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Disruption of the human SHANK3 gene can cause several neuropsychiatric disease
entities including Phelan-McDermid syndrome, autism spectrum disorder (ASD), and
intellectual disability. Although, a wide array of neurobiological studies strongly supports
a major role for SHANK3 in organizing the post-synaptic protein scaffold, the molecular
processes at synapses of individuals harboring SHANK3 mutations are still far from
being understood. In this study, we biochemically isolated the post-synaptic density
(PSD) fraction from striatum and hippocampus of adult Shank3111−/− mutant mice
and performed ion-mobility enhanced data-independent label-free LC–MS/MS to obtain
the corresponding PSD proteomes (Data are available via ProteomeXchange with
identifier PXD005192). This unbiased approach to identify molecular disturbances
at Shank3 mutant PSDs revealed hitherto unknown brain region specific alterations
including a striatal decrease of several molecules encoded by ASD susceptibility genes
such as the serine/threonine kinase Cdkl5 and the potassium channel KCa1.1. Being
the first comprehensive analysis of brain region specific PSD proteomes from a Shank3
mutant line, our study provides crucial information on molecular alterations that could
foster translational treatment studies for SHANK3 mutation-associated synaptopathies
and possibly also ASD in general.

Keywords: Shank3, autism spectrum disorder, synapse, proteome, striatum, Homer1

Abbreviations: AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; ASD, autism spectrum
disorder; DIA, data-independent acquisition; GO-term, gene ontology-term; Ho, homogenate; ID, intellectual disability;
KO, “Knockout” (Shank3111−/− mutants); P2 Crude, membrane fraction; PMS, Phelan McDermid syndrome; PSD, post-
synaptic density; S1, supernatant 1 (purified homogenate); S2, supernatant 2 (cytosol); S3, supernatant 3 (synaptic cytosol);
Syn, synaptosomes; WT, wild type.
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INTRODUCTION

Studies from the last decade have repeatedly outlined that
genetic disruptions of SHANK3 in humans are of upmost clinical
relevance as they can lead to various neuropsychiatric disorders
including the PMS, a complex neurodevelopmental condition
and syndromic autism variant, non-syndromic ASD and ID
(Durand et al., 2007; Betancur and Buxbaum, 2013; Kleijer et al.,
2014; Leblond et al., 2014). As SHANK3 encodes a large scaffold
protein organizing the PSD of excitatory glutamatergic synapses
(Boeckers, 2006) it is hypothesized that SHANK3 mutations
perturb synaptic transmission in neural circuits throughout the
brain and thereby cause diverse neuropsychiatric phenotypes
(Grabrucker et al., 2011). To identify the respective circuits
and the underlying molecular pathomechanisms, several Shank3
mutant mouse lines have been engineered up to this date
(Bozdagi et al., 2010; Peca et al., 2011; Wang et al., 2011,
2016; Schmeisser et al., 2012; Han et al., 2013; Kouser et al.,
2013; Lee J. et al., 2015; Speed et al., 2015; Bidinosti et al.,
2016; Jaramillo et al., 2016a,b; Mei et al., 2016; Zhou et al.,
2016). Importantly, mutants from each line exhibit behavioral
traits related to neuropsychiatric diseases and neurobiological
alterations at the synaptic level that could be of further use
for the development of targeted therapies (Jiang and Ehlers,
2013; Schmeisser, 2015). However, most of the studies have
thus far included the molecular analysis of a biased selection
of synaptic proteins that had previously been identified in
Shank3 interaction studies, i.e., direct binding partners such
as GKAP/SAPAP or Homer and indirect binding partners
such as MAGUKs or glutamate receptors (Boeckers, 2006).
Additionally, previous studies mainly focused on a single
brain region and most of them analyzed crude synaptosomes
rather than purified PSD fractions. However, for a better
understanding of the synaptic pathology of SHANK3 mutations
in neuropsychiatric diseases, we need an unbiased and more
comprehensive insight into the molecular PSD composition
of Shank3 mutant mice in ASD-associated brain regions. For
this reason, we biochemically isolated the PSD fraction from
striatum and hippocampus of Shank3111−/− deletion mutants,
performed ion-mobility enhanced DIA label-free LC–MS/MS to
obtain the corresponding PSD proteomes. These data are not only
essential to better understand the molecular anatomy of PSDs
devoid of major Shank3 isoforms, but will also help to foster
translational treatment studies for SHANK3 mutation-associated
synaptopathies in the future.

MATERIALS AND METHODS

Mice
Generation of Shank3111−/− mutant mice has been described
previously (Schmeisser et al., 2012). Mice were bred on a
C57BL/6J background and housed under standard laboratory
conditions (average temperature of 22◦C, food and water
available ad libitum). Lights were automatically turned on/off
in a 12 h rhythm. All homozygous Shank3111−/− mutants
and WT littermates used for this study were from hetero-hetero

breedings, from both sexes and between P56 and P84. Animal
experiments were approved by the review board of the Land
Baden-Wuerttemberg, Permit Number 0.103 and performed in
compliance with the guidelines for the welfare of experimental
animals issued by the Federal Government of Germany.

Antibodies
The anti-Shank3 antibody has been described previously
(Schmeisser et al., 2012). The other antibodies have been obtained
from commercial suppliers as it follows: anti-PSD95 (dilution:
1:2 000, Synaptic Systems, #124011, RRID:AB_10804286), anti-
Synaptophysin (dilution: 1:20 000, Abcam, Cambridge, UK,
#ab14692, RRID:AB_301417), anti-rabbit HRP (dilution: 1:1 000,
Dako, Hamburg, Germany, #P0399, RRID:AB_2617141), and
anti-mouse HRP (dilution: 1:3 000, Dako, Hamburg, Germany,
#P0260, RRID not available).

Subcellular Fractionation and Western
Blot
Subcellular fractionation of brain tissue was performed as
previously described with minor modifications (Distler et al.,
2014b). For each of the n = 5 samples per genotype used for
proteomic analysis, striata or hippocampi of five individual mice
were combined. All steps were performed at 4◦C. Tissue was
homogenized (Ho) in buffer A (0.32 M sucrose, 5 mM HEPES,
pH 7.4) and centrifuged at 1 000 × g. The supernatant (S1)
was further centrifuged at 12 000 × g and the pellet containing
the crude membrane fraction (P2) was obtained. This fraction
was solubilized in buffer B (0.32 M sucrose, 5 mM Tris-HCl,
pH 8.1) and loaded on a discontinuous sucrose step gradient
(0.85 M/1.0 M/1.2 M). After centrifugation at 85 000 × g
the synaptosomes (Syn) were collected from the 1.0 M/1.2 M
interface and incubated with buffer C (0.32 M sucrose, 12 mM
Tris, pH 8.1, 1% Triton X-100). After centrifugation at 32 800× g,
the PSD pellet was collected (PSD) and solubilized in H2O.

Equal amounts of 10 µg from each sample were separated
via SDS-PAGE and subsequently blotted on Nitrocellulose
membranes according to standard protocols. Incubation with
the primary antibody was followed by incubation with an HRP-
conjugated secondary antibody (Dako). Signals were visualized
with the Pierce ECL Western Blotting Substrate and further
detected with the MicroChemi 4.2 machine. Signals were
quantified with Gelanalyzer software1.

Tryptic Digestion
Aliquots corresponding to 20 µg PSD protein were digested
using a modified filter-aided sample preparation (FASP) protocol,
which has been previously described in detail (Wisniewski
et al., 2009; Distler et al., 2016). Prior to LC–MS analysis, the
resulting tryptic digest solutions were diluted to a concentration
of 500 ng/µL using aqueous 0.1% formic acid and spiked with
25 fmol/µL of enolase 1 (Saccharomyces cerevisiae) tryptic digest
standard (Waters GmbH, Eschborn, Germany).

1www.gelanalyzer.com/

Frontiers in Molecular Neuroscience | www.frontiersin.org 2 February 2017 | Volume 10 | Article 26

http://www.gelanalyzer.com/
http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive


fnmol-10-00026 February 13, 2017 Time: 16:36 # 3

Reim et al. Shank3 Mutant PSD Proteomes

Nanoscale Liquid Chromatography Mass
Spectrometry (nanoLC–MS) of Tryptic
Digests
NanoLC–MS analysis of tryptic peptides was performed as
described before using a nanoAcquity UPLC system (Waters)
coupled to a Waters Synapt G2-S HDMS mass spectrometer
(Waters) (Distler et al., 2014b, 2016). In brief, peptides were
separated using a HSS-T3 C18 1.8 µm, 75 µm × 250 mm
reversed phase column. Mobile phase A was water containing
0.1% formic acid and 3% DMSO. Mobile phase B was ACN
containing 0.1% formic acid and 3% DMSO. Samples were
loaded onto the column in direct injection mode with 1%
mobile phase B as described before (Distler et al., 2014b,
2016). Peptides were separated using a gradient from 1 to 35%
mobile phase B over 90 min at a flow rate of 300 nL/min.
After separation of peptides, the column was rinsed with 90%
mobile phase B, followed by a re-equilibration step at initial
conditions (1% mobile phase B) resulting in a total run time
of 120 min. [Glu1]-fibrinopeptide was used as lock mass at
100 fmol/µl. All samples were analyzed in three technical
replicates.

NanoESI-MS analysis of tryptic peptides on the Waters Synapt
G2-S system was performed in positive V-mode with a resolving
power of at least 25 000 FWHM (full width half maximum).
The instrument was equipped with a NanoLockSpray source and
the lock mass channel was sampled every 30 s. LC–MS data
were collected using ion mobility enhanced MSE (Silva et al.,
2005; Geromanos et al., 2012). Precursor ion information was
collected in low-energy MS mode applying a constant collision
energy of 4 eV. Fragment ion information was obtained in the
elevated energy scan using drift-time specific collision energies
as detailed before (UDMSE) (Distler et al., 2014a, 2016). The
spectral acquisition time in each mode was 0.6 s with a 0.05 s-
interscan delay resulting in an overall cycle time of 1.3 s
for the acquisition of one cycle of low and elevated energy
data.

Raw Data Processing and Data Analysis
Initial signal processing of continuum LC–IMS-MSE data and
subsequent database search were performed using vendor
software ProteinLynx Global SERVER (PLGS, version 3.02,
Waters). For protein and peptide identification, data were
searched against a custom compiled database containing
UniProtKB/Swiss-Prot entries of the mouse reference proteome
(UniProtKB release 2014_02, 16 780 entries). Sequence
information for enolase 1 (Saccharomyces cerevisiae) as
well as for common contaminants (i.e., human keratins,
porcine trypsin) was added to the databases. Following
criteria were applied for database search: (i) trypsin as
digestion enzyme, (ii) up to two missed cleavages per
peptide, (iii) a minimum peptide length of six amino acids,
(iv) carbamidomethyl cysteine as fixed and (v) methionine
oxidation as variable modification. The false discovery rate
(FDR) for peptide and protein identification was assessed
searching a reverse database and set to 0.01 for database search
in PLGS.

Label-free quantification analysis was performed using the
ISOQuant software tool (Distler et al., 2014a, 2016). Briefly, the
analysis included retention time alignment, exact mass retention
time (EMRT) and IMS clustering as well as data normalization
and protein homology filtering. Settings and algorithms have
been described in detail in previous protocols (Distler et al.,
2014a, 2016). The peptide-level FDR for cluster annotation was
set to 0.01 within ISOQuant. For further quantitative analysis,
only proteins identified by at least two peptides with a minimum
length of six amino acids were considered. Additionally, to be
included in the final dataset, a protein had to be identified
in at least four biological replicates in at least one condition
(i.e., either in WT striatum, Shank3111−/− mutant striatum,
WT hippocampus or Shank3111−/− mutant hippocampus). For
each protein, absolute in-sample amounts were estimated using
TOP3 quantification (Silva et al., 2006). Based on the quantitative
information derived from the TOP3 approach, we calculated the
relative amount of each protein with respect to the sum over all
detected proteins [ppm: parts per million (w/w) of total protein].
The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium2 via the PRIDE partner
repository (Vizcaino et al., 2014, 2016) with the dataset identifier
PXD005192.

Statistical analysis of the data was conducted using Student’s
t-test with Bonferroni correction for multiple hypothesis testing
to largely exclude potential false-positive hits. As this is a
very conservative and stringent approach, Bonferroni adjusted
p-values of p ≤ 0.05 were considered statistically significant
to not exclude proteins that are actually displaying differences
between WT and Shank3111−/− mutants. In addition, for
each protein we calculated the log-transformed ratio of its
average amount in WT mice divided by its average amount in
Shank3111−/− mutant mice for hippocampus and striatum. To
be included in the list of regulated proteins, proteins had to
be statistically significant (p ≤ 0.05) and display a log2 ratio
of at least ±0.24 between WT and Shank3111−/− mutant
mice.

Functional annotation and analysis of proteins that displayed
significant changes between WT and Shank3111−/− mutant
mice was performed using DAVID Bioinformatics Resources
(version 6.7,)3 (Huang da et al., 2009a,b). To identify autism-
associated gene products among the pool of changed proteins
in the Shank3111−/− mutant PSD from either brain region,
proteins were individually matched with the SFARI (Simons
Foundation Autism Research Initiative) autism gene database4

(Banerjee-Basu and Packer, 2010). For the evaluation of known
and predicted protein–protein interactions among these proteins,
the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) database v10.05 was used (Szklarczyk et al., 2015).
Protein–protein interactions were visualized with the Gephi
software v0.9.16 (Bastian et al., 2009).

2http://proteomecentral.proteomexchange.org
3https://david.ncifcrf.gov
4https://gene.sfari.org/autdb/Welcome.do
5http://string-db.org
6https://gephi.org
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RESULTS

Proteomic Characterization of the
Striatal and Hippocampal PSD from
Shank3111−/− Mutants
After subcellular fractionation, we performed Western Blot
analyses to confirm the purity of the isolated PSD fractions.
As expected, the anti-Shank3 antibody differentiated between
material from WT and Shank3111−/− mutant (KO) samples.
Our analysis confirmed that the post-synaptic scaffold protein
PSD95 was increased and the presynaptic vesicle protein
Synaptophysin was decreased in the PSD fraction from each brain
region of both genotypes when compared to the corresponding
homogenate or synaptosomal fraction, respectively (Figure 1A;
Supplementary Figure S1). In our proteomic analysis, we
identified 2 461 proteins in the striatal and 2 345 proteins
in the hippocampal PSD from Shank3111−/− mutant animals
using an ion-mobility enhanced DIA LC–MS approach (Distler
et al., 2014a). Similar results were obtained from WT material
(Figure 1B; Supplementary Tables S1 and S2; Supplementary
Figure S2). Further analysis revealed that 61 proteins (2.47%)
were significantly altered within the striatal and 55 (2.34%)

within the hippocampal PSD from Shank3111−/− mutant
animals (p ≤ 0.05). In both brain regions, PSDs derived from
Shank3111−/− mutant animals displayed higher numbers of
down- than up-regulated proteins (Figures 1B,C). All regulated
proteins including KO/WT abundance ratios are listed in detail in
Supplementary Table S2. Notably, Shank3 was still detectable in
the Shank3111−/− mutant in our proteomic analysis at ∼41%
of WT levels in the striatal and ∼24% of WT levels in the
hippocampal Shank3111−/− mutant PSD. This result served
as internal control due to the fact that the Shank3111−/−

mutants are devoid of major, but not all Shank3 isoforms
(Figure 1A; Supplementary Tables S1 and S2; Supplementary
Figure S3) (Schmeisser et al., 2012; Vicidomini et al., 2016;
Wang et al., 2016). Biochemical analysis further revealed that
the protein levels of the remaining isoforms, Shank3e and
Shank3f, were not altered in the PSD fraction from either
brain region (Supplementary Figure S4). We next analyzed if
there were converging changes among the regulated proteins in
the Shank3111−/− mutant PSD from both brain areas when
compared with the Shank3 in vivo interactome from murine
synaptosomes (Han et al., 2013). Intriguingly, only one protein
was identified (Figure 1D): Homer1, which was decreased in both

FIGURE 1 | Large-scale proteomic analysis of wild type (WT) and Shank3111−/− mutant (KO) post-synaptic density (PSD) fractions from striatum
and hippocampus. (A) Western Blot analysis of the subcellular fractions derived from PSD isolation: Homogenate (Ho), Purified homogenate (S1), Crude
membrane fraction (P2), Cytosol (S2), Synaptosomes (Syn), PSD and Synaptic cytosol (S3) from WT and Shank3111−/− mutant (KO) tissue. Note enrichment of
Shank3 and PSD95 and depletion of Synaptophysin (Syp) in the PSD fraction of both, striatum (STR) and hippocampus (HIP). Representative bands for indicated
proteins are shown. (B) Total number of proteins and the significantly changed proteins (blue: down-regulated; orange: up-regulated) identified in the PSD fraction of
WT and Shank3111−/− mutant (KO) striatum (STR) or hippocampus (HIP) as indicated. The remaining Shank3 protein is excluded from this analysis. (C) Volcano
plots of all molecular alterations in the WT and Shank3111−/− mutant (KO) PSD fraction from striatum and hippocampus [log2(KO/WT), x-axis] and the respective
statistical significance [-log10(p-value), y-axis]. Significantly regulated proteins (above horizontal dashed line marked as “sign.”) are colored (blue and left of vertical
dashed line: down-regulated; orange and right of vertical dashed line: up-regulated). Changes that did not reach statistical significance remained black. Statistical
analysis was performed using a Bonferroni-corrected unpaired two-tailed t-test and a sample size of n = 5 independent biological replicates. (D) Venn Diagram
showing the number of proteins with altered expression levels in the Shank3111−/− mutant PSD from striatum (STR) and hippocampus (HIP) overlapping with a
Shank3 in vivo interactome from synaptosomes (Han et al., 2013) (blue: down-regulated).
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the striatal and hippocampal PSD of Shank3111−/− mutants
(Supplementary Table S2).

Gene Ontology Enrichment Analysis
Reveals Distinct Changes of Biological
Processes and Molecular Functions in
Striatal and Hippocampal PSD
Proteomes of Shank3111−/− Mutants
We next performed GO-term based protein enrichment analysis
to gain more insight into the functionality of the molecular
changes in the striatal and hippocampal PSD proteome of
Shank3111−/− mutant animals. Statistical enrichment analysis
of the three categories “cellular compartment,” “biological
process,” and “molecular function” yielded distinct results among
the two brain regions. In the striatal Shank3111−/− mutant
PSD, the top five enriched GO-terms from all three categories
pointed toward altered levels of proteins exhibiting ionotropic
glutamate receptor activity and involved in cell–cell signaling
at the PSD as the most prominent molecular consequences of
Shank3 deficiency (Figures 2A,B). For example, this included a
decrease of the AMPAR subunits GluA1 and GluA2, the NMDAR
subunits GluN1 and GluN2B and the kainate receptor GluK5
(Supplementary Table S2). Contrary to that, the same type of

analysis revealed that in the hippocampal Shank3111−/−mutant
PSD proteins involved in cytoskeleton organization such as Abi1,
Gelsolin or Profilin2 were predominantly changed following loss
of Shank3 (Figures 2C,D; Supplementary Table S2).

The Striatal PSD Proteome of
Shank3111−/− Mutants Comprises More
Altered Proteins Encoded by ASD
Susceptibility Genes than the
Hippocampal One
Similar to the GO-term based protein enrichment analysis,
comparison of the quantitative datasets of altered proteins in
the striatal or hippocampal PSD proteome of Shank3111−/−

mutant animals with the 826 autism-associated primary target
genes presently listed in the SFARI autism gene database also
rendered distinct results: 14 of the 61 proteins (23%) altered in the
striatal and 8 of the 55 proteins (15%) altered in the hippocampal
Shank3111−/− mutant PSD matched with proteins encoded
by SFARI autism genes (Figures 3A,B). The only converging
molecular alteration in this context was a decrease of Homer1
in both Shank3111−/− mutant PSD proteomes, while all other
changes were unique to each brain region. Importantly, all
molecules changed in the striatal Shank3111−/− mutant PSD

FIGURE 2 | Gene ontology analysis of significantly altered proteins in the Shank3111−/− mutant PSD from striatum and hippocampus. Functional
annotation of proteins with significantly altered expression levels in the striatal (A,B) and hippocampal (C,D) Shank3111−/− mutant PSD was performed using
DAVID (v6.7, https://david.ncifcrf.gov) with the data in Supplementary Table S2 used as input. Bar diagrams visualize the top five significantly enriched GO terms for
‘cellular compartment’ for molecular alterations in the striatal (A) or hippocampal (C) PSD. The top five significantly enriched GO terms for ‘biological process’ and
‘molecular function’ for molecular alterations in the striatal (B) or hippocampal (D) PSD are listed in table-like diagrams.
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FIGURE 3 | A relevant number of the significantly altered proteins in the Shank3111−/− mutant PSD from striatum is encoded by ASD susceptibility
genes. Significantly altered proteins in the striatal (A) and hippocampal (B) Shank3111−/− mutant (KO) PSD match with entries of the SFARI autism gene
database. Proteins further encoded by high-risk TADA genes are highlighted in bold. The KO/WT ratios are marked in blue for down- and in orange for up-regulated
proteins. (C,D) Protein–protein interactions (lines) among the significantly altered proteins in the striatal (C) and hippocampal (D) Shank3111−/− mutant PSD that
match with entries in the SFARI autism gene database. Proteins, which are further encoded by TADA genes, are marked in bold and are in boxes. Proteins
significantly down-regulated in Shank3111−/− mutant mice are marked in blue, significantly up-regulated proteins in orange.
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that matched with the SFARI autism gene database were reduced
and comprised the murine homologs of proteins encoded by
several major ASD candidates (Figure 3A) including NCKAP1,
GRIN2B and TRIO, 3 of the 65 high-risk ASD TADA genes
(De Rubeis et al., 2014; Sanders et al., 2015). Based on these
results, we generated minimal distance interaction networks that
showed a high degree of interactions among these molecules
almost exclusively in the striatal Shank3111−/− mutant PSD
(Figures 3C,D). The core of this network comprises known
direct and indirect Shank interactors (Han et al., 2013) and is
extended by several other intriguing candidates that have not
yet been associated with Shank3 or Shankopathies including the
serine/threonine kinase Cdkl5 and the potassium channels Kir2.1
and KCa1.1.

DISCUSSION

In this study, we used ion-mobility enhanced data-independent
label-free LC–MS/MS to generate an unbiased dataset of
in vivo changes in the PSD fraction from both striatum and
hippocampus of adult Shank3111−/− mutant mice lacking
major isoforms of Shank3 (Schmeisser et al., 2012; Vicidomini
et al., 2016). We have previously shown by the same
methodological approach (biochemical isolation followed by LC–
MS/MS) that in this fraction, PSD-specific proteins were highly
enriched whereas contaminating proteins (i.e., mitochondrial or
presynaptic ones) were efficiently decreased (Distler et al., 2014b).

Our comprehensive analysis quantified approximately 2 500
proteins in the striatal and 2 400 proteins in the hippocampal
Shank3111−/− mutant PSD and identified several significantly
regulated proteins largely distinct for either brain region. These
findings are intriguing as they point toward a specific function
of Shank3 in organizing the molecular anatomy of the PSD
in a brain region specific manner. Interestingly, our GO-term
enrichment analysis revealed that deficiency of Shank3 in the
striatal PSD primarily results in changes of proteins involved
in glutamatergic synaptic transmission, while cytoskeleton-
associated proteins were mainly affected in the Shank3111−/−

mutant hippocampal PSD. This is supported by previous studies
on impaired striatal glutamatergic synaptic transmission in the
same (Vicidomini et al., 2016) and other Shank3 mutants (Peca
et al., 2011; Jaramillo et al., 2016a,b; Peixoto et al., 2016; Wang
et al., 2016; Zhou et al., 2016) and on impaired cytoskeletal
organization in hippocampal neurons with altered gene dosage or
protein structure of Shank3 (Durand et al., 2012; Han et al., 2013)
In addition, loss of differential Shank3 isoforms with distinct
functions from striatal or hippocampal PSDs in a varying degree
depending on their physiological expression pattern and levels
throughout the brain might play a role in this context (Wang
et al., 2014).

Based on the fact that approximately 0.7% of individuals
with ASD exhibit a mutation in SHANK3 (Leblond et al., 2014),
we further compared our datasets with the SFARI autism gene
database to identify molecular patterns that could be of relevance
for a better understanding of ASD-associated pathomechanisms
in our model. Interestingly, we only found one protein to be

altered in the Shank3111−/− mutant PSD of both brain regions:
Homer1. This post-synaptic scaffold protein and C-terminal
Shank interactor, which interconnects the latter with group I
metabotropic glutamate receptors and regulators of post-synaptic
calcium signaling (Tu et al., 1999; Sala et al., 2001, 2005; Hayashi
et al., 2009) was decreased predominantly in the striatal PSD.
These data support previous biochemical findings in the same
(Vicidomini et al., 2016) and other Shank3 mutants (Peca et al.,
2011; Wang et al., 2011, 2016; Jaramillo et al., 2016a,b; Zhou
et al., 2016) pointing toward a common molecular phenotype at
synapses caused by any genetic disruption of Shank3. Together
with the fact that several rare variants of the HOMER1 gene
have been found in individuals with ASD (Kelleher et al., 2012)
our data strongly underline the central role of HOMER1 gene
dosage and – as we have previously demonstrated – to the
associated mGlu5 altered signaling (Vicidomini et al., 2016)
to better understand the molecular underpinnings of SHANK3
mutation-associated ASDs. This finding subsequently calls for
a detailed analysis of ASD-like behaviors and the underlying
molecular pathomechanisms in Homer1 mutants. Intriguingly,
we also found that almost 25% of the altered proteins in the
striatal Shank3111−/− mutant PSD matched with the SFARI
autism gene database. These molecules were all reduced and
comprised several major ASD candidates including three proteins
encoded by the murine homologs of the TADA genes NCKAP1,
GRIN2B and TRIO, which are highly relevant for ASD formation
in humans (De Rubeis et al., 2014; Sanders et al., 2015). Minimal
distance interaction network analysis further showed that the
majority of these proteins interact with each other pointing
toward a defined ASD-associated molecular network that is
disrupted specifically at the PSD of Shank3111−/− mutant
corticostriatal synapses. The core of this network includes known
direct and indirect Shank interactors including Homer1, IRSp53,
members of the GKAP/SAPAP family and the NMDA receptor,
a well-known target of translational pharmacotherapy of ASD-
like phenotypes in mice (Grabrucker et al., 2011; Han et al.,
2013; Jiang and Ehlers, 2013; Lee E.J. et al., 2015). In addition,
the network comprises several other intriguing ASD-related
molecules that have not yet been associated with Shank or
Shankopathies and could well serve as targets for future treatment
studies. Among these is Cdkl5, a serine/threonine kinase involved
in Akt-mTOR signaling at the synapse, genetically related
to several neurodevelopmental disorders in humans including
ASD, Rett syndrome and epileptic encephalopathies and whose
disruption leads to ASD-like behavior and impaired neural
circuitry in mice (Wang et al., 2012; Sivilia et al., 2016).
Other intriguing candidates are the potassium channels Kir2.1
and KCa1.1. Especially the latter is of high interest as genetic
disruption is not only found in individuals with ASD and
epilepsy, but also impairs network properties in ASD-related
brain regions in mice including Purkinje cell circuits (Guglielmi
et al., 2015). Importantly, our data on the exclusive reduction
of a significant number of ASD-associated molecules in the
striatal PSD of Shank3111−/− mutants mirror findings from
previous studies on two different gene targeted mouse models
of ASD: Ptenm3m4 mutants expressing the mistargeted tumor
suppressor Pten and Fmr1−/− mutants lacking the fragile X
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mental retardation protein (Fmrp). Transcriptome analysis of
Ptenm3m4 mutant cortices revealed broad down- and proteomic
analysis of Fmr1−/− mutant cortical synaptosomes broad up-
regulation of many human ASD-susceptibility genes (Tang et al.,
2015; Tilot et al., 2016). We therefore again emphasize the need of
unbiased and comprehensive screening of both gene expression
and molecular synapse anatomy in ASD-associated brain regions
of genetically based model systems to not only understand the
molecular consequences of the corresponding mutation, but also
the molecular pathology of ASD in a broader fashion.
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FIGURE S1 | Complete Western blot membranes. Complete membranes of
the Western blots presented in Figure 1: (A,B) Subcellular fractions derived from
striatal (A) or hippocampal (B) PSD isolation as indicated: Homogenate (Ho),
Purified homogenate (S1), Crude membrane fraction (P2), Cytosol (S2),
Synaptosomes (Syn), PSD and Synaptic cytosol (S3) from WT and
Shank3111−/− mutant (KO) tissue. Signals for Shank3, PSD95 and
Synaptophysin (Syp) are indicated. (A,B) Red boxes show the cutting lines for the
blots used in Figure 1.

FIGURE S2 | Further characterization of the proteomic dataset. (A)
Dynamic range of detected PSD proteins in the striatum (STR) and hippocampus
(HIP) of WT and Shank3111−/− mutant (KO) mice. (B) Overlap of proteins
identified in the PSDs derived from the striatum (STR) and hippocampus (HIP) of
WT and Shank3111−/− mutant (KO) mice. Only proteins that have been identified
in at least four biological replicates in one condition (either STR WT, STR KO, HIP
WT, or HIP KO) were considered. (C) Correlation plots of technical (upper panels)
and biological (lower panels) replicates are exemplarily shown for each brain
region in WT mice. The correlation plots show high reproducibility of sample
preparation and high precision of label-free quantification between technical
replicates as well as biological samples.

FIGURE S3 | Shank3 genetic targeting strategy and resulting pattern
of Shank3 isoforms still present in Shank3111−/− mutant mice.
(A) Schematic illustration of the murine Shank3 gene (boxes represent
respective exons) showing the deletion of exon 11 (indicated in red) and the
remaining Shank3 isoforms based on the review by Jiang and Ehlers (2013)
excluding alternative splice variants (ANK: N-terminal ankyrin repeats; SH3:
Src homology 3 domain; PDZ: PSD95/DLG/ZO-1 domain; Pro: Proline-rich
clusters; SAM: sterile alpha motif). Theoretical molecular weight of each Shank3
isoform in kDa was calculated from the isoform specific exon coding sequences
and is indicated. (B) Amino acid sequence of the longest Shank3 isoform
Shank3a. Colors indicate the respective protein–protein interaction domains;
dashed boxes represent the peptides identified by nanoLC–MS, light boxes:
detection only in WT tissue, darker boxes filled in gray: detection in both WT and
Shank3 mutant tissue.

FIGURE S4 | Analysis of Shank3 isoforms still present in Shank3111−/−

mutant mice. (A) Schematic illustration of the murine Shank3 gene (boxes
represent respective exons) showing the deletion of exon 11 (indicated in red) and
the remaining Shank3 isoforms based on the review by Jiang and Ehlers (2013)
excluding alternative splice variants (ANK: N-terminal ankyrin repeats; SH3: Src
homology 3 domain; PDZ: PSD95/DLG/ZO-1 domain; Pro: Proline-rich clusters;
SAM: sterile alpha motif). Theoretical molecular weight of each Shank3 isoform in
kDa was calculated from the isoform specific exon coding sequences and is
indicated. The epitopes of the anti-Shank3 antibody used in this study are marked
as red bars below the schematic illustration of the Shank3f isoform (B,C) Western
blot analysis of striatal (B) and hippocampal (C) PSD fractions of WT and
Shank3111−/− mutant (KO) mice. Shank3 isoforms a, c, e, and f are indicated
largely based on the study by Wang et al. (2014). Observed Shank3 isoforms
appear with a shift of additional ∼60 kDa from their calculated molecular weight,
most probably due to post-translational modifications. Right panel: Analysis of
signal intensities for Shank3e and Shank3f, which are still present in the
Shank3111−/− mutant PSDs. No significant change was observed. Statistical
analysis was performed using an unpaired, two-tailed t-test with a biological
sample size of n = 3.
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