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Contemporary models of neurotransmitter release invoke direct or indirect interactions
between the Ca2+ sensor, synaptotagmin and the incompletely zippered soluble,
N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) complex.
However, recent electron microscopic (EM) investigations have raised pragmatic issues
concerning the mechanism by which SNAREs trigger membrane fusion at nerve
terminals. The first issue is related to the finding that the area of contact between
a “fully primed” synaptic vesicle and the plasma membrane can exceed 600 nm2.
Approximately four-thousands lipid molecules can inhabit this contact zone. Thus,
renewed efforts will be needed to explain how the zippering of as few as two SNARE
complexes mobilizes these lipids to achieve membrane fusion. The second issue
emerges from the finding that “docking filaments” are sandwiched within the area of
vesicle-plasma membrane contact. It is challenging to reconcile the location of these
filaments with SNARE models of exocytosis. Instead, this commentary outlines how
these data are more compatible with a model in which a cluster of synaptotagmins
catalyzes exocytotic membrane fusion.

Keywords: synaptotagmin, active zone, docking filaments, tomographic reconstruction, transmitter release
mechanisms, synapse function

INTRODUCTION

A major goal of neuroscience research is to clarify the molecular events that lead to the fast,
synchronous release of neurotransmitters at chemical synapses. Seminal studies revealed that
transmitter secretion is initiated via the depolarization-dependent entry of Ca2+ into the nerve
terminal which triggers synaptic vesicle exocytosis (Katz, 1966; Heuser, 1989). This scenario raised
two important questions: first, what is the identity of the target to which Ca2+ binds? and, second,
how does Ca2+ binding to this target promote exocytosis? The consensus answer to the first
question is that synaptotagmin 1 (or 2) is the physiological Ca2+-sensor for rapid, synchronous
exocytosis at most nerve terminals (Südhof, 2014). The answer to the second question remains less
clear. The prevailing view is that Ca2+-bound synaptotagmin triggers exocytosis by interacting
directly or indirectly with soluble, N-ethyl-maleimide-sensitive factor attachment protein receptor
(SNARE) proteins (Rothman, 2014; Südhof, 2014). However, as a follow-up to a comprehensive
review (Meriney et al., 2014), this commentary will emphasize that much remains to be clarified
about how SNARE proteins catalyze exocytotic membrane fusion. Additionally, it will be argued
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that recent empirical developments favor a simpler solution in
which synaptotagmin is the template for exocytotic membrane
fusion (Gundersen and Umbach, 2013).

THE DISCOVERY OF SYNAPTOTAGMIN
AND SNAREs

Systematic efforts to clone and sequence the cDNAs encoding
synaptic vesicle proteins led to the finding that a previously
identified constituent of synaptic vesicles, p65, had two motifs
that were related to presumptive Ca2+-binding domains of
protein kinase C (Perin et al., 1990). These C2 domains were
later shown to bind Ca2+ (Brose et al., 1992), and investigations
from a number of groups ultimately led to the conclusion that
synaptotagmins 1 and 2 were the principal Ca2+-sensors for
synchronous exocytosis at chemical synapses (Südhof, 2014). The
discovery of SNARE proteins was more convoluted. It began
with the identification of soluble proteins (N-ethylmaleimide
sensitive factor, or NSF, and the NSF adaptor proteins, or
SNAPs) which were essential for membrane-trafficking in the
Golgi apparatus. Then, because vertebrate brain had a high
abundance of membrane targets for these soluble proteins, brain
extracts were used in an affinity-purification scheme to identify
the SNAP ‘‘receptors’’, or SNAREs. The remarkable upshot of
this effort was that the SNAREs were found to include a pair
of plasma membrane-associated proteins (syntaxin A/B and
synaptosome-associated protein of 25 kDa, or SNAP-25) and
one synaptic vesicle protein (synaptobrevin 2; Söllner et al.,
1993b). The further observations that SNAREs were targets
of clostridial neurotoxins (Schiavo et al., 1992) and formed
a ternary complex suggested that SNAREs might constitute
a molecular link between a synaptic vesicle and the plasma
membrane that could be exploited to drive membrane fusion
(Söllner et al., 1993a,b). However, it was the finding that SNARE
proteins formed parallel, rather than anti-parallel, complexes
which supplied the conceptual basis for all subsequent models of
SNARE involvement in membrane fusion (Hanson et al., 1997;
Sutton et al., 1998). And, with the report that SNAREs promoted
liposomal fusion (Weber et al., 1998), widespread efforts focused
on the mechanism by which synaptotagmin interfaces with
SNAREs to regulate exocytosis.

EVOLVING MODELS OF SYNAPTOTAGMIN
AND SNARE FUNCTION IN SYNAPTIC
VESICLE EXOCYTOSIS

The crucial question to emerge from the preceding research was:
‘‘How does synaptotagmin control SNARE-mediated membrane
fusion?’’. The field still lacks a clear answer for this question.
This absence of a unifying model of the exocytotic cascade has
spawned a large number of competing proposals. Prominent
examples of exocytotic models are given in the following
publications: (Jahn and Fasshauer, 2012; Kasai et al., 2012;
Mohrmann and Sørensen, 2012; Fang and Lindau, 2014; Kaeser
and Regehr, 2014; Südhof, 2014; Rothman, 2014; Brewer et al.,
2015; Rizo and Xu, 2015; Schneggenburger and Rosenmund,
2015; Zhou et al., 2015; Lou and Shin, 2016 and for a

thorough critique of SNARE models see Meriney et al., 2014).
With few exceptions, these models rely on the same three
assumptions: The first is that SNARE complexes of suitably
docked and primed synaptic vesicles are partially ‘‘zippered’’. In
other words, the coiled-coil interactions among synaptobrevin,
syntaxin and SNAP-25 are arrested at an intermediate stage.
The second assumption is that the completion of SNARE
zippering supplies energy to drive the fusion of the vesicular
and plasma membranes. The third assumption is that the Ca2+-
bound state of synaptotagmin overrides the arrest of SNARE
zippering to initiate the fusion process. Beyond these similarities,
the reader should consult the cited references to understand
how they differ in their treatment of auxiliary, SNARE-binding
proteins (like, the complexins and the mammalian homologs
of the nematode unc proteins, munc-13 and munc-18), and
how they envision synaptotagmin relieving the arrest of SNARE
zippering. However, for the purposes of this review, the most
important difference among the cited models concerns their
positioning of a release-ready synaptic vesicle. While some
models locate the vesicle several nanometers from the plasma
membrane (Figure 1A), others begin with the vesicular and
plasma membranes in direct contact (Figure 1B). This difference
in spatial organization has crucial implications as addressed next.

SYNAPTIC VESICLE LOCATION IS A
CRUCIAL CONSIDERATION IN MODELS
OF NERVE TERMINAL EXOCYTOSIS

SNARE-centric models of exocytosis typically begin with the
architecture in Figures 1A,B. Figure 1A models are attractive,
because it is intuitively evident how full zippering of the SNAREs
might induce the formation of a fusion ‘‘neck’’ between the
juxtaposed membranes. However, the paramount objection to
such models is that they are incompatible with data from the
vast majority of electron microscopic (EM) studies of nerve
terminals. The following citations are culled from >30 articles
which used serial reconstruction or EM tomography and found
no detectable separation between the membrane of ‘‘docked’’
synaptic vesicles and the plasma membrane: (Schikorski and
Stevens, 1997; Harlow et al., 2001; Xu-Friedman et al., 2001;
Gustafsson et al., 2002; Rizzoli and Betz, 2004; Rostaing et al.,
2006; Zampighi et al., 2006; Siksou et al., 2007; Nagwaney et al.,
2009; Stigloher et al., 2011; Burette et al., 2012; Holderith et al.,
2012; Leitinger et al., 2012; Marra et al., 2012; Szule et al.,
2012; Watanabe et al., 2013; Cole et al., 2016; Jung et al., 2016).
However, in defense of Figure 1A models, it was prominently
noted (Fernández-Busnadiego et al., 2010) that vesicle-plasma
membrane contacts were very infrequent in rat synaptosomes.
Nevertheless, careful perusal of this article reveals that although
such contacts were rare, they were still observed in unstimulated
preparations. Thus, regardless of the appeal of Figure 1A models,
they are not supported empirically. Instead, if SNAREs drive
membrane fusion, synaptic vesicles need to be positioned as in
Figure 1B. Before critiquing Figure 1B models, a detour will
summarize important results from two recent investigations of
the synaptic vesicle-plasma membrane interface.
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FIGURE 1 | Exocytosis models. (A) In this class of SNARE model, release-ready synaptic vesicles are poised several nm from the plasma membrane with
synaptotagmin (blue ovals) bound to partially zippered SNAREs (red, green and yellow cylinders) (from Rizo and Xu, 2015 with permission). (B) In this variant of
SNARE model, the synaptic vesicle directly contacts the plasma membrane with SNAREs arrayed peripherally. Here, SNAREs presumably contribute to the ribs
(yellow) and pins (red) (from Jung et al., 2016 with permission). (C) A “to-scale” illustration of SNARE membrane-spanning α-helixes (green) relative to the bulk lipid
(pink) for a vesicle-plasma membrane contact area of 650 nm2. (D) As hypothesized in Gundersen and Umbach (2013), a quartet of synaptotagmins (deep blue:
membrane-spanning helix; light blue: β-structure) should occupy the vesicle-plasma membrane interface (lipid in pink). Although this contact area was predicted to
be 70–80 nm2 and could reach ∼200 nm2, larger areas are incompatible with the dyad scheme. Nevertheless, the dyad model anticipates the presence of filaments
(compare to Figure 2B) at this interface. For Figures 1, 2, the reader should consult the original article for details.

First, Jung et al. (2016) measured the area of contact
between docked vesicles and the plasma membrane for frog
nerve terminals at rest, during and after activity (reproduced in
Figure 2A). Their data indicated that the contact area reached
650 nm2 and was oval with average radii of ∼12 and ∼17 nm.
Moreover, vesicles with large contact areas were depleted
during synaptic activity (Figure 2A). This observation implied
that vesicles with the largest contact areas were preferentially
discharged in response to stimuli. This study also measured the
thickness of the vesicular and plasma membranes away from the
area of contact as well as within the contact zone. The result
was that the aggregate thickness in the contact zone was twice
the thickness of the individual membranes. The point here was
that there was no detectable ‘‘sandwiching’’ of other material
between the synaptic vesicle and the plasma membrane at their
zone of contact. The other possibility was that any material
that was ‘‘sandwiched’’ in this area did not measurably alter
the thickness of the apposed membranes. Further implications
of these results are addressed in Section ‘‘Pros and Cons of a
Synaptotagmin-Only Model of Membrane Fusion’’.

A second study of vesicle-plasma membrane contacts
deployed segmentation analysis of tomographic images from
freeze-substituted hippocampal neurons (Cole et al., 2016). Here,
the provocative finding (reproduced in Figure 2B) was that
‘‘docking filaments’’ traversed the interface between docked
synaptic vesicles and the plasma membrane. These filaments
ranged from 3 nm to 8 nm in diameter and 10–47 nm in
length. Although it was concluded that these filaments were likely
to include SNAREpins (a term for SNARE complexes coined
by Weber et al., 1998), variation in the filament shape and
distributions in the renderings indicates some level of molecular
heterogeneity in the composition of these elements. Clearly, it
will be important empirically to establish the identity of these
filaments.

SNARE-based models of exocytosis that begin with direct
vesicle-plasma membrane contact (as in Figure 1B) are
compatible with observations from myriad groups as well as
the EM data in Figures 2A,B. However, if the quantitative
results in Figure 2A generalize to other nerve endings, then
Figure 1B models confront a significant practical challenge:
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FIGURE 2 | Structural features of the synaptic vesicle-plasma
membrane interface. (A) These data are from Jung et al. (2016; with
permission). In (A) are examples of contact areas between synaptic vesicles
and the plasma membrane. (B) is a hemi-fused vesicle (scale bar: 50 nm).
(C–E) are histograms of the vesicle contact areas for nerve terminals at rest,

(Continued)

FIGURE 2 | Continued
during nerve stimulation (10 Hz for 2 min) and 1 h after stimulation. (B) This
figure (from Cole et al., 2016; with permission) shows how segmentation
analysis identied filaments that project into the area of contact between
synaptic vesicles and the plasma membrane. The colors of the arrows in the
virtual sections (A panels) correspond to the filaments in the (B) panels and
the images in the (C) panels have the vesicle removed to reveal the course of
the filaments. Row 4 is a fusing vesicle. Scale bar: 35 nm.

based on the data of Jung et al. (2016) one can estimate
the number of lipid molecules in a 650 nm2 membrane
patch. By using the average cross sectional area of membrane
phospholipids (0.65 nm2; Nagle and Tristram-Nagle, 2000),
and ignoring the relatively high concentration of cholesterol
in the synaptic vesicle membrane (Takamori et al., 2006), the
four apposed hemi-bilayers comprising the zone of vesicle-
plasma membrane contact harbor ∼4000 lipid molecules.
At the same time, empirical studies indicate that as few
as two SNARE complexes support neuronal exocytosis
(Sinha et al., 2011; in contrast, explicit models requiring
6–8 SNARE complexes have been presented: Jackson, 2010;
Pantano and Montecucco, 2013). Given these parameters,
the drawing in Figure 1C illustrates the challenge facing
SNARE models: there is a sea of lipid flanked by two (to scale)
membrane-spanning domains contributed by synaptobrevin or
syntaxin. To date, no step-by-step model explains how these
SNAREs perturb the intervening lipids to induce membrane
fusion.

As an alternative to the situation illustrated in Figure 1C, it
is worthwhile considering the possibility that SNARE complexes
intrude into the area of contact between synaptic vesicles and
the plasma membrane. As noted above, Jung et al. (2016) found
no detectable thickening of membranes at this contact zone.
Because EM images of SNARE complexes reveal 4 × 14 nm
filaments (Hanson et al., 1997), there should have been a
demonstrable thickening of this contact region, if SNAREs were
sandwiched between these membranes. The other option is
that SNAREs are buried in the hydrophobic interior of the
opposed membranes. To countenance this explanation, one
would need to accommodate the prominent surface charge
of SNARE complexes (Sutton et al., 1998) within this apolar
milieu. Although such a solution appears improbable, further
investigation of the vesicle-plasma interface will be needed
to clarify SNARE disposition and contributions to the fusion
process.

As counterpoints to the models of Figures 1A,B, two other
proposals were recently advanced. The first was based in part
on the observations of Fernández-Busnadiego et al. (2010) that
synaptic vesicles seldom contacted the plasma membrane but
were frequently connected to it via filaments. It was suggested
that these filaments corresponded to synaptotagmin which
prevented SNAREs from zippering until Ca2+ entered the nerve
ending (van den Bogaart et al., 2011). The primary argument
against this model is the compelling evidence that release-
ready synaptic vesicles directly contact the plasma membrane.
The second model envisioned a ring of 16 synaptotagmins
separating the vesicle from the plasmamembrane and preventing

Frontiers in Molecular Neuroscience | www.frontiersin.org 4 February 2017 | Volume 10 | Article 48

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Gundersen Ultra-Structural Constraints on Synaptic Vesicle Exocytosis

full SNARE zippering (Wang et al., 2014). The concerns
for this model are that the data of Jung et al. (2016) do
not allow space for a synaptotagmin ring, and the filaments
of Cole et al. (2016; see Figure 2B) are not symmetrical
rings.

PROS AND CONS OF A
“SYNAPTOTAGMIN-ONLY” MODEL OF
MEMBRANE FUSION

The ‘‘dyad hypothesis’’ (Gundersen and Umbach, 2013) was
advanced as an alternative to SNARE-based models of fast,
synchronous exocytosis at nerve terminals. Briefly, it proposed
that four synaptotagmins occupy the apical contact between
a synaptic vesicle and the plasma membrane (Figure 1D). It
further argued that Ca2+ binding by the C2 domains of these
synaptotagmins leads to a lateral translocation of the membrane-
spanning domains which serve as templates for membrane
fusion. Although prominent features of this model remain to be
tested empirically, the following discussion indicates where the
dyad model is congruent with recent observations and where
further investigation of features of synaptotagmins 1 and 2 is
needed.

An explicit feature of the dyad model is that protein should
be found spanning the vesicle-plasma membrane interface. In
this respect, it is provisionally consistent with the observations
of Cole et al. (2016) that macromolecules traverse this
area. Moreover, because of relatively novel structural features
(discussed in Gundersen and Umbach, 2013), synaptotagmins
1 and 2 can reside at this interface without changing the thickness
of the membranes. Thus, the dyad scenario is compatible with
the observation (Jung et al., 2016) that there is no thickening
of the membranes where vesicles are docked. However, as
discussed next, two important issues need to be resolved by future
experiments.

The first issue is that material equivalent to the docking
filaments reported by Cole et al. (2016) has not been detected
at frog motor nerve terminals (Szule et al., 2012). The origin
of this discrepancy will require further evaluation. The second
issue is quantitative. Based on the proposed disposition of
synaptotagmins at the vesicle-plasma membrane interface, the
dyad model predicted 70–80 nm2 of direct contact between

a synaptic vesicle and the plasma membrane. Even if one
used a larger diameter for synaptotagmin’s membrane-spanning
α-helix, and extended the length of the juxta-membrane β-strand
to include the seven-residue polybasic region, this area still would
compute to <210 nm2. In this respect, the dyad model confronts
a quantitative challenge similar to SNARE models. Namely, how
does one perturb a 650 nm2 area of vesicle-plasma membrane
contact in a manner that is conducive to membrane fusion?
To answer this query, it will be important to compare and
contrast the area of direct contact between synaptic vesicles and
the plasma membrane at other synapses to determine whether
vesicles with >600 nm2 of contact are the norm. The results of
such studies should help to clarify whether fusion is driven by
SNAREs (as in Figure 1C), synaptotagmin (as in Figure 1D), or
via a mechanism that has yet to be proposed.

CONCLUSIONS

Advances in delineating the three dimensional organization and
molecular composition of the synaptic vesicle-plasma membrane
interface will be instrumental in distinguishing among current
models of synaptic vesicle exocytosis. Although recent EM data
(Figure 2) do not exclude SNAREs from catalyzing membrane
fusion, the challenge embodied in Figure 1C will persist
even if the area of lipid contact is halved. Instead, because
synaptotagmins 1 and 2 can inhabit the synaptic vesicle-plasma
membrane interface (as outlined in Gundersen and Umbach,
2013), it remains plausible that future studies will reveal a central
role for synaptotagmin as a catalyst of ‘‘fast’’ membrane fusion.
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