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Several proteins are found misfolded and aggregated in sporadic and genetic forms
of amyotrophic lateral sclerosis (ALS). These include superoxide dismutase (SOD1),
transactive response DNA-binding protein (TDP-43), fused in sarcoma/translocated
in liposarcoma protein (FUS/TLS), p62, vasolin-containing protein (VCP), Ubiquilin-2
and dipeptide repeats produced by unconventional RAN-translation of the GGGGCC
expansion in C9ORF72. Up to date, functional studies have not yet revealed a common
mechanism for the formation of such diverse protein inclusions. Consolidated studies
have demonstrated a fundamental role of cysteine residues in the aggregation process
of SOD1 and TDP43, but disturbance of protein thiols homeostatic factors such as
protein disulfide isomerases (PDI), glutathione, cysteine oxidation or palmitoylation might
contribute to a general aberration of cysteine residues proteostasis in ALS. In this article
we review the evidence that cysteine modifications may have a central role in many, if
not all, forms of this disease.

Keywords: amyotrophic lateral sclerosis, cysteine, neurodegeneration, protein aggregation, superoxide
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal neurodegenerative disease characterized
by fast progressing degeneration of upper and lower motor neurons of the motor cortex, brainstem
and spinal cord. Motor neuron degeneration is associated with muscle weakness and atrophy
followed by paralysis until death by respiratory failure (Robberecht and Philips, 2013). Although
ALS is sporadic in the majority of cases (sporadic ALS, sALS), this disease is inherited genetically in
a significant part of patients (familial ALS, fALS). ALS-associated genes code for proteins involved
in diverse cellular processes, and diverse mechanisms have been proposed as major contributors
to neurodegeneration in fALS and sALS (Renton et al., 2014). These include defective RNA
metabolism, glutamate excitotoxicity, disruption of membrane trafficking, endoplasmic reticulum
(ER) stress, mitochondrial dysfunction and protein misfolding and aggregation (Peters et al., 2015).
The variety of these factors makes the etiology of the disease extremely complex, a fact that is
reflected in the current unavailability of effective therapy.

A common feature observed in patients, regardless their classification as sporadic or familial,
is the presence of motor neuronal inclusions, formed by misfolded aggregated proteins, which
are associated with synaptic loss and neuronal death (Sasaki and Maruyama, 1994; Robberecht
and Philips, 2013). In particular, patients carrying mutations in the genes coding for the

Abbreviations: ALS, Amyotrophic lateral sclerosis; AMPK, AMP-activated protein kinase; ER, endoplasmic
reticulum; fALS, familial amyotrophic lateral sclerosis; FUS/TLS, fused in sarcoma/translocated in liposarcoma
protein; GSH, reduced glutathione; GSNOR, S-nitrosoglutathione reductase; GSSG, oxidized glutathione;
IMS, internal mitochondrial space; MAM, mitochondria-associated ER membranes; PDI, protein disulfide isomerase;
RNS, reactive nitrogen species; ROS, reactive oxygen species; RRM, RNA recognition motif; sALS, sporadic
amyotrophic lateral sclerosis; SOD1, Cu,Zn superoxide dismutase; TDP43, transactive response DNA-binding protein;
VAPB, vesicle-associated membrane protein (VAMP)-associated protein (VAP) B.
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antioxidant enzyme superoxide dismutase 1 (SOD1), for the
RNA-binding proteins transactive response DNA-binding
protein (TDP43) and fused in sarcoma/translocated in
liposarcoma protein (FUS/TLS) or an expanded hexanucleotide
GGGGCC in the C9orf72 gene have proteinaceous inclusions
made of, respectively, SOD1, TDP43, FUS and dipeptide
repeats originating from RAN translation of the exanucleotide.
Interestingly, TDP43 is found aggregated also in sALS and in
non-TDP43 fALS patients, with the exception of those with
SOD1 mutations (Lee et al., 2011).

In this article we review current evidence supporting the idea
that ALS can be seen as a cysteninopathia following an incorrect
redox state of cysteine residues.

CYSTEINES IN OXIDATIVE FOLDING AND
IN CELLULAR REDOX BALANCE

Protein cysteine residues contain a thiol group that can form
covalent disulfide bridges during the process of oxidative folding
and thus are critical for correct protein structure, function
and stability (Feige and Hendershot, 2011). In eukaryotic cells,
stable intra-molecular or inter-molecular disulfide bridges are
often formed in exported proteins in the oxidizing environment
of the ER lumen (Walter and Ron, 2011; Oka and Bulleid,
2013) through reactions catalyzed by the family of protein
disulfide isomerases (PDI; see below) or in the mitochondrial
intermembrane space (IMS) for those proteins imported in this
organelle through the MIA pathway (Mordas and Tokatlidis,
2015; Chatzi et al., 2016). Disulfide bridges exist also in
cytosolic proteins, and chaperones such as the heat shock
proteins Hps70 and Hps90 seem to be able to catalyze the
formation of disulfide bonds and possess foldase activity in the
more reducing cytosolic environment as well (Chambers and
Marciniak, 2014).

Besides their role in disulfide bridging, cysteine residues
also play a main role in maintaining a correct cellular
redox balance. First, the cysteine residue of the tripeptide
glutathione (GSH, γ-L-Glutamyl-L-cysteinylglycine) participates
in a complex network of enzyme-catalized reactions (Meister,
1988). Glutathione is the major thiol antioxidant in mammalian
cells and reduces disulfide bonds formed within cytoplasmic
proteins by serving as an electron donor. In the process,
glutathione is converted to its oxidized form, glutathione
disulfide (GSSG), which can be reduced back by glutathione
reductase, using NADPH as an electron donor. GSH serves
as a cofactor for a number of antioxidant enzymes (such
as glutathione reductases, glutathione peroxidases, glutathione
S-transferases) that collectively collaborate to maintain a correct
intracellular redox state and thus the ratio of reduced glutathione
to GSSG within cells is often used as a measure of cellular
oxidative stress (Meister, 1988).

Second, it is well known that redox-sensitive cysteine thiols
are critical for signal transduction, transcription factor binding
to DNA (e.g., Nrf-2, NF-κB), receptors activation and other
processes (Jones, 2008). A clear overlap exists between signal
transduction and redox biology, since the activity of enzymes
in different pathways and transcription factors that work as

redox sensors is based on disulfide bond formation, a mechanism
that is often used to trigger and to maintain redox homeostasis
(Forman, 2016).

CYSTEINE-DEPENDENT AGGREGATION
AND MISLOCALIZATION OF ALS
PROTEINS

Oxidative stress, that has been widely described in tissues
obtained from ALS patients and transgenic mouse models
(Cozzolino et al., 2008; Barber and Shaw, 2010), arises in
conditions of unbalanced increase of reactive oxygen species
(ROS) and reactive nitrogen species (RNS), which in turn may
change the conformation of proteins and lead to the formation
of aggregates and protein inclusions (Li et al., 2013). In the
last 10 years, oxidation dependent, cysteine-mediated protein
aggregation has been extensively demonstrated for mutant and
wild-type SOD1 and TDP43.

Human homodimeric wild type SOD1 has four cysteine
residues; two of them (Cys57 and Cys146) form an intra-
monomer disulfide bridge, while Cys6 and Cys111 are un-
bridged, with Cys111 relatively exposed on the protein
surface near the dimer interface. The mechanism of mutant
SOD1 aggregation involves oligomerization that may be the
consequence of covalent disulfide cross-linking mediated mainly
by Cys111 (Cozzolino et al., 2008). The Cys6 residue, which is
packed tightly within the interior of the β-barrel, may play a
role as well (Niwa et al., 2007), although all four Cys residues
are mutated, and thus not present, in some patients1, which
would argue against a direct role of Cys-mediated aggregation
in the pathogenesis of ALS. On this line, data obtained in
models in vitro and in vivo indicate that soluble forms of mutant
SOD1 initiate disease and larger aggregates are implicated only
in rapidly progressing events in the final stages of disease,
and thus it has been argued that disulfide bond formation is
a secondary effect and not primarily causative for aggregate
formation in ALS (Karch et al., 2009). However, that article
did not consider that uncontrolled accumulation of (aggregated)
mutant SOD1 inside the mitochondria of cells may be directly
responsible for mitochondrial impairment observed in ALS
models and patients (Wiedemann et al., 2002; Ferri et al.,
2006). Interestingly, cysteine residues are also involved in
SOD1 localization in the IMS (Cozzolino et al., 2009; Kawamata
and Manfredi, 2010). SOD1 import in IMS also involves its
copper chaperone that acts in a redox-dependent manner,
promoting SOD1 maturation through formation of disulfide
bridges and its retention in this cellular compartment (Banci
et al., 2008; Kawamata and Manfredi, 2010). Thus control of
the redox state of cysteine residues and SOD1 aggregation in
association with mitochondria may play a relevant role in the
pathology of the ALS.

In line with this, alteration of the GSH/GSSG ratio may
be a crucial trigger of the aggregation of mutant SOD1 and
oxidized wild-type SOD1 (Ferri et al., 2006). In the light
of the proposed toxicity of SOD1 oligomers and aggregates

1http://alsod.iop.kcl.ac.uk/
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in ALS, possible strategies to counteract aggregation such as
the modulation of the GSH/GSSG ratio (Ferri et al., 2006),
the overexpression of cytosolic glutaredoxin 1 (Cozzolino
et al., 2008) or mitochondrial glutaredoxin 2 (Ferri et al.,
2010) and treatment with cisplatin (Banci et al., 2012), that
binds Cys111, i.e. the crucial residue in SOD1 aggregation,
have been tested. Although to different extent, all of these
treatments were able to prevent or revert SOD1 aggregation
in neuronal cells, ameliorating mutant G93A-SOD1 protein
solubility, preserving mitochondrial function and preventing
apoptosis, thus suggesting that modulation of the redox state of
cysteine residues in specific compartments could be a significant
therapeutic strategy for ALS. Interestingly, that glutathione
deficiency leads to mitochondrial damage in the brain had been
already reported in a seminal article by Alton Meister more than
25 years ago (Mårtensson et al., 1990) and it is known that GSH
decreases with age (Ferguson and Bridge, 2016).

Recent experimental evidence highlighted similarities
between the mechanisms of aggregation of SOD1 and TDP43.
TDP43 has six cysteine residues, four of which (Cys173,
Cys175, Cys198 and Cys244) are located in the two RNA
recognition motifs (RRM1 and RRM2), while two others
(Cys39 and Cys50) are in the N-terminal domain. No mutations
in these residues have been reported so far2. Upon oxidative
challenge, full length TDP43 (independently from the presence
of ALS-linked mutations) is delocalized from the nucleus to the
cytosol and forms both oligomers and large aggregates (Cohen
et al., 2012; Bozzo et al., 2016). Studies on the aggregation
process have shown that oxidation of cysteines located in
the two RRMs decreases protein solubility, leading to the
formation of intra and inter-molecular disulfide linkage (Cohen
et al., 2012; Chang et al., 2013) and that cysteine residues
in RRM1 direct the conformation of TDP43 (Shodai et al.,
2013).

Formation of large aggregates is driven by oxidative stress
and by partial unfolding of the hydrophobic core of the protein,
whereas formation of oligomers depends on oxidative stress and
clearly relies on accessible cysteine residues (Cohen et al., 2012;
Shodai et al., 2013; Bozzo et al., 2016). The role of disulfide
bridging as a main determinant of oligomers formation is further
supported by the fact that oligomers are readily dissolved by
reducing agents and by increasing available GSH (Bozzo et al.,
2016), while depletion of the GSH pool induces insolubilization
and fragmentation of wild type TDP43 in a motor neuron cell
model (Iguchi et al., 2012).

Intriguingly, the two isoforms 35 kDa and 25 kDa deriving
from the proteolytic cleavage of full length TDP43, that are found
in the insoluble fraction in patients (Neumann et al., 2006) and
may represent the truly toxic TDP43 species in mice (Walker
et al., 2015), are totally included in cysteine-dependent oligomers
(Bozzo et al., 2016).

Overall, since aggregates formed by SOD1 and TDP43 are
basically present in all patients (including sALS), these data
confer to a correct redox state of cysteine residues a pivotal role
in the pathogenesis of ALS.

2http://alsod.iop.kcl.ac.uk/

PROTEIN DISULFIDE ISOMERASES IN ALS

PDIs are members of the thioredoxin superfamily and catalyze
the formation, breakage and rearrangement of disulfide bridges
of proteins via oxidation, reduction and isomerization reactions
(Ellgaard and Ruddock, 2005; Rutkevich et al., 2010). While
the disulfide interchange enzymatic activity involved in protein
folding is their most relevant function in cells (Liu et al.,
2005; Parakh and Atkin, 2015), PDIs can also act as molecular
chaperones preventing aggregation of proteins whether they
contain disulfide bonds or not (Cai et al., 1994) and this is
possibly why genes coding for PDIs are among the main targets
induced by the Unfolded Protein Response transcriptional
program (Matus et al., 2013). A growing body of evidence
suggests a role of PDI in the pathogenesis of ALS.

PDIA1 and PDIA3 (also known as ERp57) are up-regulated
in spinal cords of SOD1G93A mice, from pre-symptomatic to
end stages of disease, and in tissues (spinal cord and peripheral
blood mononuclear cells) from sALS patient (Atkin et al., 2006,
2008; Nardo et al., 2011). Moreover, PDIs are recruited to
misfolded protein inclusions in sALS patients (Atkin et al.,
2008) and interact with TDP43 and FUS inclusions in the
tissues of ALS patients (Honjo et al., 2011; Farg et al., 2012).
PDIs also co-localize with cytoplasmic aggregates in SOD1G93A

mice and in neuronal cells in culture (Atkin et al., 2006) and
with mutant vesicle-associated membrane protein (VAMP)-
associated protein (VAP) B (VAPB) in vitro (Tsuda et al., 2008).

That increased expression of PDIs in ALS represents
an attempt to protection from toxic aggregates is
further suggested by studies in vitro demonstrating that
overexpression of PDI reduces mutant SOD1 inclusions,
whereas silencing PDI expression increases their number,
and that treatment of neuronal cells with (+/−)trans-1,2-
bis(mercaptoacetamido)cyclohexane, an agent that mimics PDI
activity, reduces mutant SOD1 inclusions in a dose-dependent
manner (Walker et al., 2010; Jeon et al., 2014).

PDIs are usually localized in the ER; however, redistribution
in vesicles seems to be related to the course of the disease
(Walker, 2010). PDIs redistribution is associated with a
significantly increased enzymatic activity and a reduction
of the inactive S-nitrosylated PDIs form (Bernardoni et al.,
2013; see below). Cellular redistribution of PDIs occurs via
a process involving reticulons, a family of proteins devoted
to the maintenance of the ER curvature. Overexpression of
reticulon-1C (Rtn1-C) or reticulon-4A (NogoA) induces a
new localization of PDIs in an ALS neuronal cell model and
knockdown of NogoA accelerates motor neuron degeneration in
SOD1G93A transgenic mice (Yang et al., 2009; Bernardoni et al.,
2013). This suggests the importance of a non-ER location of PDIs
as a possible protective factor in ALS.

However, PDIs accumulation at the ER-mitochondria
junction triggers apoptosis via mitochondrial outer membrane
permeabilization pore (Hoffstrom et al., 2010; Zhao et al., 2015)
and detrimental activities of PDIs in this location were identified
in rat models of Huntington’s disease and Alzheimer’s disease
(Sun et al., 2006; Hoffstrom et al., 2010). Similar observations
in ALS models have not yet been reported; however, this aspect
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FIGURE 1 | Schematic representation of processes involving cysteine residues and that are relevant in the pathogenesis of amyotrophic lateral
sclerosis (ALS) either through the induction of misfolding, aggregation and delocalization of proteins or through their inactivation. Cysteine dependent
protein aggregation in ALS is promoted by oxidative stress and reduced γ-L-Glutamyl-L-cysteinylglycine (GSH)/glutathione disulfide (GSSG) ratio. Wild type and
mutant transactive response DNA-binding protein (TDP43) form cytoplasmic oligomers based on the accessibility of cysteine residues. Mutant superoxide
dismutase 1 (SOD1) forms cytoplasmic and mitochondrial oligomers that can be reduced by overexpression of anti-oxidant proteins cytosolic Glutaredoxin 1 and
mitochondrial Glutaredoxin 2. Cys-glutathionylation of mSOD1 and Cys-nitrosylation of protein disulfide isomerase (PDI) enhance aggregation of mSOD1. ALS
associated PDI mutations suggest a crucial role of the cysteine-mediated folding in the disease. PDIs colocalize with mSOD1 and TDP43 oligomers and with mutant
fused in sarcoma (FUS) and vesicle-associated membrane protein (VAMP)-associated protein (VAP) B (VAPB).

of PDIs’ biology would certainly deserve attention since the
mitochondria-associated ER membranes (MAMs) seem to be
a critical cellular compartment in ALS. In two recent elegant
articles, Miller and his group have reported that localization of
both TDP43 and FUS in MAMs activates GSK-3β to disrupt
the VAPB–PTPIP51 interaction and in turn ER–mitochondria
associations (Stoica et al., 2014, 2016).

A further evidence of a crucial role of cysteine metabolism
in ALS comes from the recent discovery of PDI mutations in
patients. Intronic variants of the gene encoding PDIA1 were
reported to be a genetic risk factor for sALS and fALS (Kwok
et al., 2013; Yang and Guo, 2016) and nine PDIA1 missense
variants and seven PDIA3 missense variants were documented
in 16 ALS patients (Gonzalez-Perez et al., 2015). Expression of
ALS-linked mutant forms of PDIA1 and PDIA3 in a zebrafish
model impairs synaptic proteins expression and determines
motor neuron morphology alterations (Gonzalez-Perez et al.,
2015). Moreover, in vitro dendritic outgrowth is decreased
when ALS-linked PDI mutants are expressed (Gonzalez-Perez
et al., 2015). Interestingly, mice knockout for PDIA3 in the

nervous system show neuro-muscular junction deficit, impaired
motor performance and reduced expression of synaptic vesicle
transporter protein (Woehlbier et al., 2016).

Altogether these results strongly suggest that PDIs mutations
explicate their pathological effects through a loss of function
mechanism, which is consistent with the report of inhibition of
PDI enzymatic activity by aberrant S-nitrosylation in patients
and murine experimental models (see next paragraph).

REDOX-DEPENDENT
POST-TRANSLATIONAL MODIFICATIONS
OF CYSTEINES

Cysteine-dependent modifications of proteins are the most
abundant post-translational modification taking place in an
oxidative and/or nitrosative stress context and are considered an
important mechanism of control of signal transduction.

Among these modifications, S-nitrosylation, a covalent
addition of a NO group to a cysteine thiol, is generally a reversible
modification (Hess et al., 2005) that may become irreversible in

TABLE 1 | Involvement of cysteine residues in amyotrophic lateral sclerosis (ALS).

Mut. in sALS Mut. in fALS Mut. in Cys residues Oligomers Presence in aggregates -S-NO -S-GSH -S-Palm

SOD1 + + + + + − + +
TDP43 + + − + + − − −

PDI − + − − + + − −

Cysteine-dependent alterations are indicated in green.
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pathological conditions such as neurodegeneration (Nakamura
et al., 2013). S-nitrosylation of PDIs has been found in several
neurodegenerative disorders including ALS (Chen et al., 2013;
Nakamura et al., 2013). When PDIs undergo S-nitrosylation
in the active site, their enzymatic activity is inhibited and
their protective functions are reduced (Benhar et al., 2006).
In post-mortem spinal cord from sALS and fALS patients
S-nitrosylated PDIs levels are five-fold more abundant compared
to healthy controls and similarly high levels are detected in
transgenic SOD1G93A mice (Walker et al., 2010). Moreover,
S-nitrosylation of PDIs increases insoluble aggregates of mutant
G93A-SOD1 in spinal cord of transgenic mice (Chen et al.,
2013; Jeon et al., 2014). Decreased S-nitrosylation has been
associated to ALS as well. A subset of fALS patients with
SOD1 mutations show an increased denitrosylase activity of
S-nitrosoglutathione reductase (GSNOR) and this increase has
been observed also in neuronal cells expressing the same
mutant SOD1 (Schonhoff et al., 2006). Moreover, GSNOR
up-regulation confers resistance to NO-releasing drugs in cells
expressing mutant G93A-SOD1 (Rizza et al., 2015). Because of
the known impact of S-nitrosylation on mitochondrial function
(Di Giacomo et al., 2012), we can speculate that modulation of
S-nitrosylation and the differential accessibility of cysteines may
contribute to ALS pathogenesis.

S-glutathionylation is another reversible post-translational
modification induced by ROS/NOS which results in the
formation of a disulfide bond between GSH and a cysteine
residue of proteins (Xiong et al., 2011). This modification is
involved in the regulation, through a redox signal transduction
mechanism, of different enzymes implicated in cellular
homeostasis e.g., in signaling pathways, antioxidant response,
energy metabolism and protein folding (Mieyal et al., 2008;
Grek et al., 2013). A detrimental role for S-glutathionylation
in ALS has been reported. For instance, S-glutathionylation
on Cys111 induces dissociation of wild type- and fALS mutant
G93A-SOD1 dimers (Redler et al., 2011), triggering monomer
formation and subsequent aggregation (Wilcox et al., 2009;
McAlary et al., 2013).

Finally, a growing body of evidence suggests that also cysteine
palmitoylation could be implicated in ALS. Palmitoylation is
the only lipid modification that can be reversibly regulated;
its main role seems to be to constitute rafts that allow the
dynamic targeting of specific proteins to membranes (Levental
et al., 2010). It was observed that Cys6 can be palmitoylated
in wild type SOD1 and that two fALS SOD1 mutants are
more exposed to this change in motor neuronal cells and
in the spinal cord of SOD1G93A transgenic mice (Antinone
et al., 2013). Moreover, palmitoylation takes place mainly on

reduced disulfides, suggesting that immature SOD1 is the species
primarily subject to this modification, and therefore increased
when the cysteine residues are more exposed as observed for
several mutant SOD1s (Antinone et al., 2013).

CONCLUSIONS

As outlined above, dysregulation of the redox state of cysteines
seems to be involved in a number of mechanisms that are
important for the maintenance of correct protein folding and
activity in ALS (Figure 1 and Table 1). Other aspects of cysteine
metabolism may be relevant in the pathogenesis of ALS, such
as the direct oxidation of cysteines in proteins that are crucial
for motor neuron metabolism and survival. One example is
cysteines oxidation in AMP-activated protein kinase (AMPK)
that is known to increase its activity (Zmijewski et al., 2010;
Cardaci et al., 2012; Jeon and Hay, 2015). Intriguingly, an
increased AMPK activity was reported in motor neuron cells
expressing mutant SOD1 or TDP43 (Lim et al., 2012; Perera
et al., 2014; Sui et al., 2014; Liu et al., 2015), in embryonic
neural stem cells derived from SOD1G93A mice (Perera et al.,
2014) and in motor neurons of sALS and fALS patients (Liu
et al., 2015). Moreover, pharmacological inhibition of AMPK
activity rescued TDP43 mislocalization in neuronal cells and
delayed disease progression in TDP43 transgenic mice (Liu et al.,
2015) whereas genetic reduction of AMPK ortholog improved
locomotor behavior and fecundity of C. elegans expressing
G85R-SOD1 or M337V-TDP43 (Lim et al., 2012).

On the whole, studies exploring the possibility to modulate
the redox state of cysteines are warranted with the aim of finding
new therapeutic approaches for this disease. While genetic
modulation of proteins involved in cysteine homeostasis is still
an unfeasible approach in man, pharmacological interventions
(e.g., to increase GSH/GSSG ratio or PDI activity) may hold great
promise in the treatment of ALS.
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