/promoter
(gain-of-function model; O’Rourke et al., 2015). These mice
display early nuclear RNA foci and DPR proteins accumulation
without showing any sign of neurodegeneration. Also zebrafish
partial loss-of-function C9orf72 model have been described
leading to motor deficits (Ciura et al., 2013). Probably,
C9orf72models recapitulate the presymptomatic phase of disease
which needs of additional genetic factors to manifest the
neurodegeneration (Sellier et al., 2016). Probably, it will be
an extremely useful model for studying early stages of disease
pathogenesis.

CHOLINERGIC DYSFUNCTION IN ALS

The cholinergic system deficit emerged as a common
pathological hallmark in various neurodegenerative diseases,
such as Alzheimer’s disease (AD; Ulrich et al., 1990; Inestrosa
et al., 1996; Sáez-Valero et al., 1999), Parkinson’s disease (PD;
Bosboom et al., 2003), dementia with Lewy bodies (Förstl et al.,
2008), subcortical vascular dementia (Amenta et al., 2002) and
Huntington’s disease (Smith et al., 2006). Consequently, AChE
attracted considerable attention as a potential therapeutic target
(Fernandez et al., 2000; Erkinjuntti et al., 2004; Rampello et al.,
2004; Maidment et al., 2005). Indeed, AChE inhibitors partially
improve cognitive and functional symptoms, by increasing the
synaptic ACh availability. However, little is known about its
implication in ALS.

Loss of cholinergic synapses was reported in sporadic
ALS patients by studying the expression of vesicular ACh
transporter (VAChT), involved in the packaging of ACh inside
the synaptic vesicles before release. This protein is localized at
the synaptic terminal and considered a marker for cholinergic
synapses. Immunohistochemical exams on the spinal MNs
revealed a drastic depletion of VAChT immunoreactivity respect
to synaptophysin, a marker for MNs synapses integrity. This
discrepancy suggested a loss of cholinergic inputs as an early
event of ALS neurodegeneration (Nagao et al., 1998). However,
the choline acetyltransferase (ChAT) enzyme, responsible for
the biosynthesis of ACh, is the most specific indicator for
monitoring the cholinergic functional state. Microassay analysis
of ChAT activity of single spinal MNs from ALS patients
showed lower ChAT activity than in control neurons at an
early stage of the disease (Kato, 1989). The loss of activity
can be explained by the low ChAT protein contents in
ALS preserved MNs (Oda et al., 1995). Recently, to unravel
how and when cholinergic function is compromised, the
spatiotemporal expression of ChAT from early presymptomatic
stages of the hSOD1G93A mouse model, has been analyzed
by confocal immunohistochemistry. ChAT content was clearly
reduced in MNs soma and cholinergic synaptic terminals
very early, before MNs loss and NMJs detachment (Casas
et al., 2013). Thus, ChAT reduction may contribute to distal
degeneration.
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Interestingly, muscle biopsies of ALS patients revealed a
reduction in the AChE level (Rasool et al., 1983). Subsequently,
analysis of plasma AChE in ALS patients revealed a huge increase
in the circulating enzyme (Festoff and Fernandez, 1981). Such a
release may reflect a disruption of extracellularly bound AChE
at the NMJ. However, the exact source of AChE increase in
ALS plasma remains uncertain. In 1983, this hypothesis was
confuted by a study were ALS patients plasma samples were
compared with neuromuscular disease control groups (which
included 2 patients with denervating illnesses). However, no
increase of AChE activity was noticed in the second group,
suggesting that the increase in AChE activity in ALS plasma
was unlikely due to a release of bound enzymes from the
NMJ (Rasool et al., 1983). The difficulty to determine human
plasma AChE levels without interference by BChE may also
explain discrepancies (García-Ayllón et al., 2010, 2012). More
information comes from studies in which nerve-muscle integrity
was altered, such as denervation or dystrophy, where it has
been proved a similar reduction of AChE at the animal NMJ
with a subsequent increase in the plasma (Wilson et al.,
1973; Fernandez and Inestrosa, 1976). Further data evidence
that matrix metalloproteinases (MMP) activity increased in
central nervous system as well as in muscles (Schoser and
Blottner, 1999) and plasma of ALS patients (Demestre et al.,
2005). MMP are a family of Zn2+ endopeptidases that are
characterized by their ability to digest components of the
ECM, such as collagen, proteoglycan, and laminin (Vincenti
and Brinckerhoff, 2007) in response to specific changes in
neuronal activity or diseases (reviewed by Reinhard et al.,
2015). Also, a study on SOD1G93A mice model demonstrated
that early treatment with an MMP inhibitor prolongs survival,
suggesting a role for MMPs in disease progression, since
treatment in the symptom-onset group did not significantly
prolonged survival (Lorenzl et al., 2006). We can speculate
that such an increase of proteases and collagenases may be
related with the in vitro release of AChE found with denervation
and denervating illnesses and could be partly the cause of
the continuous and progressive interruption of neuromuscular
integrity and interrelationships intimately involved in the
pathogenesis of ALS.

However, the muscle is not the unique source of AChE
in the plasma: MNs have been shown to produce and release
AChE (Juliana et al., 1977; Rodríguez-Ithurralde et al., 1997). To
complicate the scenario there is the recent discovery of BChE
anchored by PRiMA on the surface of TSCs at mouse NMJs
(Petrov et al., 2014). In conclusion, the cellular origin of the

AChE released in the plasma in ALS and the consequences of its
absence at the NMJ is still unclear, since many other functions,
not related to the ACh hydrolysis, have been described (Soreq
and Seidman, 2001).

CONCLUSION

Although the majority of ALS cases are sporadic ALS (sALS)
with an unknown etiology, in about 10% of the cases there
is a Mendelian inheritance (fALS) where more than 20 genes
seems to be implicated (Lattante et al., 2015). Beyond these
genes, a huge interested has been put on TARDBP gene, because
its protein, TDP-43, is involved in multiple steps of RNA
metabolism, including transcription, splicing, or transport of
several mRNAs (Lagier-Tourenne et al., 2010; Lattante et al.,
2013). Interestingly, ChAT mRNA is a target of TDP-43 (Buratti
et al., 2010) and TDP-43 levels and localization in all the spinal
MNs are severely affected early in the presymptomatic stage in
hSOD1G93A mice, and parallels the development of cholinergic
dysfunctions (Casas et al., 2013). In this regard, we can speculate
a possible implication for TDP-43 in the direct regulation and
dysregulation of AChE or ColQ/PRiMA in ALS. In the same way,
would be of great interest to better explore the cholinergic deficit
in others, less known, genetical ALS models to give further clues
onto the etiopathogenesis of the diseases and to translate data in
validation of early biomarkers.
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