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With the help of several inducing factors, somatic cells can be reprogrammed to become

induced pluripotent stem cell (iPSCs) lines. The success is in obtaining iPSCs almost

identical to embryonic stem cells (ESCs), therefore various approaches have been tested

and ultimately several ones have succeeded. The importance of these cells is in how

they serve as models to unveil the molecular pathways and mechanisms underlying

several human diseases, and also in its potential roles in the development of regenerative

medicine. They further aid in the development of regenerative medicine, autologous cell

therapy and drug or toxicity screening. Here, we provide a comprehensive overview of

the recent development in the field of iPSCs research, specifically for modeling human

neurological and neurodegenerative diseases, and its applications in neurotrauma.

These are mainly characterized by progressive functional or structural neuronal loss

rendering them extremely challenging to manage. Many of these diseases, including

Parkinson’s disease (PD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS)

and Alzheimer’s disease (AD) have been explored in vitro. Themain purpose is to generate

patient-specific iPS cell lines from the somatic cells that carry mutations or genetic

instabilities for the aim of studying their differentiation potential and behavior. This new

technology will pave the way for future development in the field of stem cell research

anticipating its use in clinical settings and in regenerative medicine in order to treat various

human diseases, including neurological and neurodegenerative diseases.

Keywords: induced pluripotent stem cells (iPSCs), neuronal differentiation, Parkinson’s disease (PD), Huntington’s

disease (HD), Amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), spinal cord injuries (SCI)

INTRODUCTION

Stem cell research is considered one of the most captivating areas of cell biology mainly due to the
unique properties of stem cells and their potential use in cell-based therapies to treat a variety of
diseases, including Parkinson’s disease (PD), Alzheimer’s diseases (AD), Diabetes Mellitus (DM),
and many others (Correia et al., 2005; Pagliuca et al., 2014; Sproul, 2015). Given their unique
regenerative abilities, these cells provide new potentials in the area of regenerative or reparative
medicine.
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Embryonic stem cells (ESCs), which are derived from the
inner cell mass (ICM) of blastocysts, are pluripotent cells that
have the ability to proliferate indefinitely. But still they maintain
their pluripotency with the capability to differentiate into cells
of all three germ layers: ectoderm, mesoderm and endoderm
(Evans and Kaufman, 1981; Martin, 1981). In addition, these
cells serve as an internal repair system, limitlessly regenerating
into either differentiated cell progeny or additional stem cells
(Keller, 1995; Thomson et al., 1998). Since first isolated in
1998, human ESCs have featured high importance as a potential
treatment of a variety of diseases like PD, spinal cord injury
(SCI) and DM (Thomson et al., 1998). However, the extraction
of ESCs raises sharp ethical controversies as they are derived
from human embryos and their transplantation in patients may
present serious risks with a possibility of rejection (Lo and
Parham, 2009).

Alternative approaches to the derivation of ESCs from
the ICM of pre-implanted embryos are now available and
these tend to avoid ethical issues. Such methodologies directly
generate pluripotent stem cell lines from differentiated adult
somatic tissue and include nuclear transfer, cell fusion or direct
reprogramming (Hochedlinger and Jaenisch, 2006). In 2006,
a landmark discovery was published by the Yamanaka group
at Kyoto University as they induced the expression of only
four pluripotency-associated transcription factors, Oct3/4, Sox2,
c-Myc, and Klf4 (OKSM), in mouse fibroblast cells resulting
in the generation of ESC-like cells, called induced pluripotent
stem cells (iPSCs). These cells are similar to the ESCs in
their morphology, gene expression, proliferation and teratoma
formation (Hochedlinger and Jaenisch, 2006; Takahashi and
Yamanaka, 2006; Takahashi et al., 2007; Wernig et al., 2007;
Hadadeh et al., 2012). These iPSCs are now widely used for
various applications, such as autologous cell therapy, monogenic
and multigenic diseases modeling, and as substrates for drug,
toxicity, differentiation and therapeutic screens.

Reprogramming highly depends on the efficient delivery and
the suitable expression of certain factors into specific cell types,
under particular culture conditions and within a period of time.
Although direct reprogramming is a simple technique, it differs
depending on the cell type, species and delivery method. It is
rather a slow and vulnerable process that may be affected by
several factors that hinder the efficiency, reproducibility and the
quality of the resulting iPSCs. To date, the most popular donor
somatic cells are fibroblasts, being used in more than 80% of all
reprogramming experiments published (González et al., 2011).
Yet, other cell types have been used in reprogramming such as

Abbreviations: AD, Alzheimer’s disease; ALS, Amyotrophic lateral sclerosis; Aβ,

amyloid beta; BDNF, brain-derived neurotrophic factor; BMP, bone morphogenic

protein; CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; DA,

dopaminergic; DKK1, DickkopfWNT signaling pathway inhibitor 1; DM, diabetes

mellitus; EBs, embryoid bodies; ESCs, embryonic stem cells; GDNF, glial cell line-

derived neurotrophic factor; HD, Huntington’s disease; HD-NSCs, Huntington’s

disease specific neural stem cells; hiPSCs, human induced pluripotent stem
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human primary keratinocytes, cord blood CD133+ cells, and
peripheral blood mononuclear cells (Aasen et al., 2008; Giorgetti
et al., 2009; Su et al., 2016).

A successful management of the outcome of somatic cell
reprograming to iPSCs is related to both the reprograming
technique and the type of cells that are used. Here, it is
important to note that although fibroblasts are the most widely
used cells for iPSCs generation, this does not necessarily mean
that they represent the highest efficacy. In fact, since the first
approach toward creating iPSCs was obtained from fibroblasts
(Takahashi and Yamanaka, 2006), subsequent protocols tried to
reproduce that process before other alternatives for fibroblasts
were investigated. Fibroblasts are easy to cultivate in culture
and much is known about these cells in research. An important
characteristic of these cells that makes them great candidates
is the low methylation levels of the promotor regions of
OCT4 and NANOG that can be associated with the favorable
reprogramming of the cells. Furthermore, fibroblasts can
be easily obtained from patients through biopsy and are
relatively inexpensive and widely commercially available by
many companies. However, the fact that fibroblasts are highly
proliferative poses few disadvantages as the non-programmed
fibroblasts can have the opportunity to overgrow the existing
reprogrammed cells and consume the growth factors in the
media. This can usually be overcome by using a low passage
not exceeding passage 5 in order to avoid accumulated genomic
changes (Raab et al., 2014).

Reprogramming can be induced by the co-introduction of
some genes that are expressed early during development, such
as OCT4, SOX2, NANOG, UTF1, and SALL4, and which are
implicated in the maintenance of the pluripotent potential of
the ICM (Niwa, 2007; Zhao et al., 2008; Tsubooka et al., 2009).
Supplementation with other genes such as c-MYC, KLF4, TERT,
and SV40LT can enhance cell proliferation in a direct or indirect
manner (Park et al., 2008b). Additionally, microRNAs (miRNAs)
have been implicated in pluripotency and reprogramming, such
as the miR-290 cluster andmiR-302 cluster miRNAs (Wang et al.,
2008; Mallanna and Rizzino, 2010). On the other hand, there
are several chemical compounds that have proven to enhance
reprogramming in different cell types. Those compounds
are known to alter DNA methylation or cause chromatin
modifications and they include DNAmethyltransferase inhibitor
5′-azacytidine or histone deacetylase (HDAC) inhibitors (such
as hydroxamic acid (SAHA), trichostatin A (TSA), and valproic
acid (VPA)) (Huangfu et al., 2008). The delivery of the OKSM
transcription factors into mouse or human fibroblasts is
achieved using different viral and non-viral constructs, as well
as integrative and non-integrative systems approaches, the latter
of which have presented major problems for iPSCs generation.
Four main groups of different non-integrative approaches are
available: integration-defective viral delivery, episomal delivery,
RNA delivery and protein delivery (González et al., 2011). There
is no best reprogramming strategy that can be used to fit all
purposes. The choice of the strategy highly depends on the
purpose of the research; whether it focuses on understanding
the mechanisms of reprogramming or on generating clinically
relevant iPSCs. Integrative methods with lentiviruses can
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be sufficient for the former use while non-integrative
approaches should be used for the latter to limit genomic
modifications.

Understanding and treating many diseases have been
constrained by the absence of in vitro models, especially
because culturing primary cells affected by the diseases is
very challenging. Limitations primarily lie in the access to
patient’s tissues as the priority goes for diagnosis, in addition
to the complications in obtaining some cell types, such as
neural or cardiac tissues, and to maintaining these cells in
vitro. However, the development of stem cell studies and the
novel discovery of iPSCs provided an important source of
cells to conduct in vitro studies (Unternaehrer and Daley,
2011). Such establishment of human iPSCs (hiPSCs) has led
to new clinical strategies for using them as universal sources
in regeneration therapy of damaged organs and tissues (Pei
et al., 2010). Moreover, iPSCs generated from a patient affected
by a certain disease possibly reproduces the disease phenotype
(Egashira et al., 2011). In view of this, different kinds of
patient-specific iPSCs have been generated to model human
neurodegenerative diseases, such as Parkinson’s disease (PD)
(Byers et al., 2012), Huntington’s disease (HD) (Nekrasov
et al., 2016), Amyotrophic lateral sclerosis (ALS) (Chestkov
et al., 2014), and Alzheimer’s disease (AD) (Mungenast et al.,
2016).

iPSCs AND ECTODERMAL
DIFFERENTIATION

The ectoderm is the first germ layer to emerge during
gastrulation, which is initiated by the formation of the
primitive streak within the epiblast. Cell lineages derived
from the ectoderm differentiate to form mainly the epidermis
(including skin, hair, nails, and sweat and sebaceous cutaneous
glands) and the nervous system (central and peripheral). The
development of the vertebrate nervous system is shown to be
regulated temporally and spatially by gradients of signaling
molecules that may have either inhibitory or activating
roles. These molecules are important for neuronal migration
(Khodosevich and Monyer, 2011), axonal guidance and
outgrowth (Chilton, 2006), interneuronal synapses (Scheiffele,
2003) and neuron-glia interaction (Fields and Stevens-Graham,
2002). Subsequently, experiments have demonstrated that
this process is under the control of a combination of small-
molecule endogenous inhibitors of bone morphogenic protein
(BMP) and TGFβ/activin/nodal signaling (Morizane et al.,
2011), which promote highly efficient neural induction from
both human ESCs and iPSCs. Additionally, it was shown that
DLK1 has a role in stimulating neurogenesis of human and
mouse iPSC-derived neural progenitors via modulating Notch
and BMP signaling (Surmacz et al., 2012). Using such small
molecules to induce differentiation of iPSCs into a specified
lineage shows a potent approach to generate specific cell types in
order to better understand the biological function and disease
processes, as well as to use these cells in drug screening and cell
therapy.

USE OF iPSCs TO MODEL
NEURODEGENERATIVE DISEASES

Recently, efforts have been dedicated to generate defined lineages
of neural cells from ESCs and iPSCs. These cells serve to
better understand the molecular mechanisms underlying the
pathophysiology of many intractable neurodegenerative diseases
such as PD, HD, ALS, and AD aiming for the development of
effective therapies. The present lack of precise models of these
diseases conveys the significant discrepancies in understanding
the mechanisms underlying their pathophysiology. In the
last decade, the ability to reprogram somatic cells into
iPSCs have enhanced the effectiveness of human in vitro
models of neurological diseases (Mungenast et al., 2016).
Moreover, the differentiation of these iPSCs into disease-
relevant cell types have allowed comprehensive molecular
analyses of multiple disease states. Indeed, neurons differentiated
from patient-specific iPSCs provide a valuable tool to model
specific molecular phenotypes of neurodegenerative diseases
in vitro (Heman-Ackah et al., 2016). In this aspect, the
introduction of human iPSCs with disease-specific genetic
backgrounds requires precise and flexible genome engineering
tools.

Among different groundbreaking experiments, the Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR)
endonuclease is considered the less cumbersome and the most
flexible system to execute precise genome editing in human
pluripotent stem cells (Kime et al., 2016). The genomic revolution
made by this system and others, including the Zinc Finger
Nucleases (ZFN) and Site specific nucleases (SPN), offered the
simplest and most powerful approach toward manipulating the
produced iPSCs for mimicking any disease and adding more
advancement and efficiency to the resulting cells (Mandegar
et al., 2016). Recently, Rubio et al. described a new platform
where neurons can be generated in vitro and manipulated
using CRISPR/Cas9 to inactivate specific genes associated with
different neuropathologies in humans (Rubio et al., 2016).
Moreover, in a recent study, it was shown that CRISPR can
be used to exert precise alterations in the expression of the
critical PD-related gene, SNCA, in human iPSC-derived neurons
(Heman-Ackah et al., 2016). Remarkably, Paquet et al. (2016)
established a procedure that allows the introduction of specific
point mutations into iPSCs using CRISPR, thus generating
human iPSCs with specific combinations of homozygous
and heterozygous early-onset Alzheimer’s-associated mutations.
Certainly, the rapid development of iPSCs and genome-editing
technologies are important tools for disease modeling that hold
promise for applications in gene therapy.

In this review we will focus on the reprogramming of
somatic cells into patient-specific hiPSCs to model four
neurodegenerative diseases, namely Parkinson’s disease (PD),
Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS)
and Alzheimer’s disease (AD), and other applications in
neurotrauma, through summarizing the different protocols that
are used in each for the reprogramming and differentiation
processes (Figure 1).

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 February 2017 | Volume 10 | Article 50

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Bahmad et al. iPSCs for Modeling Human Neurodegenerative Diseases

FIGURE 1 | Schematic diagram showing the methods used to generate

induced pluripotent stem cells (iPSCs) from human somatic cells as

skin fibroblasts or blood cells. The hiPSCs derived from a patient carrying a

certain genetic mutation in a neurodegenerative disease have the capacity to

differentiate into different neurons. Those patient-specific hiPSCs and

hiPS-derived neurons can be expanded and further differentiated into mature

neural subtypes specific to certain neurodegenerative diseases.

iPSCs and Parkinson’s Disease
The study of Parkinson’s disease (PD) is challenging due to the
inaccessibility of affected human midbrain dopaminergic (mDA)
neurons on which to base experimental research, and the rarity
of animal models that follow the major disease characteristics.
Despite this, it has been uncertain whether the involved
mechanisms would also occur in human neurons affected by
the disease. Consequently, molecular pathways underlying this
pathology are still not well-defined. Although the majority of
PD cases are sporadic, some rare familial forms of this disease
have led to the discovery of PD-linked genes. This discovery
was imperative for deciphering the cellular and molecular
mechanisms of PD (Gasser, 2007; Schulz, 2008) and for creating
transgenic animal and cellular models expressing these PD-
associated genes. Recent development in PD research generated
different neuronal cell types, which were previously inaccessible,
by deriving PD-linked iPS cell lines that could be used for
autologous transplantation (Park et al., 2008a; Soldner et al.,
2009). Such approaches present exciting promises to elucidate the
etiology of PD and develop novel potential therapeutics (Byers
et al., 2012; Table 1).

DA neurons that were first generated from mouse iPSCs in
2008 and transplanted into the striatum of a rat PD model,
have shown to ameliorate functional deficits (Wernig et al.,
2008). Recently, human fibroblasts have also been used to
produce PD patient iPS-cell derived DA neurons. Soldner
et al. (2009) was the first to report efficient reprogramming of
human skin fibroblasts from 5 patients with sporadic PD into

hiPSCs, and subsequent differentiation of these cells into DA
neurons. Neural differentiation was first induced by embryoid
body (EB) formation method in EB medium on non-adherent
culture plates for 8 days, and then neural precursor cells were
selected and cultured in ITS medium containing fibronectin,
growth factors FGF2, FGF8, and sonic hedgehog (SHH). This
was followed by withdrawal of growth factors for 8 days to
attain terminal differentiation. Cells produced stained positive
for tyrosine hydroxylase (TH) and neuron-specific class III-β-
tubulin (TUJ1) confirming their DA neural nature (Soldner et al.,
2009). Besides, the obtained hiPSCs, using the Cre-Recombinase
excisable viruses, uniformly expressed the pluripotency markers
Tra-1-60, SSEA4, OCT4, SOX2, and NANOG, in addition to
possessing similar morphology to the human ESCs. Interestingly,
the OCT4 promoter region of the obtained hiPSCs was in a
hypomethylated state in contrast to the hypermethylated state
which is found in the parental fibroblasts cells. There were
also no differences in the ability or efficiency to differentiate
dopaminergic cells from PD and non-PD patients (Soldner et al.,
2009).

While sporadic PD cases are the most prevalent, and lack
specific causative genes and a definite genetic basis, there still
exists a barrier toward making any genotypic verification from
the obtained differentiated cells (Park et al., 2008a). Previously,
studies on PD animal models and ESC-derived dopaminergic
transplantation has shown to be successful (Ganat et al., 2012;
Grealish et al., 2014; Kang et al., 2014). Neuroprogenitor cells
(NPCs) differentiated from iPSCs were transplanted in mouse
fetal brain and were able to migrate into various regions of the
brain, differentiate into both glia and neurons, and integrate into
pre-existing brain network (Wernig et al., 2008). When neurons
were transplanted, they exhibited a normal behavior and started
branching and forming synapses. Eventually, they matured
releasing dopamine and thus reducing the motor manifestations
of PD in PD rat and monkey models (Wernig et al., 2008; Hallett
et al., 2015; Han et al., 2015). Applying such cell therapy for PD
in particular is very promising and is under a lot of extensive
research for better optimization before reaching human clinical
trials.

Although, the co-expression of TH and TUJ1 defines the stable
phenotype of the produced DA neurons, studies have proven an
additional role of the forkhead transcription factor, FoxA2 in
maintaining this stability (Ferri et al., 2007; Kittappa et al., 2007).
Further modifications were implemented using new phenotypic
markers to show that ventral midbrain DA neurons were not
previously obtained, and thereby three modifications were added
to the previously established differentiation protocol (Sonntag
et al., 2007) in order to generate DA neurons with maintained
stable phenotype (Cooper et al., 2010). First, retinoic acid (RA)
was added at an early phase and at low dose to improve the
regional identity of neural progenitor cells. Second, a high activity
form of human SHH was used to permit production of a large
population of FOXA2+ neural progenitor cells in vitro. Finally,
FGF8b was replaced by FGF8a, and WNT1 was added for robust
generation of FOXA2+ DA neurons (Cooper et al., 2010).

In another study, iPSCs derived from skin biopsies of patients
using either three (OSK) or four (OKSM) lentiviral factors
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TABLE 1 | Parkinson’s disease modeled with patient-specific hiPSCs.

Authors Donor somatic cell used Generated iPSCs used Neuronal differentiation method and results

Soldner et al., 2009 Human skin fibroblasts PD Patient-Derived hiPSCs EB formation method in EB medium on non-adherent culture

plates for 8 days, then selecting neural precursor cells and

culturing them in ITS medium containing fibronectin, growth

factors FGF2, FGF8, and SHH, followed by withdrawal of growth

factors for 8 days to attain terminal differentiation

Cooper et al., 2010 Human skin fibroblasts PD Patient-Derived hiPSC lines Using a high activity form of SHH and FGF8a, rather than FGF8b,

and specific regionalization by RA, directly from EB stage, to

produce DA neurons with maintained stability defined by an

expression marker code of FOXA2/TH/β-tubulin

Devine et al., 2011 Human skin fibroblasts PD Patient-Derived hiPSC lines

with triplication ofSNCA

Feeder-free floor plate induction, and dual SMAD inhibition for 1

day by Noggin, SB431542 and dorsomorphin, followed by SHH,

WNT1 and DKK1 blocking antibody treatment for 8 days, then

switching culture conditions to promote maturation of DA neurons

Sánchez-Danés et al., 2012 Epidermal keratinocytes and

dermal fibroblasts

PD Patient-Derived hiPSC lines Lentiviral vector-mediated engineering of hiPSCs to overexpress

Lmx1a in neural progenitors in order to generate enriched

populations of neurons with the characteristics of A9 ventral

midbrain DA neurons

PD, Parkinson’s disease; hiPSCs, human induced pluripotent stem cells; EB, embryoid body; SHH, sonic hedgehog; RA, retinoic acid; DA, dopaminergic; Lmx1a, LIM homeobox

transcription factor 1a; DKK1, Dickkopf WNT signaling pathway inhibitor 1; SNCA, α-synuclein gene.

were allowed to commence differentiation into DA neurons via
dual SMAD inhibition for 1 day and feeder-free floor plate
induction (Devine et al., 2011). Noggin (an inhibitor of BMP4)
and SB431542 (an inhibitor of Lefty/Activin/TGFβ pathways)
were used for this purpose, in addition to Dorsomorphin (a
chemical BMP inhibitor) which acts as a partial substitute for
Noggin. This was followed by SHH, WNT1, and Dickkopf
WNT signaling pathway inhibitor 1 (Dkk1) blocking antibody
treatment for 8 days, then switching the culture conditions to
promote maturation of mDA neurons from neural progenitors
(Devine et al., 2011).

Earlier in 2009, Cai et al. studied the role of LIM homeobox
transcription factor 1a (Lmx1a) in the differentiation of human
ESCs into mDA precursor cells in vitro and after transplantation
into a PD model (Cai et al., 2009). Lmx1a is known to
autoregulate and control mDA neurons synergistically with the
SHH-FoxA2 pathway (Chung et al., 2009). Results have shown
that only Lmx1a-expressing human neuronal progenitor cells
have the potential to differentiate into mDA neurons after
transplantation into the 6-OHDA rat striatum (Cai et al., 2009).
This is of great importance for the development of suitable
re-placement tissue for the functional recovery from PD (Cai
et al., 2009). Consequently, a complete potential of iPSCs to
differentiate into DA neurons is revealed once EB cells, derived
from iPSCs transfected by a lentivirus, were forced to express the
ventral midbrain determinant Lmx1a, together with DA neuron
patterning factor. This resulted in the differentiation of EBs into
functional mDA, the cell type mostly affected in PD (Sánchez-
Danés et al., 2012).

Human iPSC-derived PD-cell models were later used to have
a mechanistic insight into the gene-environmental interaction
involved in the pathogenesis of PD, such as the use of
small-molecule high-throughput screening to identify new

pathways (like MEF2C-PGC1α pathway) as therapeutic targets
to combat PD (Ryan et al., 2013). All in all, the main aim behind
the use of iPSCs technology in this context remains to be able
to convert this new knowledge of PD into effective therapeutic
discoveries.

iPSCs and Huntington’s Disease
Huntington’s disease (HD) is an autosomal dominant
neurodegenerative disorder caused by a CAG trinucleotide
repeat expansion in the huntingtin gene that generates long
polyglutamine stretches in the encoded huntingtin protein
(HTT). This leads to a massive loss of medium spiny neurons
in the striatum and loss of neurons in the cortex as the disease
progresses. Personality changes, weight loss, involuntary
movements and dementia are the principal changes mostly
developed among the people carrying the huntingtin gene
mutation.

Transgenic mouse models of HD expressing exon 1 of the
human HD gene were developed to mimic the features of the
human HD. The R6/2 mouse model has represented the most
rapid symptoms with widespread huntingtin inclusions in the
brain (Mangiarini et al., 1996; Li et al., 2005; Gil and Rego,
2009). Some therapeutic approaches of neuronal transplantation
were analyzed in R6/2 mice aiming to restore dysfunctional
neurons. Transplantation of striatal tissue from wild type mice
embryos in R6/2 transgenic mice presented a good survival
and a well-integrated results within the host brain. However, it
was associated with minimal behavioral improvements and no
effect on weight loss, which might be due to late transplantation
intervention (Dunnett et al., 1998; Gil and Rego, 2009). A
more recent protocol combined neural stem cells (NSCs)
transplantation with a trehalose enriched diet in R6/2 mice and
resulted in more improved motor functions, less aggregations in
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TABLE 2 | Huntington’s disease modeled with patient-specific hiPSCs.

Authors Donor somatic cell used Generated iPSCs used Neuronal differentiation method and results

Park et al., 2008a Human dermal fibroblasts Patient specific HD-iPSCs

with 72 CAG repeats in

huntingtin gene

Resuspending HD-iPSC colonies in EB differentiation medium in the

absence of doxycycline

Zhang et al., 2010 Human dermal fibroblasts Patient specific HD-iPSCs Treating HD-NSCs with SHH, DKK1, BDNF and ROCK inhibitor Y27632 for

8–10 days (stage 1), then with BDNF, cAMP, VPA, and Y27632 for an

additional 1-3 days (stage 2)

Camnasio et al., 2012 Human skin fibroblasts Patient specific HD-iPSCs (Chambers et al., 2009) neural differentiation protocol used revealing that

the lengths of CAG trinucleotide repeats in the generated neurons is not

affected by the differentiation process

hiPSCs, human induced pluripotent stem cells; HD, Huntington’s disease; EB, embryoid body; SHH, sonic hedgehog; DKK1, Dickkopf WNT signaling pathway inhibitor 1; BDNF,

brain-derived neurotrophic factor; VPA, valproic acid; HD-NSCs: HD, specific neural stem cells.

striatum and extended the lifespan of the animals (Yang and Yu,
2009). This further supports the importance of generating human
and patient specific HD-iPS neuron cell models with endogenous
CAG expansion to be used for cell replacement therapies as
well as for drug screening and to enrich our knowledge in
understanding mechanisms of HD (Table 2). The generation of
efficient protocols for the differentiation of iPSCs into enriched
populations of GABA MS-like neurons (GMSLNs) is indeed
needed to provide a good model to investigate the disease
manifestation and drug development (Nekrasov et al., 2016).
HD-specific iPSCs were first generated in 2008 by Park et al. and
they expressed an expanded CAG repeat sequences (72 repeats).
The iPSCs were then differentiated into neural precursors by re-
suspending colonies in EB differentiation medium in the absence
of doxycycline with low-speed shaking (Park et al., 2008a).

Later in 2010, Zhang et al. piloted a study to differentiate and
characterize human HD cell model from iPSCs (Zhang et al.,
2010). Their iPSC cell model had CAG repeats of the same length
as the parental fibroblast cells (72 repeats). Neural induction of
these HD-iPSCs was achieved using the previously established
EB differentiation method (Park et al., 2008a). Thereafter, further
differentiation of the HD-specific NSCs (HD-NSCs) into striatal
neurons was carried out by treating them directly with SHH,
DKK1, brain-derived neurotrophic factor (BDNF) and ROCK
inhibitor Y27632 for 8–10 days as an initial step (stage 1), then
with BDNF, cAMP, VPA and Y27632 for an additional 1–3 days
(stage 2). At stage 1, cells stained positive for the neuronal
markers TUJ1 and GABA, as well as calbindin. Mature striatal
neurons at stage 2 expressed, in addition to the aforementioned
three markers, an additional medium spiny neuron marker
DARPP-32, thus confirming their striatal nature (Zhang et al.,
2010).

To assess whether the length of the pathological CAG repeat
in GABAergic neurons derived fromHD-iPSCs is affected during
lentiviral reprogramming, a study was conducted showing that
neither the long-term growth of reprogrammed HD-iPSCs in
vitro nor the differentiation process affects the lengths of CAG
trinucleotide repeats in these neurons (Camnasio et al., 2012).
In this study, the neural differentiation protocol described by
Chambers et al. was used (Chambers et al., 2009), where it is
shown that the synergistic action of two SMAD signaling pathway
inhibitors, Noggin and SB431542, is sufficient to induce rapid and

complete neural differentiation. These advances in the use of HD-
specific iPSCs and neurons differentiated from themmay provide
a powerful platform for target identification and drug screening
in HD.

iPSCs and Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is an incurable
neurodegenerative disorder that leads to the loss of upper
and lower motor neurons. It has a genetic background in which
10% of the cases have a positive family history of mutations in
the superoxide dismutase 1 (SOD1) gene which is associated
with the most common familial form of ALS. In addition, there
is an estimate of 30 genes directly linked to the pathophysiology
of the disease, including TARDBP, FUS, OPTN, VCP, UBQLN2,
C9ORF72, PFN1... etc., and over 120 other genes indirectly
associated with ALS (Abel et al., 2012). Generation of iPSCs
from patients with ALS and their differentiation into motor
neurons was first reported in 2008 (Dimos et al., 2008; Table 3).
In his study, Dimos et al. (2008) used skin fibroblasts collected
from an 82-year-old patient diagnosed with familial ALS to
produce patient-specific iPSCs. These cells were subsequently
plated in suspension culture to form EBs, then treated with
RA and recombinant SHH to persuade neural differentiation.
When these differentiated EBs were plated on a laminin-coated
surface and allowed to mature for 7–15 days, they started
forming neuron-like outgrowths that stained positive for TUJ1,
confirming their neuronal nature.

Recently in 2014, researchers were able to obtain iPSCs from
patients with familial forms of SOD1-mediated ALS by using
lentiviral reprogramming system (Chestkov et al., 2014). Using
a similar method to Dimos et al. (2008) and Chestkov et al.
(2014) generated patient specific iPSC cells carrying the SOD1
mutation from primary skin fibroblasts. The resulting iPSCs
expressed the same SOD1 gene mutations as the respective
patients and no differences were detected among the iPSCs of the
different patients with different genotypes. After 12 days, these
cells were directly differentiated into motor neurons by adding
RA and SHH to the culture medium. Additionally, BDNF and
glial cell line-derived neurotrophic factor (GDNF) were used for
the maturation of the motor neurons. These cells also expressed
TUJ1 neuronal marker (Chestkov et al., 2014) but their advantage
over the model of Dimos et al. (2008) was mainly due to the
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TABLE 3 | Amyotrophic lateral sclerosis modeled with patient-specific hiPSCs.

Authors Donor somatic cell used Generated iPSCs used Neuronal differentiation method and results

Dimos et al., 2008 Human skin fibroblasts Patient-specific iPSCs carrying SOD1

gene mutation (with L144F dominant allele)

Allowing iPSCs to form EBs in suspension culture, then treating

them with RA and recombinant SHH to induce neural

differentiation, and finally plating them on a laminin-coated surface

and culturing for 7–15 days

Chestkov et al., 2014 Human skin fibroblasts iPS cell lines from patients with SOD1-

associated ALS

Adding RA and SHH to mTeSR1 culture medium 12 days after

iPSCs generation, then maturation of the produced motor neurons

using BDNF and GDNF

Li et al., 2015 Human skin fibroblasts Familial ALS patient-specific iPSCs,

carrying different ALS mutations, including

SOD1 and FUS

Differentiation to NPCs by inhibition of SMAD pathway via EB

formation assay

iPSCs, induced pluripotent stem cells; SOD1, superoxide dismutase 1; ALS, Amyotrophic lateral sclerosis; FUS, fused in sarcoma gene; EB, embryoid body; RA, retinoic acid; SHH,

sonic hedgehog; BDNF, brain-derived neurotrophic factor; GDNF, glial cell line-derived neurotrophic factor; NPCs, neuroprogenitor cells.

presence of the mTeSR1 in medium that helped in maintaining
the pluripotent state needed for the unlimited production of
motor neurons (Chestkov et al., 2014). That being said, it had
been shown that mTeSR1 medium supports stem cell growth by
containing agonists of signaling systems, such as GABA receptors
and ErbB2, which while less characterized, are thought to play a
role in human ESCs maintenance (The International Stem Cell
Consortium Initiative Consortium et al., 2010). Nevertheless,
many other media, like DMEM/F12 medium with 20 ng/mL β-
FGF (Cai et al., 2009), that has been used for maintaining iPSCs,
are also capable of avoiding uncontrolled differentiation of those
iPSCs.

Moreover, astroglia were derived from iPSCs obtained from
an ALS patient carrying the TARDBP mutation in order to
investigate the suspected role of glial cell activation in ALS
pathogenesis. These derived astroglia showed TDP-43 (the
protein product) proteinopathy, such as mislocalization of TDP-
43, increased total cellular levels of TDP-43, and decreased cell
survival. However, upon co-culture of the derived astroglia with
derived motor neurons from the same iPSCs of the ALS patient
or from control normal patients, there were no effects of any kind
on the neurons in culture suggesting other involved mechanisms
as previously described for SOD1 ALS (Serio et al., 2013). In
this context, motor neurons were successfully differentiated from
iPSCs of an 82 year old patient with familial ALS of this same
TDP-43 mutation (Dimos et al., 2008). Besides, iPSCs have
been derived from ALS patients carrying the C9ORF72mutation
which is also involved in frontotemporal dementia and these have
also uncovered some characteristic phenotypes in ALS (Donnelly
et al., 2013; Sareen et al., 2013; Hedges et al., 2016). All this
further supports the notion of iPSCs’ culture studies as models
unraveling a lot that needs to be known about neurodegenerative
disease such as ALS that we know about the very little.

Although motor neurons have been successfully produced
via differentiation of ALS-iPSCs, no reports indicated whether
SOD1 mutation interferes with this differentiation. Therefore,
Li et al. tackled this issue in 2015 (Li et al., 2015) whereby
ALS-iPSCs were derived from fibroblasts using retroviruses. This
was followed by differentiation into NPCs via EB formation
assay by inhibiting the SMAD pathway. Interestingly, no
significant differentiation differences were seen between control

and SOD1-iPSCs, suggesting that SOD1mutation has no obvious
effects on neural induction. Moreover, NPCs were treated with
fetal bovine serum (FBS) to induce astroglia formation, which
successfully expressed the astroglia progenitor marker CD44.
It is noteworthy mentioning that generation and maturation
of iPS derived-astroglia takes a long time in vitro, providing a
platform to screen drugs that may be used to enhance astroglia
development and maturation (Li et al., 2015). Some late studies
have also suggested a role for astrocyte pathogenesis in ALS
that also express the mutant SOD1 gene contributing to the
death of motor neurons (Di Giorgio et al., 2007; Nagai et al.,
2007). This authenticates the importance of iPSCs technology in
studying both neuronal and astrocytic cell lineages to uncover the
mechanism of action of riluzole and to discover new drugs that
might provide a ray of hope for ALS patients.

Up till now, FDA has only approved one drug, riluzole, for
ALS which acts by delaying progression of the disease but has no
assertive efficacy in increasing survival (Cheah et al., 2010). This
authenticates the importance of iPS cell technology in providing
a ray of hope for those patients who continue to suffer the lack of
an effective remedy for their condition.

iPSCs and Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common form of age-
related dementia (Alzheimer’s Association, 2010), characterized
by progressive cognitive disturbance and loss of memory. It is
famously distinguished by the presence of two major hallmarks:
extracellular accumulation of amyloid beta (Aβ) plaques and
intracellular aggregation of the microtubule associated protein,
tau. AD exists in as little as 1–5% in its familial form,
characterized by autosomal dominant inheritance of Presenilin-
1 or -2 or/and Amyloid Precursor Protein (APP), while the
majority of AD cases to date are sporadic and multifactorial
with suspected role of epigenetics involved in the course of
progression. List of suspected genes include MAPT, BACE1,
BACE2, ADAM10, ADAM17, and others (Karch and Goate,
2015).

This neurodegenerative disease is under extensive study for
therapeutic options including cell-replacement based therapy.
The need for urgent therapy stems from the fact that a small
percentage of all AD patients get moderate improvement from
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TABLE 4 | Alzheimer’s disease modeled with patient-specific hiPSCs.

Authors Donor somatic cell used Generated iPSCs used Neuronal differentiation method and results

Yagi et al., 2011 Human skin fibroblasts AD-derived iPS cell lines with PS

mutations (PS1 and PS2 iPSCs)

PS mutations in familial AD shown not to affect neuronal

differentiation

Yahata et al., 2011 Human dermal fibroblasts AD-derived iPSCs Differentiation of hiPSCs into forebrain neurons achieved using

protocol described by Chambers et al. (2009; Using two SMAD

signaling pathway inhibitors, Noggin and SB431542, for rapid and

complete neural differentiation), and additionally induced with

Noggin and SB431542 for 17 days

Nieweg et al., 2015 Human cord blood-derived

unrestricted somatic stem cells

(Zaehres et al., 2010)

hiPSC line 8/25 derived from human

cord blood-derived unrestricted somatic

stem cells (Zaehres et al., 2010)

hiPSC line 8/25 cultured in mTeSr medium and differentiated into

neural cells according to a modified protocol by Li et al. (2009),

where a neural medium was used that comprises of N2B27

medium (50% DMEM/F12, 50% Neurobasal), Glutamax, penicillin,

streptomycin, modified N2 supplement, β-mercaptoethanol, B27

without vitamin A and heparin

hiPSCs, human induced pluripotent stem cells; PS, Presenilin; AD, Alzheimer’s disease.

all available AD drugs and a significant number of those patients
suffer major side effects (Serretti et al., 2007). It is consistent
that in AD animal models, there is decrease in neurogenesis in
the subventricular and subgranular zones that get initiated early
before Aβ plaque formation suggesting decreased neurogenesis
and progressive neuronal loss as pathologies of AD (Yang et al.,
2016).

Transplantation of cholinergic precursors differentiated from
iPSCs into AD transgenic mice proved to restore spatial
memory impairment and survival of the cells transplanted
(Fujiwara et al., 2013). A particular study reported that medial
ganglionic eminence-like progenitors obtained from iPSCs
differentiation, completed their maturation into the forebrain
as GABAergic interneuron subtypes with mature physiological
properties within a prolonged period of time that extended
until 7 months, thus mimicking endogenous human neural
development (Nicholas et al., 2013).

Yet, the difficulty of obtaining live neurons from patients, and
the incapacity to pattern the sporadic form of the disease, still
represents a limitation in the understanding of AD. Nevertheless,
it is now possible to surmount this problem by simply obtaining
fibroblast from skin biopsy of these patients and then generating
disease specific iPSCs, which would serve as a model to enrich
our knowledge in this disease (Table 4).

Yagi et al. (2011) and Yahata et al. (2011), were the
first to generate hiPSCs from human fibroblasts in 2011.
Differentiation of hiPSCs into forebrain neurons was achieved
as described previously by Chambers et al. (2009). In addition,
NSCs were induced with Noggin and SB431542 for 17 days
to obtain cells that stained positive for the neuroectodermal
marker, Nestin (Yahata et al., 2011). The presenilin (PS)
mutations in familial AD were proved not to affect neuronal
differentiation, where the ability to generate neurons (∼80%
TUJ1-positive cells) was comparable between PS-iPSCs and
control iPSCs (Yagi et al., 2011). Noteworthy, the differentiated
cells expressed APP, β-secretase, and γ-secretase components,
and were found to secrete Aβ into the conditioned media
in addition to expressing a glutamatergic phenotype. Another

important finding was that neurons differentiated from iPSCs
of familial AD patients with PS1 and PS2 mutations exhibited
increased production of Aβ-42, and tau protein was found hyper-
phosphorylated thus further showing that the differentiated
iPSCs truly recapitulate the pathogenesis of AD (Yagi et al.,
2011).

In a recent work published in 2015, Nieweg et al. used human
iPSC-derived cortical neurons, differentiated using an EB system
similar to that applied by Li et al. (2015), to produce a highly
reproducible cellular AD model that facilitates the mechanistic
analysis of Aβ-induced synaptic pathomechanisms and the
development of new therapeutic approaches (Nieweg et al., 2015).
The differentiation protocol described by Li et al. states culturing
iPSCs in a neural medium comprising Dulbecco’s Modified
Eagle Medium (DMEM)/F12, N2 supplement and heparin
without growth factors (Li et al., 2009). Nieweg et al. (2015)
used a modified medium that comprises of N2B27 medium
(50% DMEM/F12, 50% Neurobasal), Glutamax, penicillin,
streptomycin, modified N2 supplement, β-mercaptoethanol, 1%
B27 without vitamin A and heparin. In the same paper, an
attempt wasmade to recapitulate the synaptotoxicity of Aβwhich
is crucial for understanding the cascade of events leading to
cell death and continuous brain degeneration. The cells were
differentiated into deep layer cortical pyramidal neurons and
GABAergic interneurons; and upon longer cultivation, these
cells exhibited action potential generation and excitatory and
inhibitory synapses. Yet, most interesting was that these AD-
derived neurons were very susceptible to Aβ synaptotoxicity
(Nieweg et al., 2015). In a study on epigenetic characterization of
iPSCs DA differentiated neurons, there was significant difference
in global gene expression and DNA methylation as compared to
the in vivo DA cells (Roessler et al., 2014). Therefore, epigenetic
changes seem to leave their mark on the genome even beyond
de-differentiation and this is mainly considered a limitation for
applying iPSCs in human therapies. Since the cells in these
experiments were needed to be passaged and tested at several
time points, trans-differentiation does not seem to be the proper
method for such application. Yet, all these models offer valuable
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insight about AD and understanding its progression and further
designing therapeutics.

iPSCs AND SPINAL CORD INJURIES

In case of injury, the spinal cord does not spontaneously
regenerate itself and till now there is not one available treatment
that can provide the least functional recovery from SCI. The
level at which the injury is present determines the symptoms and
consequent motor manifestations. To date, cervical SCIs account
for the majority of presented SCI cases (Doulames and Plant,
2016).

Many previous cell transplantation therapies have been
approached such as peripheral nerve bridges, Schwann cells,
olfactory glia, mesenchymal stem cells and NSCs (Plant et al.,
2001; Barry and Murphy, 2004; Ramer et al., 2004; Cummings
et al., 2005; Parr et al., 2008). Such therapies function
to ameliorate the existing damage and prevent its further
exacerbation by providing a scaffold to bridge the lesion,
replace the host dead or lost neurons or glia, promote axonal
regeneration and overcome glial scar formation (Bregman et al.,
1997; Jones et al., 2001; Raisman, 2001; Ikegami et al., 2005;
Donnelly and Popovich, 2008). In SCI, the main drawback to
regeneration is the inability of the CNS neurons to regenerate
axons that can cross through the inhibitorymilieu of the glial scar
and the injured lesion (Horner and Gage, 2000). Certain studies
on rats showed promise that this can be overcome by using iPSCs
as these reprogrammed iPSC neurons can extend many axons
over very long distances and form synapses with host rat neurons
(Parr et al., 2008; Romanyuk et al., 2015).

The implementation of iPSCs offers a great mean of cell-
based therapy capable of bypassing the usual ethical dilemma
associated with ESCs. The iPSCs have the ability to differentiate
into tissue-specific neurons which leads to long-term restoration
of the lesioned tissue (Romanyuk et al., 2015). Moreover, these
cells can be obtained in a non-invasive patient-specific manner
that makes iPSC an even more approachable attractive candidate
for SCI therapy. This cell replacement therapeutic approach has
opened a new era in the field of regenerative medicine.

Jin Young Hong and colleagues generated self-renewable
induced NSCs from somatic fibroblasts and engrafted them in
a rat model of SCI. The engrafted cells were able to restore
axonal regeneration resulting in recovery of motor, sensory and
autonomic functions (Hong et al., 2014). In another study, Pajer
et al. performed avulsion of the lumbar 4 (L4) ventral root in
rats, an injury that is known to induce the death of majority of
affected motor neurons. Afterwards, they transplanted murine
iPSCs into the injured spinal cord segment. Their observation
included improved re-innervation by the host motor neurons as
compared to controls with no iPSC transplantation procedure.
It also seemed that the observed morphological re-innervation
resulted in functional recovery as the grafted rats exhibited
more motor movement units in their re-innervated limb than
controls. This study also established that the grafting of iPSCs
downregulated astroglial activation in the injured site and was
able to conclude that the observed motor neuron survival and

regeneration came as a result of neurotrophic and cytokine
modulatorymechanisms (Pajer et al., 2015). Furthermore, a study
performed on mice suggested that the neurons derived from
the transplanted cells functioned as interneurons in the mouse
spinal cord which in turn contributed to the reconstruction
of neural circuits (Nakamura and Okano, 2013). Moreover,
neural precursors derived from a clone of hiPSCs (IMR90) were
used to treat a rat spinal cord lesion 1 week after induction.
These hiPSC-neural precursors robustly survived in the lesion,
migrated, and partially filled the lesion cavity during the entire
period of observation. Transplanted animals displayed significant
motor improvement already from the second week after the
transplantation (Romanyuk et al., 2015).

The application of iPSCs seems so good so far and all these
mentioned results raise great clinical expectations. However, it
should be noted that safety-related concerns for such iPSCs
cell therapy should be resolved prior to clinical application. A
main concern after iPSC therapy is tumor formation as a result
of residual or remaining undifferentiated iPSCs that were not
successfully induced into differentiation. Moreover, there is the
chance that the reprogramming was not necessarily complete
(Nakamura and Okano, 2013; Kim et al., 2014). Long term safety
issues also include deteriorated motor function accompanied
by a tumor formation (Nori et al., 2015). However, Tsuji et al.
used the neurospheres 3D culturing of iPSCs obtained from
mice fibroblasts, and injected them into the injured spinal cord.
Those neurospheres were able to differentiate into three neuronal
lineages: astrocytes, oligodendrocytes, and neurons, promoting
recovery and improving locomotor functional loss with no tumor
formation for the observation period of more than 120 days
(Tsuji et al., 2010). Besides, an in vivo study has shown that
3 rats have died out of 12 rats that received transplantation
with DA neurons derived from protein based iPSCs (Rhee et al.,
2011). The rats that died showed tumor formation after 8 weeks
from grafting. Moreover, in a comparison between transplanted
secondary neurospheres derived from iPSCs generated in 11
different ways and neurospheres from ESCs, the former showed a
significant teratoma formation propensity most likely correlated
with the persistence of undifferentiated cells (Miura et al., 2009).
All this further halts the use of such a therapeutic tool in humans
as much still needs to be optimized.

Researchers at the University of California, San Diego School
of Medicine launched a 5-year clinical trial program starting
2014 in order to investigate the safety of NSCs transplantation
in patients with chronic SCIs (University of California 2014).
A recent clinical trial on humans, the SciStar study, has been
using oligodendrocyte progenitors to treat people with recent
SCIs. This study not only has proven to be effective so far but
has lately passed major safety issues and therefore was approved
to expand by increasing the number of both enrolled patients
and the transplanted cells per patient (California Institute for
Regenerative Medicine (CIRM) 2016). Although this study aims
at evaluating the safety and effectiveness of AST-OPC1 agent,
which consists of oligodendrocyte progenitor cells produced
from human ESCs, in patients with recent SCI, results can be
promising as regards potential use of iPSCs instead of human
ESCs in this context.
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FIGURE 2 | Schematic diagram demonstrating the different applications of induced pluripotent stem cells (iPSCs) derived from human somatic cells.

The patient-specific hiPSCs and hiPS-derived neurons can serve as precursors for transplantation and tissue regeneration therapy. hiPSCs generated are also a

copious resource for in vitro and in vivo disease modeling, drug and genetic screening, and regenerative medicine.

STROKE, BRAIN INJURY AND iPSCs

Oki et al. (2012) provided the first evidence that transplantation
of hiPSC-derived cells is a safe and efficient approach to promote
recovery after stroke and can be used to supply the injured
brain with new neurons for replacement. They transplanted
neuroepithelial-like stem cells, generated from adult human
fibroblast-derived iPSCs, into stroke-damaged mouse and rat
striatum or cortex. The transplanted cells stopped proliferating
after a while but have at least shown that they can survive without
forming tumors for at least a period of 4 months. This 4-months
observation period warrants lack of rejection of the transplanted
cells and creates an optimal setting to evaluate tumorigenicity.
The iPSCs successfully differentiated neurons in intrastriatal
grafts sent axonal projections to the globus pallidus. Moreover,
the grafted cells exhibited electrophysiological properties of
mature neurons and most importantly received synaptic input
from host neurons (Oki et al., 2012). There is not much data
and research on the iPSCs regenerative ability in brain injury.
Therefore, in order to establish its safety and effectiveness, much
more studies and effort have to be done in that domain. After all,
transforming such data to clinical trials in humans would be a
great achievement toward finding a treatment and getting more
insight on the brain circuitry itself.

LIMITATIONS OF iPSCs USE IN
NEURODEGENERATIVE DISEASES

While the iPSCs technology holds the promise to becoming
an efficient therapy for many neurodegenerative diseases that

currently have no cure, there remains the risk of encountering
multiple unanticipated outcomes when applying them on
humans. The risks range from unwanted biological effects
and immune response, toxicity, neoplasm formation, disease
transmission, reactivation of latent viruses, to rejection of the
cells by the body. It is difficult to determine and pinpoint the risks
as they depend on several factors, including the cells that are used
to achieve pluripotency, the status of the differentiated cells, their
proliferation capacity, the technique of administration of the
pluripotency genes, the level of manipulation, the growth factors
used, the dilemma of retaining epigenetic memory, the intended
site of injection, the reversibility or even irreversibility of the
applied treatment, the susceptibility of the administered cells for
disease, the incomplete suppression of the four transgenes after
differentiation, the persistence of undifferentiated cells, and the
survival of the transplanted cells in vivo (Okita et al., 2007). The
known risks so far that were obtainedmostly from animal models
include tumor formation, unwanted immune responses and the
transmission of certain adventitious agents (Herberts et al., 2011;
Okano et al., 2013). Unfortunately, an estimated 20% of mice that
received iPSCs were found to develop tumors (Abdullah et al.,
2012). Furthermore, it has been hypothesized that the sustained
expression of the transgenes might have the ability to change the
expression of certain oncogenes or tumor suppressor genes thus
altering the tumorigenic potential of the cells. The c-Myc is a risk
factor by itself as it is upregulated in naturally occurring tumors.

An important risk of iPSC therapy is associated with
using lentiviruses or retroviruses. These viruses, although are
genetically tailored to hold the genes required for an iPSC state
transformation, will integrate into the host cell genome and
consequently add multiple viral integration sites and be the cause
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for several safety issues (Howe et al., 2008). However, it should be
noted that much control was gained over this process as the viral
integration site can be determined in iPSCs using Cre-mediated
strategies for instance or by using adenoviruses, plasmids,
transposons, recombinant proteins, Sendai virus vectors and
modified RNA (Herberts et al., 2011). It should be further noted
that there has been worries of a state of dedifferentiation or
dedifferentiation into an unwanted cell type once transplanted to
humans, though this remains clinically unclear. Therefore, there
has to be a thorough consideration of all the suspected risk factors
before setting into iPSCs human clinical trials.

Trans-differentiated neurons offer a way to bypass the
tumorigenicity risk associated with passing through a
pluripotency state. This method allows lineage reprogramming
as in directly converting a somatic cell type into another through
transgenic expression of transcription factors or miRNAs. On
the other hand, the procedure of re-differentiating iPSCs into
specific cell types is considered lengthy, costly and arduous.
In addition to that, having multiple stages before reaching the
intended outcome may lower the efficiency of the generated
cell type. So far, in this context, trans-differentiation seems to
be also an interesting path in research that also offers the same
concept of therapeutic approaches and disease modeling as
iPSCs. Trans-differentiated cells show no tumorigenicity when
transplanted in vivo, plus these cells show similar functionality
to cells derived from iPSCs (Lopez-Leon et al., 2014; Hou and
Lu, 2016). In the presence of an insult or a lesion, or even in
AD animal models, glial cells can be successfully transformed to
functional neurons by single transcription factor intervention
(Guo et al., 2014). For example, in the presence of SOX2 in the
injured adult spinal cord, astrocytes convert to double cortin
(DCX) positive neuroblasts (Lau et al., 2014). However, the
major limitation for trans-differentiation to be a therapeutic
approach is that the obtained population of induced neurons has
little to no proliferation rate, therefore directly restricting the
efficiency and expansion of this technique (Hou and Lu, 2016).
Hence, a better investment for a drug or therapeutic or modeling
purposes would still be iPSCs, but this does not overthrow the
importance of trans-differentiation. The research in this field
is still young but so vivid and fertile that we can witness iPSCs
applied in neurodegenerative diseases treatments in not the
so far future. Yet, until this day, there is no recorded iPSCs
treatment application on humans (Trounson and DeWitt, 2016).

CONCLUSION AND PERSPECTIVES

Although, iPSCs research has been a revolution in the scientific
field as it provides new hope for the treatment of many diseases,

protocols describing the differentiation of iPSCs into neural cells
in neurodegenerative diseases and in the context of neurotrauma
are still being modified and studied to assess the effect of this
process on gene mutations in these cells and vice versa. Advances
have been made recently to uncover the underlying molecular
pathways of several neurodegenerative diseases, yet more work
has to be done before one can say complete cure from such
disorders is possible.

A recent approach of generating 3D brain tissues, namely
“cerebral organoids”, closely reproduces the endogenous
developmental program. This approach can give rise to retinal
identities, ventral telencephalon, developing cerebral cortex, and
choroid plexus, within 1–2 months (Lancaster and Knoblich,
2014). Recent development of these 3D brain organoids derived
from human iPSCs is a promising technology for understanding
the development of in vitro disease models and investigating
in particular the human polygenic disorders where animal
models are not sufficient (Lindborg et al., 2016; Quadrato et al.,
2016).

Yet, many hitches like mutations, incomplete epigenetic
reprogramming and tumors formation, which accompany
the use of iPSCs, should be solved as well. Therefore,
further understanding of iPSCs, including a genome-wide
epigenetic characterization of those cells and further studying
of their genomic stability, is needed before beginning their
clinical applications in the area of regenerative medicine for
treating human diseases, mainly the intractable ones (Table 5).
Indeed, these patient-specific hiPSCs will serve in the future
as precursors for transplantation and tissue regeneration
therapy, as well as a copious resource for in vitro and
in vivo disease modeling and drug and genetic screening
(Figure 2).
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