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Autism spectrum disorder (ASD) is characterized by deficits in sociability and

communication, and increased repetitive and/or restrictive behaviors. While the

etio-pathogenesis of ASD is unknown, clinical manifestations are diverse and many

possible genetic and environmental factors have been implicated. As such, it has been

a great challenge to identify key neurobiological mechanisms and to develop effective

treatments. Current therapies focus on co-morbid conditions (such as epileptic seizures

and sleep disturbances) and there is no cure for the core symptoms. Recent studies have

increasingly implicated mitochondrial dysfunction in ASD. The fact that mitochondria are

an integral part of diverse cellular functions and are susceptible to many insults could

explain how a wide range of factors can contribute to a consistent behavioral phenotype

in ASD. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), used for nearly a

century to treat medically intractable epilepsy, has been shown to enhance mitochondrial

function through a multiplicity of mechanisms and affect additional molecular targets that

may address symptoms and comorbidities of ASD. Here, we review the evidence for the

use of metabolism-based therapies such as the KD in the treatment of ASD as well as

emerging co-morbid models of epilepsy and autism. Future research directions aimed at

validating such therapeutic approaches and identifying additional and novel mechanistic

targets are also discussed.

Keywords: autism spectrum disorder, ketogenic diet, metabolism, mitochondria, therapeutics, epilepsy,

co-morbidity, mechanism

AUTISM SPECTRUM DISORDER—COMPLEX ETIOLOGY,
LIMITED THERAPIES

Autism spectrum disorder (ASD) is characterized by persistent deficits in sociability and
communication, as well as restricted and repetitive patterns of behavior and interests (DiCicco-
Bloom et al., 2006; Llaneza et al., 2010; Lai et al., 2014). The term “spectrum” refers to the wide range
of symptoms and levels of impairment that can occur in individuals with ASD. Beyond these core
behavioral symptoms, ASD is increasingly shown to affect the gastrointestinal, immune, hepatic,
and endocrine systems (Goines and Van de Water, 2010; Patterson, 2011; Hsiao, 2013; Frye et al.,
2015; Mayer et al., 2015). Common co-morbidities include neurologic, psychiatric and physical
conditions: neurologic comorbidities include epilepsy, sleep impairment, sensory abnormalities,
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and delays and/or deficits in motor function; psychiatric
conditions such as depression, anxiety, irritability and attention
deficit hyperactivity disorder; and physical health issues such as
chronic gastrointestinal disturbance. The co-occurrence rate of
one or more non-ASD developmental diagnoses is as high as 83%
(Levy et al., 2010).

ASD occurs in all racial, ethnic, and socioeconomic groups
and is highly prevalent. It affects tens of millions individuals
worldwide and costs millions of US dollars on average to support
an affected individual during his/her lifespan (Buescher et al.,
2014). In the U.S., the incidence of ASD is 1 in 68 children
(1 in 42 boys and 1 in 189 girls) based on data released by
the Centers for Disease Control and Prevention (CDC) in 2014.
The prevalence appears to be on the rise (a 10-fold increase in
40 years), and is explained only in part by improved diagnosis
and awareness (Hansen et al., 2015). Developmental delay in
ASD can be detected as early as 6 months of age, a critical
time for the development of higher-order social, emotional,
and communications functions (Courchesne et al., 2007); the
importance of early intervention is recognized (Orinstein et al.,
2014). However, on average, children are not diagnosed until after
4 years of age (CDC, 2014), even though patients can now be
reliably diagnosed at 2 years of age (Lord et al., 2006; Kleinman
et al., 2008).

Given that ASD has broad and heterogeneous manifestations,
and has been associated with a plethora of possible etiological
factors (both genetic and environmental), ASD remains a
clinical and broad-spectrum diagnosis. In most cases, ASD is
diagnosed without any defined etiology. A dearth of knowledge
about underlying causes has limited the ability to develop and
mobilize effective treatments, and currently only co-morbid
manifestations of the disorder can be alleviated. The hope is that
reducing co-morbidities such as epileptic seizures, psychiatric
disturbances, hyperactivity, sleep problems and digestive issues
(DiCicco-Bloom et al., 2006; Llaneza et al., 2010; Lai et al., 2014)
will improve overall function and reduce the severity of ASD
symptoms (Kohane et al., 2012; Frye and Rossignol, 2016).

Genetic susceptibility factors and environmental influences
(and likely often both) contribute to ASD (Chaste and
Leboyer, 2012; Sandin et al., 2014; Tordjman et al., 2014; Kim
and Leventhal, 2015). Genome screening and sequencing has
identified rare chromosomal abnormalities and copy number
variations, as well as hundreds of rare gene mutations associated
with autism (Devlin and Scherer, 2012; Huguet et al., 2013; Jeste
and Geschwind, 2014; Baker and Jeste, 2015). A small number
of these genetic changes appear highly penetrant and sufficient to
cause autism. However, most genetic factors only increase the risk
to varying degrees, and likely combine with additional influences
such as advanced parental age at time of conception, adverse
metabolic conditions and/or maternal illness during pregnancy,
birth complications, and exposure to toxins and/or drugs during
early brain development (Stromland et al., 1994; Durkin et al.,
2008; Gardener et al., 2011; Krakowiak et al., 2012; Christensen
et al., 2013). Not surprisingly, the molecular pathways implicated
in ASD are also highly complex and diverse, and include synaptic
dysfunction and plasticity of various neurotransmitter systems,
transcriptional regulation and chromatin remodeling, protein

translation and modification, neuroimmunological modulation,
and mitochondrial function (Veenstra-Vanderweele et al., 2004;
Bourgeron, 2015; De Rubeis and Buxbaum, 2015; Kopp et al.,
2015; Loke et al., 2015; Mahfouz et al., 2015; Nelson and Valakh,
2015; Subramanian et al., 2015; de la Torre-Ubieta et al., 2016;
Wen et al., 2016).

METABOLISM, MITOCHONDRIA, AND ASD

Given such extreme etiological diversity, it is reasonable to
hypothesize that perturbation of a common nexus can precipitate
the behavioral hallmarks of ASD (Geschwind, 2008; Berg and
Geschwind, 2012). Identifying such a common factor would
provide novel insights into the development of ASD. Further,
targeting this pathway could lead to selective therapeutic
approaches that might enhance efficacy and address core
symptoms. One possibility is mitochondrial function, which is
integral to many cellular pathways. In addition to its well-
known role as the “powerhouse of the cell,” producing the
bulk of the cellular energy, mitochondria are also critically
involved in cellular metabolism, intracellular calcium signaling,
generation of reactive oxygen species (ROS), and apoptosis
(Suen et al., 2008; Murphy, 2009; Palmieri et al., 2010; Antico
Arciuch et al., 2012; Rizzuto et al., 2012), as well as in the
regulation of innate and adaptive immunity (Weinberg et al.,
2015). For example, mitochondria carry out both cleavage
and synthesis of glycine (Kikuchi et al., 2008), which is
the ligand of glycine receptors. These receptors are chloride
channels that mediate inhibitory neurotransmission in the adult
nervous system. However, they are highly expressed in the
embryonic brain and mediate excitatory neurotransmission,
and are believed to promote cortical interneuron migration
and generation of excitatory projection neurons (Pilorge et al.,
2016). Interestingly, recent genetic and functional studies
have identified a role of abnormal glycinergic signaling in
ASD (Pilorge et al., 2016). Furthermore, mitochondria are
known to be affected by many of the same endogenous and
exogenous risk factors of ASD, such as toxins, drugs, immune
activation, and metabolic disturbances (Frye and Rossignol,
2011). Thus, elucidating the role of mitochondrial dysfunction
in ASD may help unify our understanding of this complex
disorder.

Mitochondria play a particularly vital role in the central
nervous system. The brain has very high energy demands,
consuming approximately 20% of calories while accounting for
only 2% of total body weight (Raichle and Gusnard, 2002), and
demanding a great amount of adenosine triphosphate (ATP) to
maintain ionic gradients essential for neurotransmission and
plasticity (Harris et al., 2012). In addition, mitochondria are
involved in the proliferation, differentiation and maturation
of neural stem cells, formation of dendritic processes,
developmental and synaptic plasticity, and cell survival and
death (Li et al., 2004; Kann and Kovacs, 2007; Mattson et al.,
2008; Kimura and Murakami, 2014; Xavier et al., 2016). Thus, it
is not surprising that multiple lines of evidence in both human
and animal models support a role for mitochondrial dysfunction
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in the etiology of ASD (Haas, 2010; Dhillon et al., 2011; Frye and
Rossignol, 2011; Rossignol and Frye, 2012; Legido et al., 2013).

The prevalence of mitochondrial disease in the ASD
population is estimated to be about 5.0%, 500 times higher
than that found in the general population (≈0.01%). The
prevalence of abnormal metabolic biomarkers is even higher,
suggesting that as many as 30% of children with ASD may
experience metabolic abnormalities: almost one-third of autistic
children have documented elevations in plasma lactate and/or
the lactate-to-pyruvate ratio, and the levels of many other
mitochondrial biomarkers (pyruvate, carnitine, and ubiquinone)
are significantly different between ASD and controls (Rossignol
and Frye, 2012). In addition, several genes known to regulate
mitochondrial function are clearly autism-risk genes. These
include SLC25A12 (Ramoz et al., 2004; Segurado et al., 2005;
Silverman et al., 2008; Turunen et al., 2008; Kim et al.,
2011), which encodes the predominant form of mitochondrial
aspartate/glutamate carrier (however, also see Correia et al.,
2006; Palmieri et al., 2010). These carriers participate in a
wide range of mitochondrial functions, including control of
respiration, calcium signaling and antioxidant defense, as well
as glutamate-mediated excitotoxicity (Amoedo et al., 2016).
Furthermore, TMLHE, (trimethyllysine hydroxylase epsilon),
which encodes the first enzyme in carnitine biosynthesis, has
also been associated with ASD (Celestino-Soper et al., 2012;
Nava et al., 2012). It has been well established that carnitines
are involved in mitochondrial transport of long-chain fatty acids
and play an important role in maintaining normal mitochondrial
function (Bremer, 1983). In addition, the gene encoding an inner
mitochondrial membrane protease-like protein (IMMP2L) may
help regulate susceptibility to ASD (Maestrini et al., 2010). It is
important to note that metabolic and mitochondrial dysfunction
may not exist in all patients with ASD, and biomarkers to
identify this impairment would be advantageous in developing
personalized treatment.

In parallel with clinical findings, many animal models of ASD
also display mitochondrial dysfunction, including those based on
susceptibility genes such as MECP2, UBE3A, TSC, and FOXG1.
Mitochondrial dysfunction has also been observed in animal
models of ASD induced by environmental risk factors such as
maternal immune activation and exposure to propionic acid or
valproic acid (VPA). Current evidence linking mitochondrial
perturbations to ASD and the corresponding references are
summarized in Tables 1, 2.

Common co-morbidities of ASD also suggest metabolic and
mitochondrial dysfunction. One of the most significant co-
morbidities is epilepsy, with a prevalence of 5–38% in children
with ASD—much higher than the 1–2% prevalence in the
general population (Frye, 2015). Seizures also occur in 35–
60% of individuals with biochemically-confirmed mitochondrial
disease (Rahman, 2012), suggesting there may be a common
etio-pathology. Similarly, gastrointestinal dysfunction, a frequent
comorbidity of ASD (Chaidez et al., 2014), is also common in
mitochondrial disease (Frye et al., 2015).

Taken together, we believe that mitochondria act as a central
nexus responding to and regulating many domains of cellular
biology that have been implicated in ASD. Given the prevalence

of metabolic/mitochondrial dysfunction in ASD, options for
metabolic therapy should be explored. Below we review some
of the emerging clinical and research evidence that metabolic
therapy and improved mitochondrial function can ameliorate
ASD symptoms and comorbidities.

METABOLIC THERAPY FOR ASD

Ametabolic therapy in use for decades is the ketogenic diet (KD),
a high-fat, low-carbohydrate diet—a remarkably effective non-
pharmacological treatment for medically intractable epilepsy
(Neal et al., 2008). Based on historical observations that either
fasting or starvation rendered anti-seizure effects, the KD
was designed to reproduce the biochemical changes seen in
these physiological states (Masino and Rho, 2012). Recently,
various dietary and metabolic therapies have been attempted
in a wider variety of neurological diseases including ASD,
Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral
sclerosis, sleep disorders, multiple sclerosis, brain trauma, stroke,
pain, Huntington’s disease and brain cancer (Ruskin et al., 2009;
Stafstrom and Rho, 2012; Napoli et al., 2014). Although generally
limited in scope, clinical studies thus far showed promising
results in conditions such as Alzheimer’s disease and ASD
and are discussed in more detail below. In addition, research
using animal models has pointed to a common mechanism of
regulating energy metabolism to afford neuroprotective effects
(Stafstrom and Rho, 2012).

Overall, recent clinical and laboratory evidence suggests
that the KD may have positive effects in ASD. The complex
pathophysiology of ASD and the diversity of mechanisms
mobilized by dietary therapy combine tomake identifying the key
molecular mechanisms challenging, but a number of candidates
are emerging. Two hallmark biochemical features after the KD
treatment are increased ketone body production by the liver
through fatty acid oxidation and reduced blood glucose levels
(Stafstrom and Rho, 2012). More specific metabolic effects, such
as increases in specific polyunsaturated fatty acids, might regulate
neuronal membrane excitability (Voskuyl and Vreugdenhil,
2001), reduce inflammation (Cullingford, 2008; Jeong et al.,
2011), or decrease the production of ROS by mitochondria
(Kim do and Rho, 2008). Additionally, ketone bodies themselves
have been shown to possess neuroprotective properties through
improved bioenergetics - raising ATP levels and reducing
ROS production through enhancement of NADH oxidation
and inhibition of mitochondrial permeability transition (Kim
do et al., 2007, 2015); related to this, a KD has also been
shown to stimulate mitochondrial biogenesis (Bough et al.,
2006; Ahola-Erkkila et al., 2010). In parallel, reduced glycolysis
can suppress seizures, improve mitochondrial function, decrease
oxidative stress, reduce activity of pro-apoptotic factors, and
inhibit inflammatory mediators such as interleukins and tumor
necrosis factor alpha (Garriga-Canut et al., 2006; Maalouf et al.,
2009). The KD has also been proposed to increase adenosine
(a product of extracellular ATP dephosphorylation); ATP and
adenosine are purines with pleiotropic neuromodulatory and
neuroprotective roles proposed to underlie in part the diet’s
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TABLE 1 | Studies showing linkage between ASD and mitochondrial dysfunction in ASD patients (only those reporting more than 25 subjects are included

in this table).

References Cases Evidence of mitochondrial dysfunction

GENETIC LINKAGE BETWEEN MITOCHONDRIA-RELATED GENES AND AUTISM

Celestino-Soper et al., 2012 909 or 130 Deficiency of the gene TMLHE (trimethyl-lysine hydroxylase epsilon), which encodes the first enzyme in

carnitine biosynthesis, was more frequent in probands from male-male multiplex ASD families.

Glessner et al., 2009 859 Copy number variations in genes involved in the ubiquitin degradation were implicated in susceptibility

for ASD.

Kent et al., 2006 129 The 3243A>G mitochondrial DNA mutation was concluded to be a rare cause of isolated Asperger

syndrome.

Silverman et al., 2008; Kim et al.,

2011

Multiple families Polymorphism in SLC25A12 gene, which encodes a mitochondrial aspartate/glutamate carrier, was

found to be associated with restricted repetitive behaviors in autism.

Maestrini et al., 2010 127 A gene encoding an inner mitochondrial membrane protease-like protein (IMMP2L) was implicated in

susceptibility for ASD.

Nava et al., 2012 501 Mutations in TMLHE were identified in patients with ASD and led to an increase in trimethyl-lysine, the

precursor of carnitine biosynthesis, in the plasma.

Ramoz et al., 2004; Segurado et al.,

2005; Turunen et al., 2008

Multiple families Polymorphism in SLC25A12 gene was found to be associated with autism.

INDICATIONS OF IMPAIRED MITOCHONDRIAL FUNCTION IN THE BRAIN

Goh et al., 2014 75 Lactate doublets detected by brain magnetic resonance spectroscopic imaging were present at a higher

rate in autistic patients.

Palmieri et al., 2010 Six or multiple families Transport rates of mitochondrial aspartate/glutamate carrier (AGC) were higher in temporo-cortical gray

matter. In addition, expression of AGC1, cytochrome c oxidase activity, and oxidized mitochondrial

proteins were increased. However, variants of the AGC1-encoding SLC25A12 gene were not correlated

with AGC activation or autism phenotype.

Tang et al., 2013 45 Mitochondrial function and intracellular redox status were compromised in the pyramidal neurons of the

temporal cortex.

ABNORMAL LEVELS OF MITOCHONDRIA-RELATED METABOLITES IN BLOOD SAMPLES

Al-Mosalem et al., 2009 30 Increased plasma lactate levels and activity of creatine kinase.

Cohen et al., 1976 25 Increased serum creatine phosphokinase levels.

Correia et al., 2006 241 Increased plasma lactate levels and lactate/pyruvate ratio, but not associated with the variation at the

SLC25A12 gene.

Filipek et al., 2004 100 Reduced levels of carnitine and pyruvate, but increased levels of alanine and ammonia in serum.

Frye et al., 2013 213 Abnormal acyl-carnitine panels and glutathione metabolism in blood samples.

Kuwabara et al., 2013 25 Higher plasma levels of arginine and taurine, and lower levels of 5-oxoproline and lactic acid.

László et al., 1994 30 Increased serum lactate and pyruvate levels.

Moreno et al., 1992 60 Increased lactate and pyruvate levels.

Oliveira et al., 2005 69 20% of ASD patients showed significantly increased lactic acidemia, while 7% were classified with a

definite mitochondrial respiratory chain disorder.

Poling et al., 2006 159 Increased blood aspartate aminotransferase and creatine kinase levels.

ABNORMAL MITOCHONDRIAL FUNCTION AND DNA STRUCTURE IN PERIPHERAL CELLS OR CELL LINES

Boccuto et al., 2013 87 Decreased tryptophan metabolism in lymphoblastoid cell lines.

Chen et al., 2015 78 Mitochondrial DNA copy number in peripheral blood cells was elevated in children with ASD.

Rose et al., 2012 43 Primary immune cells in the blood had a more oxidized intracellular and extracellular microenvironment

and a deficit in glutathione-mediated redox/antioxidant capacity.

Rose et al., 2014 25 Mitochondrial dysfunction observed in a subset of autism lymphoblastoid cell lines.

Wong et al., 2016 66 Mitochondrial DNA deletions and higher p53 gene copy ratios in peripheral blood monocytic cells were

more common in children with autism and their fathers.

clinical efficacy (Masino and Geiger, 2008; Masino et al., 2009,
2010). Separately, increased adenosine has been proposed to
reduce symptoms and comorbidities of ASD (Masino et al.,
2013). In addition, the KD has been reported to regulate
energy-sensing pathways such as those involving the insulin-
like growth factor and the mammalian target of rapamycin
(McDaniel et al., 2011; Gano et al., 2014). Epigenetic regulation

is a new but potentially important mechanism as well (Boison,
2016).

Given the effects of the KD and its substrates (e.g., ketone
bodies, fatty acids) on cognitive and behavioral functioning, it
is reasonable to speculate that this diet would induce changes
in synaptic morphology and function. Studies have shown that
the KD can modulate excitability through actions on potassium
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TABLE 2 | Studies showing association between ASD and mitochondrial dysfunction in animal models of ASD.

References Evidence of mitochondrial dysfunction

LINKAGE BETWEEN MITOCHONDRIA-RELATED GENES AND AUTISTIC PHENOTYPE

Hullinger et al., 2016 Increased expression of AT-1/SLC33A1 caused an autistic-like phenotype in mice.

Inan et al., 2016 Progressive decline in oxidative phosphorylation led to circuit dysfunction, impaired sensory gating and social disability when the

cox10 gene was selectively deleted in parvalbumin neurons in mouse.

Sakurai et al., 2010 Loss of SLC25A12 gene resulted in hypomyelination. Myelin deficits in slice cultures from knockout mice were reversed by

administration of pyruvate.

Xie et al., 2016 Cell-autonomous insufficiencies in the activity of TMLHE reduced neural stem cell pools in the embryonic mouse brain.

Zhao et al., 2010 ASD-like features observed in neuronal glucose transporter isoform 3-deficient mice.

ALTERATIONS IN MITOCHONDRIAL FUNCTION IN ANIMAL OR CELLULAR MODELS OF ASD BASED ON GENETIC FACTORS

De Filippis et al., 2015 The rate of hydrogen peroxide generation was increased and the function of complex ii impaired in the brain of MeCP2-308

heterozygous female mice.

Jin et al., 2015 Mecp2, whose mutations cause Rett syndrome, was observed to regulate mitochondrial bioenergetics through a glutamine

transporter in microglia.

Kriaucionis et al., 2006 Mitochondrial abnormalities observed in Mecp2-null mouse, a model of Rett syndrome.

Nie et al., 2015 Mitochondrial uncoupling protein-2 was highly induced in Tsc2-deficient neurons, and also in a neuron-specific Tsc1 conditional

knock-out mouse model.

Norkett et al., 2016 DISC1 protein regulated mitochondrial dynamics in neurites of neurons.

Pancrazi et al., 2015 A fraction of the protein Foxg1, which is implicated in autism, was found to localize to mitochondria and coordinate cell

differentiation and bioenergetics.

Santini et al., 2015 A mouse model of Angelman syndrome displayed elevated levels of mitochondria-derived reactive oxygen species in pyramidal

neurons in hippocampal CA1 area, and administration of MitoQ, a mitochondria-specific antioxidant, to this model normalized

synaptic plasticity and restored memory.

Su et al., 2011 Mitochondrial dysfunction observed in hippocampal neurons of the UBE3A-deficient mouse model of Angelman syndrome.

MITOCHONDRIAL DYSFUNCTION IN ANIMAL MODELS OF ASD BASED ON ENVIRONMENTAL FACTORS

Bhandari and Kuhad, 2015 Propanoic acid exposure induced autism-like behavior in rats and activities of complex I and II were reduced.

Kumar and Sharma, 2016 Prenatal exposure to valproic acid decreased the activity of mitochondrial complex I, II, and IV in rats .

Macfabe, 2012 Mitochondrial dysfunction observed in a rat ASD model in which propionic acid, an enteric bacterial fermentation product, is

infused intracerebroventricularly.

TREATMENT RELATED TO METABOLISM AND MITOCHONDRIAL FUNCTION IN ANIMAL MODELS OF ASD*

Ciarlone et al., 2016 Ketone ester supplementation improved motor coordination, learning and memory, and synaptic plasticity in a mouse model of

Angelman syndrome. The treatment also attenuated seizure activity and altered brain amino acid metabolism in this model.

Currais et al., 2016 Dietary glycemic index was found to modulate behavioral and biochemical phenotype of the BTBR mouse model of ASD.

Naviaux et al., 2013, 2014, 2015 Anti-purinergic therapy improved autism-like features in the maternal immune activation mouse model and the Fragile X mouse

model.

Park et al., 2014 Dietary therapy with triheptanoin enhanced mitochondrial substrate use and improved metabolism and behaviors of Mecp2-null

mouse model of Rett syndrome.

Sakurai et al., 2010 Loss of the SLC25A12 gene resulted in hypomyelination. Myelin deficits in slice cultures from knockout mice are reversed by

administration of pyruvate.

Santini et al., 2015 A mouse model of Angelman syndrome displayed elevated levels of mitochondria-derived reactive oxygen species in pyramidal

neurons in CA1 hippocampus, and administration of MitoQ, a mitochondria-specific antioxidant, in this model normalized

synaptic plasticity and restored memory.

*Studies using the ketogenic diet are described in more detail in the main text.

ion channels (Tigerholm et al., 2012; Lutas and Yellen, 2013)
and glutamatergic synaptic transmission (Xu et al., 2006; Juge
et al., 2010; Lutas and Yellen, 2013; Chang et al., 2016), as
well as possible regulation of GABA production (Yudkoff et al.,
2007). In addition, the KD or its metabolic mediators can induce
changes in synaptic vesicular cycling (Hrynevich et al., 2016),
hippocampal mossy fiber sprouting (Muller-Schwarze et al.,
1999), and both age- and region-dependent changes in synaptic
morphology (Balietti et al., 2008, 2009).

Collectively, evidence thus far indicates that the KD affords
broad neuroprotective effects, and hence, it is reasonable to

hypothesize that this diet could prove to be beneficial for
individuals with ASD.

METABOLIC THERAPY AND
ASD—CLINICAL EVIDENCE TO DATE

To date, there have been limited clinical trials involving treatment
of ASD patients with metabolic therapy using variants of a KD.
The first report was a pilot prospective study in autistic children
aged between 4 and 10 years carried out by Evangeliou and
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colleagues; they applied an intermittent modified medium-chain
triglyceride (MCT) diet (Evangeliou et al., 2003). Most of
the 18 patients who adhered to the diet improved based
on the Childhood Autism Rating Scale (CARS) and several
additional clinical parameters. Significant (i.e., >12 units of
decrease in CARS) and average (>8–12 units of decrease in
CARS) improvement was recorded in two and eight patients,
respectively, while minor (2–8 units of decrease in CARS)
improvement was reported in the remaining eight patients.
More recently, Spilioti and colleagues reported the effects of
KD treatment in a group of Greek children with ASD aged
between 3.5 and 6 years (Spilioti et al., 2013). Of the 6 patients
who implemented the diet successfully, significant and average
improvement was recorded in one and two patients, respectively,
and minor improvement was reported in the remaining three
patients.

The diet is also effective in reducing common comorbidities
of ASD such as seizures, not surprisingly, but also improved
cognition and behavior. A pilot retrospective study analyzed
outcomes in children prescribed the KD to treat epileptic
seizures; among these children, some also had autistic symptoms
and abnormal behaviors. Children assigned in the KD group
were currently on the diet and had been for at least 6 months;
children assigned in the non-KD group stopped the diet at
least 2 months prior. Fewer abnormal behaviors and significant
behavioral improvement were found in the KD group, and
behavioral improvement was not correlated with seizure control
(Masino et al., 2011). More recently a randomized control trial
showed improved cognition, mood and behavior—particularly
reduced anxiety—in children prescribed the KD for refractory
epilepsy. These behavioral benefits were also unrelated to seizure
control (IJff et al., 2016). In a remarkable case study, Herbert
and Buckley reported on a 12-year-old child with comorbid
autism and epilepsy treated with a gluten- and casein-free
KD (fats composed mostly of MCTs) (Herbert and Buckley,
2013). In addition to a significant reduction in seizures, the
diet resolved morbid obesity and improved cognitive and
behavioral function. Over the course of several years following
initial diagnosis, the child’s CARS score decreased from 49
to 17, representing a change from severe autism to a non-
autistic state, and her intelligence quotient increased by 70
points.

In summary, clinical evidence to date remains limited, but
results from the aforementioned studies show promise that
metabolic therapy with several different versions of a KD can
improve symptoms of ASD and can also improve cognition
and behavior—the latter benefits that can facilitate optimal
outcomes in ASD. In patients with diagnosed ASD, greater
than 50% of autism patients who received this metabolic
therapy showed moderate-to-significant clinical improvement,
while the remainder displayed minor improvement. At present,
more larger-scale clinical studies are required. Meanwhile, as
mentioned earlier, metabolic and mitochondrial dysfunction
may represent only a subgroup of the ASD population. Thus,
it would be important to determine the relation between
the effects of the KD and metabolic/genetic profile of ASD
patients.

METABOLIC THERAPY AND
ASD—EVIDENCE FROM ANIMAL MODELS

Due to the complexity of ASD, investigators have developed and
employed numerous animal models. Some have clear metabolic
underpinnings, underscoring the link between metabolic
dysfunction and symptoms of autism. Metabolic therapy with a
KD and/or a restricted diet has already been examined in several
models. In agreement with the aforementioned clinical studies,
reports in animal models have been positive. The ASD models
tested with metabolic therapy discussed here include genetic
disorders that mirror clinical conditions, induced ASD that
models environmental conditions found to increase ASD risk in
humans, and behavioral ASD models with unknown etiologies
that recapitulate all or some of the core symptoms, and may or
may not have comorbid seizures.

As one genetic example, succinic semialdehyde
dehydrogenase (SSADH) deficiency is a rare autosomal
recessive condition that results in mild-to-moderate mental
retardation, disproportionate language dysfunction, seizures,
hypotonia, hyporeflexia, hallucinations, and autistic behaviors
(Pearl et al., 2003). In an animal model of SSADH deficiency, the
SSADH knockout mouse, Nylen and colleagues found that KD
treatment normalized electroencephalogram (EEG) activity and
restored miniature inhibitory post-synaptic currents recorded
in CA1 pyramidal cells using hippocampal slices. In contrast,
there were no significant differences between the groups in terms
of miniature excitatory post-synaptic currents. Behaviorally,
KD-treated mutant animals experienced significantly fewer
seizures compared to mutant animals fed the control diet (Nylen
et al., 2008).

Metabolic therapy with dietary restriction (either a standard
diet or KD) was tested in another clinically relevant genetic
model of Rett syndrome. Rett syndrome is a neurodevelopmental
disorder characterized by normal early maturation, followed
by a slowing of development, impairment of motor functions,
seizure susceptibility, and intellectual disability. In most cases,
Rett syndrome is caused by mutations in the methyl-CpG-
binding protein 2 (MECP2) gene (Amir et al., 1999). Children
with Rett syndrome often exhibit autistic-like behaviors in the
early stages of the disease (Percy, 2011). Mantis and colleagues
found that Mecp2 mutant mice performed significantly worse
in assays of motor function and anxiety compared to wild-
type control animals, and restriction of either standard diet or
the KD improved motor behavior and reduced anxiety in these
mutant animals (Mantis et al., 2009). There is also limited clinical
evidence for anti-seizure efficacy and improved behavior after KD
treatment in Rett syndrome (Liebhaber et al., 2003).

Most cases of ASD have unknown genetic underpinnings
(Gaugler et al., 2014), and models of unidentified etiology
have been characterized with behavioral tests assessing autistic
symptomatology. The BTBR T+tf/J (BTBR) inbred mouse strain
is one of the most clinically relevant animal models of autism;
it was identified in an extensive effort to characterize ASD-like
behaviors in ten inbred mouse strains (Moy et al., 2007) and
displays all the core behavioral features that define the disorder
(Moy et al., 2007; McFarlane et al., 2008; Meyza et al., 2013;

Frontiers in Molecular Neuroscience | www.frontiersin.org 6 February 2017 | Volume 10 | Article 34

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Cheng et al. Metabolic Therapy and Autism

Ruskin et al., 2013; Smith et al., 2014; Ellegood and Crawley,
2015). BTBR mice display deficits in social interaction and
communication assays and exhibit repetitive and stereotyped
behaviors. During the relatively short time since its discovery
as an ASD model, the BTBR strain has been increasingly used
to study the etiology and to uncover potential interventions for
ASD (Moy et al., 2007; McFarlane et al., 2008; Llaneza et al.,
2010; Ruskin et al., 2013; Cheng et al., 2016; Mychasiuk and Rho,
2016; Newell et al., 2016). Ruskin and colleagues reported that the
BTBR mice showed decreased sociability in the three-chamber
test, decreased self-directed repetitive behavior, and improved
social communication in a food preference assay after being fed
a KD (Ruskin et al., 2013). In addition, the authors showed that
the behavioral improvements were probably not related to any
anti-seizure effect of the diet, because no spontaneous seizures or
abnormal EEG features were observed in the BTBR animals.

Interestingly, a recent study showed that gut microbiota
composition of cecal and fecal samples was significantly altered
in BTBR mice compared to B6 animals (Newell et al., 2016).
In addition, a KD decreased total host bacterial abundance in
both sample types, and in the BTBR animals counteracted a low
Firmicutes to Bacteroidetes ratio, which is commonly observed in
patients with ASD (Finegold et al., 2010; De Angelis et al., 2013).
Related to these findings, it has been shown that dietary glycemic
index, which is a measure of how much the carbohydrate in
a food item affects blood glucose level, modulates behavioral
and biochemical phenotype in the BTBR mice (Currais et al.,
2016). These data support the idea that in the context of genetic
predisposition to ASD, diet could potentially alter the expression
of the disorders.

More recently, Ruskin et al. also showed KD-induced
behavioral improvements in the EL mouse, a model of comorbid
ASD-associated behaviors and progressive spontaneous epilepsy.
Mice (of both sexes) were fed a KD for 3 weeks after weaning
and prior to the age of onset of the seizure phenotype. Sociability
improved and repetititve behaviors decreased; intriguingly, these
effects were more pronounced in females. Also, some behavioral
benefits were observed in females even when a more liberal
dietary formulation was applied (Ruskin et al., 2016).

As mentioned above, environmental factors also contribute
to the risk of developing ASD. In this regard, exposure to
exogenous chemicals is best exemplified by VPA use during
pregnancy. VPA is a pharmacological anticonvulsant used in
humans primarily for the treatment of epilepsy and migraine,
and epidemiological studies have shown that use of VPA during
pregnancy is associated with an increased risk of ASD in the
offspring (Bromley et al., 2013; Christensen et al., 2013). The VPA
exposure model is one of the most frequently studied models
of autism (Chomiak et al., 2013; Roullet et al., 2013) since it
exhibits many similar structural and behavioral features seen in
ASD individuals. Ahn and colleagues found that KD treatment
recovered part of the play behavior of juvenile rats exposed
to VPA prenatally (Ahn et al., 2014). Interestingly, the authors
also found that prenatal exposure to VPA altered mitochondrial
respiration, and the KDwas able to partially restore this. A recent
study in VPA-treated mice also found improved social behavior
(Castro et al., 2016).

Taken together, there is increasing evidence for the beneficial
effects of the KD in different animal models of ASD. However,
clear evidence for converging mechanistic links remains
hypothetical, and few fundamental mechanistic studies have been
conducted to date in either animal models or human ASD
tissues. Thus, there is a need for further studies utilizing diverse
animal models and incorporating comprehensive behavioral
assays to elucidate common molecular pathways in ASD and
to validate the positive effects of the KD observed thus far in
animal models. Equally important, studies aimed at identifying
the mechanisms relevant to such models of ASD are required
to optimize treatment, discover novel therapeutic targets, and
ultimately provide key insights to the neurobiology of ASD.
Borrowing from the rich literature on the KD in epilepsy,
shifts in energy metabolism, the direct actions of the ketone
bodies on the mitochondria, neuromodulatory functions of ATP
and adenosine, regulation of excitation/inhibition balance, and
epigenetic effects of the diet are among the promising candidate
mechanisms.

FUTURE DIRECTIONS: METABOLIC
THERAPY AND ASD

At present, there is strong evidence that mitochondrial
and metabolic dysfunction may underlie the complex
pathophysiology of ASD. Precise mechanisms remain elusive
and many questions remain unanswered: Is mitochondrial
dysfunction a cause or a consequence of ASD? In which specific
organs and cell types is it most relevant? Can addressing
mitochondrial and metabolic disturbances directly help at least a
subgroup of patients with ASD for more targeted treatments that
will ameliorate the diverse symptom complex? Thus far, the KD is
a provenmetabolic therapy for medically intractable epilepsy, but
there are only limited data for its use in ASD and a rudimentary
understanding of how the KD may exert positive behavioral
effects. The optimum formulation of the KD needs to be
established and may be different for ASD compared to epilepsy.
Proper efforts to address these fundamental questions and to
identify molecular mechanisms and biomarkers will require the
collective and collaborative efforts of many, including basic,
translational and clinical researchers, as well as investigators
with diverse expertise in multi-organ dysfunction, metabolism,
and genetic and environmental risk factors. The ultimate reward
could be a major breakthrough in understanding its causes
and developing much-needed broadly effective therapies for
ASD—and in particular, treatments that address core symptoms.
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