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In the neuron, early neurotransmitters are released through the fusion pore prior to the
complete vesicle fusion. It has been thought that the fusion pore is a gap junction-like
structure made of transmembrane domains (TMDs) of soluble N-ethylmaleimide-
sensitive-factor attachment protein receptor (SNARE) proteins. However, evidence has
accumulated that lipid mixing occurs prior to the neurotransmitter release through
the fusion pore lined predominantly with lipids. To explain these observations, the
hemifusion, a membrane structure in which two bilayers are partially merged, has
emerged as a key step preceding the formation of the fusion pore. Furthermore, the
hemifusion appears to be the bona fide intermediate step not only for the synaptic
vesicle cycle, but for a wide range of membrane remodeling processes, such as viral
membrane fusion and endocytotic membrane fission.
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INTRODUCTION

Neurotransmitter release from the neuron requires fusion of vesicles to the plasma membrane.
However, the bilayer structure is highly stable; thus, two bilayers normally do not fuse
spontaneously. It is thought that conserved soluble N-ethylmaleimide-sensitive-factor attachment
protein receptor (SNARE) proteins mediate synaptic vesicle fusion (Söllner et al., 1993a,b). Three
SNARE proteins involved in neuroexocytosis are synaptobrevin-2 (Syb2, also called VAMP2),
syntaxin-1 (Stx1), and SNAP-25. Syb2 is the vesicle membrane (v-) SNARE of 116-amino acids with
a single transmembrane domain (TMD). Stx1 is the 288-amino acid protein attached to the plasma
membrane, likewise with a single TMD. SNAP-25 has lipid anchors in the plasma membrane
and forms the target membrane (t)-SNARE complex with Stx1 (Figure 1A). Cognate SNARE
motifs that protrude respectively from two membranes assemble to form a parallel four-helix
bundle (Poirier et al., 1998; Sutton et al., 1998) that drives apposition and subsequent fusion of two
membranes (Weber et al., 1998). It is believed that SNARE proteins progressively zipper from the
membrane-distal N-terminal region toward the membrane-proximal C-terminal region (Fiebig
et al., 1999; Chen et al., 2001; Melia et al., 2002; Matos et al., 2003; Sorensen et al., 2006; Ellena et al.,
2009; Gao et al., 2012; Lou and Shin, 2016).

A crucial question towards elucidating the pathway of membrane fusion is what happens to the
bilayers when two membranes merge. Obviously, our interests are on the role that SNARE TMDs
play in fusion because they are located at or near the epicenter of membrane fusion. There are two
proposed fusion pathways that predict two very different roles of the TMDs. The first model (Han
et al., 2004), which is primarily based on electrophysiological measurements, argues that the TMDs
serve as the principal building block of the fusion pore that is considered a bona fide intermediate
for synaptic vesicle fusion. In stark contrast, the second model (Xu et al., 2005), largely based on
spectroscopic and structural studies, predicts that lipids are major building blocks that build the
‘‘hemifusion’’ and the fusion pore. In the latter, TMDs play a supporting role either as membrane
anchors for the soluble SNARE complex or as mechanical levers working at the periphery.
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Although the TMD-lined fusion pore model was developed
earlier to explain electrophysiological results, much evidence
has now accumulated in favor of membrane fusion through
hemifusion for SNARE-dependent vesicle fusion. Furthermore,
the hemifusion might be a common intermediate shared
by many membrane fusion and fission systems including
viral-cell membrane fusion (Melikyan et al., 1995; Chernomordik
et al., 1998; Chernomordik and Kozlov, 2003) and endocytotic
membrane fission (Antonny et al., 2016).

TMD-LINED FUSION PORE

There is overwhelming evidence that vesicle fusion transits
through the fusion pore (Neher and Marty, 1982; Breckenridge
and Almers, 1987; Chow et al., 1992; Alvarez de Toledo et al.,
1993; Lollike et al., 1995), a metastable intermediate with a small
aqueous opening through two apposed membranes. In this state,
the vesicle is expected to remain nearly intact except a pore that
continues through the plasma membrane. The size of the fusion
pore is estimated to be similar to those of large ion channels.
Some small but detectable amounts of neurotransmitters can pass
through the fusion pore. Electrophysiological measurements of
fusion pore conductance revealed that the fusion-pore diameter
remains <3 nm and can persist for a few seconds (Albillos et al.,
1997).

In an earlier study, no flow of lipids was observed at the
stage of the fusion pore formation (Klyachko and Jackson, 2002).
Combining the electrophysiological data, one could envision
a gap junction-like fusion pore in which SNARE complex
formation brings about docking of two hemi-pores made of v-
and t-SNARE TMDs, respectively, to produce a longer, complete
pore that continues through the two membranes (Figure 1B).

Experimental evidence that supports such a protein-lined
fusion pore was obtained by amperometric study of Stx1 mutants
(Han et al., 2004). Han et al. (2004) found that Trp mutations
at the putative pore-lining residues in the TMD interfere with
the release of the neurotransmitters, consistent with the model.
Based on the conductance measurements, they modeled a helix-
lined pore consisting of 5–8 TMDs with a 0.5 nm pore at the
center (Figure 1C).

Although the data qualitatively agree with the model, one
caveat is that the impedance of the release due to the Trp
mutation is much lower than expected. There is only a 20%–30%
decrease in the release with the mutation. In reality, one
would expect that 5–8 Trp residues at the same layer in the
0.5-nm-diameter pore would completely fill the space, which
would allow little passage of neurotransmitters through the pore.
On the other hand, two membranes are still fully separated in
this stage, and the model does not explain how structurally and
energetically the two bilayers eventually merge to complete the
fusion reaction (Figure 1D; Chernomordik and Kozlov, 2003).

Recently, Cys-scanning experiments showed that V101 and
I105 in the TMD of Syb2 might line the fusion pore (Bao et al.,
2016). However, the small nanodisc of ∼6 nm diameter used in
the Cys-scanning experiments, contained as few as two copies of
Syb2. The reality is that two copies of the TMDwould not be able
to form a TMD-lined pore. Alternatively, an idea that the fusion

pore may be both lipidic and proteinaceous was suggested on
the basis of an amperometry study of chromaffin cells expressing
C-terminal truncation mutants of SNAP-25 (Fang et al., 2008).
The layout of TMDs in this model is however purely imaginary
with little experimental support.

The early result that there was no lipid flow at the fusion pore
stage is an important basis for developing a gap junction-like
fusion model. However, it is not unusual to have poor lipid
mixing when the protein density is high, as is shown for influenza
virus-cell fusion (Chernomordik et al., 1998). Thus, one could
argue that limited lipidmixingmight not be a sufficient condition
for a gap junction-like fusion pore. After all, the TMD might
not be a required component to complete membrane fusion. In
fact, TMD-less, lipid-anchored SNAREs are sufficient for healthy
neurotransmitter release in the neuron (Zhou et al., 2013),
vacuole fusion in yeast (Xu et al., 2011), and proteoliposome
fusion in vitro (McNew et al., 2000), raising concerns on the
validity of the TMD-lined fusion pore model.

HEMIFUSION

Let us now consider alternative possibilities to the TMD-lined
fusion pore. For membrane fusion between influenza virus
and red blood cells, Kemble et al. (1994); Melikyan et al.
(1995) made a seminal discovery that uncovered a lipid-
dominant intermediate in membrane fusion (Kemble et al.,
1994; Melikyan et al., 1995). The authors found that a
GPI-anchored hemagglutinin mutant arrests membrane fusion
at the intermediate state in which lipid mixing is allowed while
content mixing is not.

The observation by Kemble et al. (1994); Melikyan et al.
(1995) appears to be consistent with a theoretical model for
membrane fusion, developed for protein-free fusion of two lipid
bilayers, on the basis of the lipid-stalk intermediate (Kozlov et al.,
1983). We call the half-merged state in which inner leaflets are
intact while the outer leaflets are merged the ‘‘hemifusion’’. The
predicted hemifusion was later imaged experimentally with x-ray
crystallography for the macroscopically aligned, protein-free
multi-bilayer (Yang and Huang, 2002).

At hemifusion, lipid mixing may be allowed through outer
leaflets (Figure 1E). However, lipid mixing through inner leaflets
is also possible because the hemifusion could be in equilibrium
with small fusion pores that flicker (Figure 1F; Chanturiya et al.,
1997). In some cases, the hemifusion diaphragm can be formed
via expansion of the hemifusion into a large area (Hernandez
et al., 2012).

The idea that intracellular membrane fusion might transit
through a structure of the curved membrane was percolated
through the observation that the exogenously added lysolipids
impair exocytosis in cells (Chernomordik et al., 1993). It
has been thought that the molecular shape of a lipid
correlates with the effective spontaneous curvature. While
cylindrical phosphatidylcholine forms the almost flat monolayer,
cone-shaped phosphatidylethanolamine and diacylglycerol bulge
in the direction of the acyl chains and favor the net negative
curvature. In contrast, lysolipids such as lysophosphatidylcholine
and polyphosphoinositides are inverted cone-shaped molecules
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FIGURE 1 | Two contradicting mechanisms for the formation of fusion pore. (A) Synaptobrevin-2 (Syb2) is anchored to a synaptic vesicle, and the t-soluble
N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex composed of syntaxin-1 (Stx1) and SNAP-25 is anchored to the plasma
membrane. Membrane fusion is mediated by the formation of the SNARE four-helix bundle. (B) In the transmembrane domain (TMD)-lined fusion pore model, a gap
junction-like fusion pore is formed by TMDs of SNARE proteins. Two hemi-pores, one formed by Stx1 TMDs and the other by Syb2 TMDs, dock to constitute a long
pore through which neurotransmitters can be released. (C) Five to eight TMDs may form a pore in the center. (D) The TMD-lined pore model cannot explain how
fusion between the two membranes is achieved or how the small fusion pore eventually dilates to complete fusion reaction. (E) In the hemifusion, outer leaflets are
merged while inner leaflets remain separate. (F) A lipidic fusion pore is formed by inner leaflet mixing. This small fusion pore is in equilibrium with the hemifusion,
which may result in flickering. The small fusion pore would eventually dilate to complete membrane fusion.

with large polar heads and thin acyl chain tails that prefer the
positively curved membrane to the negatively curved one. Net
negative membrane curvature happens to be a characteristic
feature of the hemifusion (Chernomordik and Kozlov, 2008).

HEMIFUSION IN SNARE-DEPENDENT
MEMBRANE FUSION

The first direct experimental evidence of hemifusion in
SNARE-dependent fusion was from in vitro fusion assays
employing SNARE-reconstituted proteoliposomes (Lu et al.,
2005; Xu et al., 2005). The fluorescence measurements showed
that lipids in the outer leaflets mix faster than those in
the inner leaflets. Furthermore, the fusion reaction between
single proteoliposomes, studied with total internal reflection

microscopy, showed distinct steps that reflected the hemifusion
(Yoon et al., 2006).

Hemifusion has also been identified in fusion of vacuoles
from yeast (Jun and Wickner, 2007) as well as in Ca2+-
triggered exocytosis in chromaffin cells (Wong et al., 2007).
Additionally, the hemifusion was observed in cell-cell fusion
by flipped SNAREs (Giraudo et al., 2006) and in fusion
between a SNARE-reconstituted nanodisc and a liposome (Shi
et al., 2012), although it is unclear whether the hemifusion
observed here is a dead-end product or not. Recently,
signals reflecting hemifusion have been detected in the force
measurement in SNARE-mediated fusion of proteoliposome to
the supported bilayer (Oelkers et al., 2016). Furthermore, a
hemifusion structure was visualized in the study of neurons
with electron tomography at low resolution (Zampighi et al.,
2006).
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Although there is overwhelming evidence that the hemifusion
does exist in SNARE-dependent membrane fusion, there
is still a controversy concerning whether the hemifusion is
on- or off-pathway in Ca2+-triggered exocytosis. In fact,
Diao et al. (2012) raised the possibility that hemifusion
might be an off-pathway intermediate in Ca2+-triggered
exocytosis (Diao et al., 2012). In their in vitro experiments,
full fusion has occurred within the pool of un-hemifused
proteoliposomes, although it is still possible that the
hemifusion is too short-lived to be detected under their
experimental conditions. Alternatively, in some limited cases,
the hemifusion can expand into the hemifusion diaphragm,
which may not progress readily to full fusion (Hernandez et al.,
2012).

There is still controversy on whether the TMDs are even
required in the neuro-exocytosis. While Zhou et al. (2013) found
that GPI-anchored Syb2 fully supports the neurotransmitter
release (Zhou et al., 2013). Han et al. (2004) showed that
various lipid-anchored Syb2 variants provide little support
of exocytosis (Chang et al., 2016). Although SNARE TMDs
may not be essential, it turns out that they play important,
active roles in modulating SNARE-dependent membrane fusion.
For example, Shin et al. (2014) have shown that cholesterol
could change the conformation of the dimeric Syb2 TMD
to be favorable for membrane fusion (Tong et al., 2009). A
simulation study found that the SNARE TMDs might play a
role in initiating fusion by distorting the lipid packing of the
outer leaflets (Risselada et al., 2011). It is also shown that the
conformational flexibility of the Syb2 TMD might lower the
negative membrane curvature within the outer leaflet of the
fusion pore neck to facilitate pore expansion (Dhara et al.,
2016).

COUPLING OF SNARE ZIPPERING TO THE
HEMIFUSION

SNARE motifs assemble into a stable, parallel, four-stranded
coiled coil. The SNARE complex is made of 15 (numbered
−7 to +8) hydrophobic layers and one ionic zeroth layer
at the center. There is evidence that SNARE motifs zipper
from the membrane-distal N-terminal region towards the
membrane-proximal C-terminal region (Fiebig et al., 1999;
Chen et al., 2001; Melia et al., 2002; Sorensen et al., 2006; Su
et al., 2008; Ellena et al., 2009). After transitioning through
intermediate structures that might serve as structural platforms
for interactions with other accessory proteins, the SNARE
complex ends up at a cis-conformation representing the post
fusion state in which TMDs of Stx1 and Syb2 reside in
the same membrane. Prior to cis-complex formation, partial
complexes are present, of which the degree of zippering was
only recently revealed. It was found, from single-molecule
force measurements, that SNARE complex formation may
occur in at least two steps, with a pivot at the conserved
‘‘zeroth’’ layer in the middle (Li et al., 2007; Gao et al., 2012;
Min et al., 2013; Shin et al., 2014; Zorman et al., 2014).
Now, given that SNARE zippering drives apposition of two
membranes, it must be determined at what stage of SNARE

zippering hemifusion occurs. Precise mapping of the degrees
of SNARE zippering to specific stages of membrane fusion
is prerequisite to the understanding of the mechanism of
membrane fusion.

An immediate, related question in the field has been if
membranes are hemifused before the Ca2+ influx. Hemifusion
induced by SNARE complex formation before Ca2+ was reported
(Figure 2B), for the first time, by Schaub et al in their in vitro
investigation of the regulation of SNARE-dependent vesicle
fusion by Syt1 and complexin (Schaub et al., 2006). This result
was verified with the observations that the hemifusion is a
stable intermediate of exocytosis in neuronal cells in vivo (Wong
et al., 2007) and that two membranes may be hemifused before
Ca2+ influx (Zampighi et al., 2006). In contrast, it has been
proposed that syt1 and Ca2+ play a role in driving lipid stalk
formation (Martens et al., 2007; Hui et al., 2009), indicating
that lipid mixing or stalk formation occur after Ca2+ influx
(Figure 2C). However, this model has not been verified with
in vivo results.

Interestingly, it has been recently shown that SNARE
zippering of only the N-terminal half could drive hemifusion
(Figure 2A; Yang et al., 2010). SNARE complex formation
can be arrested at the half-zippered state by a flavonoid
myricetin, and it is found that the state arrested by myricetin
corresponds to the hemifusion in proteoliposome fusion.
Myricetin blocks C-terminal zippering by binding to the
middle region, while allowing SNARE zippering at the
N-terminal region. Remarkably, all hemifused vesicles arrested
by myricetin were completely converted to full fusion when
the myricetin clamp is removed by an enzyme laccase and
the fusion reaction was triggered by Ca2+. The results
imply that the hemifusion is likely to be an on-pathway
intermediate in Ca2+-triggered exocytosis (Heo et al., 2016).
Further, the study raises the strong possibility that the
hemifusion is induced by the N-terminal half-zippered SNARE
complex.

One might now wonder how hemifusion is possible despite
SNAREs being only half-zippered at the N-terminal region.
Under these conditions, the SNARE complex would not be
forcing apposition of two membranes due to the flexibility at the
C-terminal half. Alternatively, the highly basic juxtamembrane
regions might play a role here. In fact, electrostatic stitching of
two negatively charged membranes by the polybasic sequence
has been previously proposed as a potential mechanism for
membrane merging (Williams et al., 2009).

Purely energetically speaking, it was recently shown that
only one SNARE complex may be sufficient for hemifusion
(van den Bogaart et al., 2010; Shi et al., 2012). Partial
SNARE zippering generates about 35 kBT, corresponding
closely to the energy needed for hemifusion (Li et al., 2007).
Half-zippering releases 26 kBT in the presence of membranes
and 35 kBT in the presence of the pre-assembled C-terminal
domains (Gao et al., 2012; Zorman et al., 2014). Because
there are multiple SNARE complexes in the synaptic vesicles
(Lang et al., 2001; Takamori et al., 2006), it is possible that
hemifusion is efficiently achieved by multiple half-zippered
SNARE complexes.
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FIGURE 2 | Linking the degree of zippering to the hemifusion. (A) Hemifusion is achieved by only the zippering of the N-terminal half of SNARE motifs. Ca2+

induces fusion pore opening by enabling full SNARE zippering through the C-terminal half of SNARE motifs and TMDs. (B) Full SNARE zippering induces hemifusion.
A fusion pore can be opened by Ca2+. (C) Full SNARE zippering is required to dock vesicles to the plasma membrane. In this case, Ca2+ may drive hemifusion and
subsequent full fusion almost simultaneously to achieve fast exocytosis.

HEMIFUSION IN THE ENDOCYTOTIC
PATHWAY

In the endocytotic pathway, vesicles are created by membrane
fission. Membrane fission is a topologically opposite process

to membrane fusion. But, this reaction might as well
transit through the hemifusion. A GTPase dynamin is the
best-studied membrane fission protein. The dynamin protein
binds to the neck of the spherical membrane sac bulged
from the plasma membrane (Figure 3). The GTP-driven

FIGURE 3 | Hemifusion in endocytosis. (A) The plasma membrane is invaginated by endocytic machinery such as clathrin. (B) Dynamin binds to the neck of the
hemifission intermediate formed during endocytosis. (C) The membrane sac is detached from the plasma membrane to form an endocytic vesicle.
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conformational change of dynamin constricts the neck to
detach the vesicle from the plasma membrane (Antonny et al.,
2016).

In a clever experiment using a tubular membrane capillary,
Bashkirov et al. (2008) have shown that dynamin-induced
membrane fission is leak-free, representing the fission through
hemifusion (Bashkirov et al., 2008). Here, it is clear that
dynamins remain on the periphery and are not integral parts of
the intermediate. Thus, the role of the protein is clearly defined
as the mechanical energy source that drives the remodeling of the
membrane.

Recently, hemifusion and hemifission structures were
observed in live cells, which provided strong evidence of the
hemifusion model against that of a TMD-lined pore. Zhao et al.
(2016) observed membrane fusion directly in live chromaffin
cells in real time using super-resolution stimulated emission
depletion microscopy. They observed a Ω-shaped hemifusion
structure in the live cell, adding further evidence that the
hemifusion indeed exists along both the fusion and fission
pathways.

PERSPECTIVES

Although exocytotic membrane fusion was initially considered to
traverse the TMD-lined fusion pore, evidence has accumulated
to support an alternative pathway through the lipidic hemifusion

and fusion pore. The fusion pathway through the hemifusion
appears now to be shared by many membrane fusion
systems including viral-cell and intracellular membrane fusion.
Not surprisingly, the common hemifusion intermediate is
shared by endocytotic membrane fission as well, where no
TMD is directly involved in the process. The core feature of
the hemifusion is that it is lipidic in nature, although some
regulatory participation of TMDs cannot be ruled out. In
this model, the proteins may stay at the periphery, corralling
lipids at the fusion center to undergo merging. As cryo EM
and other imaging methods are making significant strides
in improving resolution, we are sure that the mechanistic
models described here will be tested in the very near
future.
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