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This study aims to investigate the effect of Endothelial-Monocyte-Activating
Polypeptide-II (EMAP-II) combined with temozolomide (TMZ) upon glioblastoma
stem cells (GSCs) and its possible molecular mechanisms. In this study, combination
of EMAP-II with TMZ inhibited cell viability, migration and invasion in GSCs, and
autophagy inhibitor 3-methyl adenine (3-MA) and chloroquine (CQ) partly reverse the
anti-proliferative effect of the combination treatment. Autophagic vacuoles were formed
in GSCs after the combination therapy, accompanied with the up-regulation of LC3-II
and Beclin-1 as well as the down-regulation of p62/SQSTM1. Further, miR-590-3p
was up-regulated and Metastasis-associated in colon cancer 1 (MACC1) was
down-regulated by the combination treatment in GSCs; MiR-590-3p overexpression
and MACC1 knockdown up-regulated LC3-II and Beclin-1 as well as down-regulated
p62/SQSTM1 in GSCs; MACC1 was identified as a direct target of miR-590-3p,
mediating the effects of miR-590-3p in the combination treatment. Furthermore, the
combination treatment and MACC1 knockdown decreased p-PI3K, p-Akt, p-mTOR,
p-S6 and p-4EBP in GSCs; PI3K/Akt agonist insulin-like growth factor-1(IGF-1)
partly blocked the effect of the combination treatment. Moreover, in vivo xenograft
models, the mice given stable overexpressed miR-590-3p cells and treated with
EMAP-II and TMZ had the smallest tumor sizes, besides, miR-590-3p + EMAP-II
+ TMZ up-regulated the expression level of miR-590-3p, LC3-II and Beclin-1
as well as down-regulated p62/SQSTM1. In conclusion, these results elucidated a
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novel molecular mechanism of EMAP-II in combination with TMZ suppressed malignant
biological behaviors of GSCs via miR-590-3p/MACC1 inhibiting PI3K/AKT/mTOR
signaling pathway, and might provide potential therapeutic approaches for
human GSCs.
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INTRODUCTION

Glioblastoma (GBM) is the most common and malignant
primary brain tumor in adults. Despite advances in clinical
therapies and technologies, the median survival time of GBM
patients is only 12–15 months (Mendez et al., 2001; Tso
et al., 2015). Glioblastoma stem cells (GSCs) are a neoplastic
subpopulation of glioma cells with the potentials of infinite
proliferation, self-renewal and multiple differentiation (Cao
et al., 2010; Mineo et al., 2016). GSCs are involved in
GBM development, therapeutic resistance and recurrence have
been confirmed (Auffinger et al., 2015). Therefore, GSCs are
considered to be an important therapeutic target for GBM.

Endothelial-Monocyte-Activating Polypeptide-II (EMAP-II)
is a tumor-derived cytokine isolated from methylcholanthrene
A (Meth A) transformed fibrosarcoma, has various biological
functions (Kao et al., 1994). Low-dose EMAP-II can increase
the blood-tumor barrier (BTB) permeability by down-regulating
the expression levels of tight junction associated proteins
(Li et al., 2015). EMAP-II demonstrates significant antitumor
activity against pancreatic ductal adenocarcinoma cells and
exhibits antitumor effects in prostate adenocarcinoma xenografts
(Reznikov et al., 2007; Schwarz et al., 2010). Autophagy is
an evolutionarily conserved intracellular lysosomal degradative
process in eukaryotic cells for degradation of long-lived
proteins and damaged organelles. These cellular proteins and
organelles are engulfed in the double-membrane vesicle known
as the autophagosome and are transported to the lysosome
for degradation (Jiang et al., 2010). Autophagy induction by
EMAP-II contributes to its antitumor capacity in human GBM
(Liu et al., 2014). Thus, EMAP-II induces GSCs autophagy might
play an important role in GBM treatment.

Temozolomide (TMZ) is the second generation oral
alkylating agent and becomes the first-line chemotherapeutic
agent used for GBM patients (Chen et al., 2014). But as a result of
widespread drug resistance for tumor cells, the clinical efficient
is less than 45% for TMZ treating GBM patients (Lashford
et al., 2002). Accumulating evidences showed that TMZ
treatment could induce autophagy (Zhang et al., 2015). One side,
TMZ-induced autophagy plays a cytoprotective role of resisting
therapy (Zou et al., 2014). On the other side, the cytotoxicity
of TMZ to glioma cells was enhanced by autophagy. When
combined with thalidomide, a drug could induce autophagy, the
cytotoxicity of TMZ to glioma cells was enhanced by autophagy
(Gao et al., 2009). Combination of EMAP-II with Rapamycin
induces GSCs autophagy and then inhibits the malignant
biological behaviors of GSCs (Ma et al., 2015). Therefore, we
speculated EMAP-II-induced autophagy might could enhance
the antitumor capacity of TMZ.

MicroRNAs (miRNAs, 20–24 nt) are a class of noncoding
small molecule RNAs. MiRNAs abnormally express in a
variety of tumors and may have the effects of proto-
oncogene or anti-oncogene (Stahlhut Espinosa and Slack, 2006).
Accumulating researches showed that regulating the expression
of miRNAs could enhance the benefits of chemotherapeutics in
the treatment of tumors (Tezcan et al., 2014). Overexpressed
miR-31 enhances the antitumor activity of TMZ in human GBM
cells (Zhou et al., 2015). Moreover, low-dose EMAP-II induces
autophagy by down-regulating miR-20a in glioma cells (Chen
et al., 2016). Furthermore, miR-590-3p functions as a suppressor
of GBM and inhibits cell migration, invasion and epithelial-
mesenchymal transition in human GBM cells (Pang et al., 2015).
However, whether miR-590-3p is involved in the antitumor
activity of combining treatment with EMAP-II and TMZ and its
specific mechanism remain unclear.

Metastasis-associated in colon cancer 1 (MACC1) was
overexpressed in many tumors, including colon cancer (Arlt
and Stein, 2009), human lung cancer (Shimokawa et al., 2011),
hepatocellular carcinoma (Sun et al., 2015) and humanmalignant
glioma (Yang et al., 2014). MACC1 gene could regulate
various intracellular signal pathways to promote tumorigenesis,
malignant development and metastasis (Yao et al., 2015a). In
addition, silencing of MACC1 enhance the chemosensitivity
of cisplatin in ovarian carcinoma cells (Zhang et al., 2016).
However, little has been studied about the role and molecular
mechanisms of MACC1 are involved in the antitumor activity
of EMAP-II in combination with TMZ.

In the present study, we aimed to determine whether
combination of EMAP-II with TMZ could inhibit malignant
biological behaviors of GSCs as well as the role of autophagy
in the combined therapy. Further, we investigated whether
miR-590-3p and MACC1 are involved in the process of
EMAP-II combined with TMZ, and explored potential signaling
mechanisms.

MATERIALS AND METHODS

Human Tissue Samples and Patient
Information
Normal brain tissues (NBTs) and glioma tissues were obtained
from patients undergoing surgery at the Department of
Neurosurgery, Shengjing Hospital of China. The NBTs tissues
were collected from the craniocerebral trauma patients (three
cases). Glioma samples were divided into two groups: low grade
(grade I–II) and high grade (grade III–IV) according to the
WHO classification (six cases). The clinically-relevant details
about these patients were shown in Supplementary Table S1.
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The study procedure was approved by Research Ethics Board
at the Shengjing Hospital of China Medical University and the
document of the ethical approval for using human tissues was
shown in Supplementary Table S1.

Drugs and Reagents
Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine
serum (FBS) and DMEM/F12/Glutamax were purchased from
Gibco (Carlsbad, CA, USA). Basic fibroblast growth factor
(bFGF), epidermal growth factor (EGF) and 2% B27 were
obtained from Life Technologies Corporation (Carlsbad, CA,
USA). TMZ, dimethyl sulfoxide (DMSO), 3-methyl adenine
(3-MA), chloroquine (CQ) and Z-VAD-fmk (Z-VAD) were
purchased from Sigma–Aldrich (St. Louis, MO, USA). EMAP-
II and insulin-like growth factor-1 (IGF-1) were purchased
from PeproTech (St.Louis, MO, USA). Cell counting kit-8
(CCK-8), DAPI and Lyso-tracker was purchased from Beyotime
(Jiangsu, China). Primary antibodies against LC3B (rabbit,
polyclonal, ab51520) and MACC1 (rabbit, polyclonal, ab106579)
were purchased from Abcam (Cambridge, MA, USA). Primary
antibodies against p62/SQSTM1 (rabbit, polyclonal, 18420-1-
AP), Beclin-1 (rabbit, polyclonal, 11306-1-AP), PI3K (rabbit,
polyclonal, 20584-1-AP), Akt (rabbit, polyclonal, 10176-2-AP)
and mTOR (rabbit, polyclonal, 20657-1-AP) were purchased
from proteintech (Chicago, USA). Antibodies such as P-PI3K
(Tyr458) (rabbit, polyclonal, #4228), p-AKT (Ser473) (rabbit,
polyclonal, #9271), p-mTOR (Ser2448) (rabbit, polyclonal,
#2971), S6 (rabbit, monoclonal, #2217) and p-S6 (Ser235/236)
(rabbit, monoclonal, #4858) were purchased from Cell Signaling
Technology (Beverly, MA, USA). Primary antibodies against
4EBP (rabbit, polyclonal, A1248) and p-4EBP (Thr37/46) (rabbit,
polyclonal, AP0030) were purchased from ABclonal (Boston,
MA, USA). Anti-GAPDH (mouse, monoclonal, sc-365062) and
the secondary antibodies conjugated with horseradish peroxidase
were bought from Santa Cruz Biotechnology (Santa Cruz, CA,
USA).

Cell Culture and Treatment Conditions
Human GBM cell lines (U87 and U251) and human embryonic
kidney (HEK) 293T cells were purchased from Shanghai
Institutes for Biological. They were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) of high glucose with 10% FBS
and were incubated in a 5% CO2 humidified incubator at 37◦C.

For the experiments, cells were treated with TMZ at different
concentrations (50 µM, 100 µM, 200 µM, 400 µM, 600 µM,
800 µM, 1000 µM and 1200 µM, diluted with DMSO) for 24 h,
48 h, and 72 h. As previously reported (Liu et al., 2014), 0.05 nM
at 0.5 h were considered to be the optimum concentration and
time point of EMAP-II on GSCs, respectively. Furthermore,
cells were pretreated with 2 mM 3-MA, 10 µM CQ, 50 µM
Z-VAD or 10 nM IGF-1 in different experiments in this study.
To test the effect of combination treatment with EMAP-II and
TMZ on GSCs, the experiments were divided into four groups:
control group, cells were treated with 0.9% sodium chloride (NS)
and DMSO; EMAP-II group, cells were treated with 0.05 nM
EMAP-II for 0.5 h; TMZ group, cells were treated with 400 µM

for 48 h; EMAP-II + TMZ group, cells were pretreated with
0.05 nM EMAP-II for 0.5 h and then plus 400 µMTMZ for 48 h.

Isolation and Identification of GSCs
GSCs were obtained and isolated as described previously
(Yao et al., 2015b). Briefly, GSCs were cultured in DMEM/
F-12 medium supplemented with basic fibroblast growth factor
(bFGF, 20 ng/ml), epidermal growth factor (EGF, 20 ng/ml) and
2% B27.

Cell Viability Assay
To evaluate the cytotoxicity of TMZ on glioma cells, CCK-8
assay was performed to determine cell viability. Cells in the
logarithmic growth phase were seeded in a 96-well suspension
culture plate at 6 × 103 cells/well and incubated for 24 h prior
to treatment, then different concentrations of TMZ were added
and compared with the DMSO-treated control. At the end of the
time point, 10 µl of CCK8 was added to each well and incubated
for additional 2 h. Mitochondrial activity is constant for most
viable cells and thereby an increase or decrease in the number
of viable cells is linearly related to mitochondrial activity, which
is the principle of the cell viability assay. CCK8 is based on the
WST-8. WST-8 is reduced by dehydrogenases in the cells giving
an orange colored formazan. The formazan could reflect the
mitochondrial activity of the cells. So, any increase or decrease
in viable cell number can be detected by measuring formazan
concentration. Optical density (OD) value was finally measured
at the wavelength of 450 nm on a microplate reader, and the
value was corrected by subtracting the absorbance of control
wells that did not contain cells. For the group of pretreatment
with EMAP-II and then plus TMZ, the procedure was similar, but
cells were treated with 0.05 nM EMAP-II for 0.5 h before TMZ
treatment for 48 h or 72 h. The cell viability of transfection cells
was also assayed by CCK-8, as previously reported (Zhou et al.,
2012).

Cell Migration and Invasion Assays
The migration and invasion abilities of GSCs were detected
using 24-well transwell chambers with 8 µm pore size (Corning
Costar). The cells were resuspended in 200 µL serum-free
medium and seeded into the upper chamber (without or
pre-coated with 500 ng/ml Matrigel solution (BD, Franklin
Lakes, NJ, USA) in migration or invasion assay separately)
600 µL of 10% FBS medium was placed in the lower chamber.
After incubated for 24 h at 37◦C, cells on the top of membrane
surface were removed with cotton swabs. Cells on the bottom
of the membrane surface were fixed with methanol and glacial
acetic acid (mixed at 3:1) for 30 min at room temperature and
stained using 10% Giemsa stain for 30 min. Five randomly fields
were counted under a microscope and photos were taken.

Transmission Electron Microscopy
Cells were fixed in ice-cold 2.5% glutaraldehyde overnight at
4◦C. After fixation, the samples were post-fixed in 1% osmium
tetroxide containing 0.1% potassium ferricyanide for 1 h, and
then subjected to the electron microscopy analysis.
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Immunofluorescence Staining
GSCs were stained with LysoTracker Red at a final concentration
of 50 nM and incubated in a 5% CO2 humidified incubator
at 37◦C for 1 h. GSCs were harvested by centrifugation and
fixed in 4% paraformaldehyde for 30 min. GSCs were blocked
with 5% bovine serum albumin for 2 h at room temperature.
Following incubation with primary antibody against LC3B
at 4◦C overnight. The primary antibody was detected with
cy3-conjugated anti-rabbit. After that, GSCs were washed with
PBS containing 0.1% Tween20 and incubated with 0.5 µg/ml
DAPI. The immunofluorescence staining of p62/SQSTM1 was
the samewith the LC3B only without using LysoTracker Red. The
cells were visualized using immunofluorescence microscopy.

Western Blotting
GSCs were lysed in RIPA buffer supplemented with phenyl-
methylsulfonyl chloride (PMSF, 10 ng/ml) on ice and total
proteins were extracted from GSCs. Protein concentration
was determined using the BCA protein assay kit and equal
amounts of proteins were separated in 8%–12% SDS-PAGE
and electrophoretically transferred to PVDF membranes.
Nonspecific binding was blocked using 5% non-fat milk
dissolved in Tris-buffered-saline-Tween (TBST) for 2 h.
Subsequently, the membranes were incubated with primary
antibodies at 4◦C overnight and HRP-conjugated secondary
antibodies at room temperature for 2 h. Immunoblots were
visualized by ECL detection reagents.

RNA Extraction and Real-Time PCR
Total RNA were extracted from cells using Trizol reagent
(Life Technologies Corporation, Carlsbad, CA, USA). RNA
concentration and quality were determined using a Nanodrop
Spectrophotometer (ND-100) in the 260/280 nm ratio. We
used Taq-Man MicroRNA Reverse Transcription kit and High
Capacity cDNA Reverse Transcription Kit for miRNA and
mRNA reverse transcription, respectively (Applied Biosystems,
Foster City, CA, USA). Quantitative real-time PCR (qRT-PCR)
was conducted using TaqMan Universal Master Mix II with
TaqMan microRNA assays of miR-590-3p and U6 or TaqMan
gene expression assays of MACC1 and GAPDH (Applied
Biosystems, Foster City, CA, USA). U6 and GAPDH were
used as endogenous control for miRNA and gene expressions,
respectively. Expression were normalized to endogenous controls
and fold changes were calculated by relative quantification
(2−∆∆Ct).

Cell Transfections
MiR-590-3p agomir, miR-590-3p antagomir and their respective
non-targeting sequence (negative control, NC) were synthesized
by GenePharma in Shanghai, China. GSCs were transfected with
miR-590-3p agomir (pre-miR-590-3p), miR-590-3p antagomir
(anti-miR-590-3p) or their respective NC using Lipofectamine
2000 reagent (Life Technologies Corporation, Carlsbad, CA,
USA). The high transfection efficacy of these could sustain
for at least a week from 48 h post-transfection. The time
after transfected 48 h was considered as the optimum time
in the subsequent experiments. In order to determine the

effect of miR-590-3p on GSCs, cells were divided into five
groups, Control group, pre-NC group (transfected with negative
control), pre-miR-590-3p group (transfected with miR-590-3p
agomir), anti-NC group (transfected with negative control) and
anti-miR-590-3p (transfected with miR-590-3p antagomir).

In addition, MACC1 was silenced with sh-RNA cloned into
pGPU6/GFP/Neo vector (GenePharma). GSCs were transfected
with silenced MACC1 plasmids and empty vector transfected
using Lipofectamine 3000 reagents (Invitrogen, CA, USA)
according to the manufacturer’s instructions. Then GSCs
with stable silenced MACC1 were established by using
geneticin (G418; Sigma-Aldrich, St. Louis, MO, USA) screening
for 4 weeks. To study the effect of MACC1 on GSCs,
cells were divided into three groups, Control group, sh-NC
group (transfected with sh-NC plasmid), sh-MACC1 group
(transfected with sh-MACC1 plasmid).

Reporter Vectors Constructs and
Luciferase Reporter Assays
MACC1 3′-UTR sequences and its mutant of the predicted
miR-590-3p binding sites were subcloned into a pMIR-GLOTM
Luciferase vector to form MACC1 3′UTR-Wt1 (Wt2) and
MACC1 3′UTR-Mut1 (Mut2) (GenePharma, Shanghai, China),
respectively. HEK 293T cells were seeded in 96-well plates and
co-transfected with MACC1-3′UTR-Wt1 (Wt2) (or MACC1-
3′UTR-Mut1 (Mut2)) and pre-NC (or pre-miR-590-3p). The
luciferase activities were measured at 48 h after transfection
through Dual-Luciferase reporter assay system (Promega,
Madison, WI, USA). To explore the implicit mechanism of
miR-590-3p in the combination treatment with EMAP-II and
TMZ inhibited the malignant biological behavior of GSCs by
attenuating MACC1, cells were divided into five groups: control
group, anti-NC + sh-NC group (sh-NC stable expressing cells
co-transfected with anti-NC), anti-miR-590-3p+sh-NC (sh-NC
stable expressing cells co-transfected with anti-miR-590-3p),
anti-NC + sh-MACC1 group (sh-MACC1 stable expressing
cells co-transfected with anti-NC)and anti-miR-590-3p+sh-
MACC1 group (sh-MACC1 stable expressing cells co-transfected
with anti-miR-590-3p).

In Vivo Xenograft Study
For the in vivo study, GSCs were stably transfected with
pre-miR-590-3p. Lentivirus encoding pre-miR-590-3p was
generated using pLenti6.3/V5eDEST Gateway Vector Kit (Life
Technologies Corporation, Carlsbad, CA, USA). Four-week-old
male nude mice were purchased from the National Laboratory
Animal Center (Beijing, China). All experiments of the human
glioma tissues and nude mice were carried out under the
approval of the Administrative Panel on Laboratory Animal
Care of Shengjing Hospital. For the in vivo study,the incision
was closed with stitches and mice were sacrificed by CO2
inhalation and death was confirmed by cervical dislocation if
they exhibited excessive weight loss of 20% body weight, tumor
metastasis, lethargy, or other signs of distress consisted with
IACUC standards. There are not vulnerable populations in
our study. After 1 week acclimatization, mice were implanted
subcutaneously with GSCs or GSCs stably transfected with pre-
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miR-590-3p into the right flank regions of mice at 2 × 106 cells
density. And the tumor-bearing mice were assigned to control
group (GSCs treated with 0.9% sodium chloride), EMAP-II +
TMZ group (GSCs pretreated with 80 ng/kg EMAP-II i.p. 0.5 h
before 50 mg/kg TMZ administration), pre-miR-590-3p (GSCs
stably transfected with pre-miR-590-3p), EMAP-II + TMZ + pre-
miR-590-3p (pretreated with 80 ng/kg EMAP-II i.p. 0.5 h
before 50 mg/kg TMZ administration in pre-miR-590-3p GSCs).
Tumor volume was measured with a caliper and calculated as

1/2× length× width2 in mm3 every 5 days. Forty five days after
implantation, mice were sacrificed and tumors were isolated.

Statistical Analysis
Data are presented as the mean± standard deviation (SD). SPSS
18.0 software was used for statistical analysis with the Student’s
t-test or one-way ANOVA. The P-value less than 0.05 was
considered statistically significant.

FIGURE 1 | Cytotoxic effect of temozolomide (TMZ) in glioblastoma stem cells (GSCs)-U87 and GSCs-U251. (A) GSCs were incubated with various
concentration of TMZ (50–1200 µM) and cultured for 24 h, 48 h or 72 h. Cell counting kit-8 (CCK-8) assay were performed to detect the cell viability. Optical density
(OD) value of cells was measured by a microplate reader at the wavelength of 450 nm, which was the indicator of cell viability. (B) The IC50 values of TMZ in
GSCs-U87 and GSCs-U251. Effects of combination treatment with Endothelial-Monocyte-Activating Polypeptide-II (EMAP-II) and TMZ on the cell viability, migration
and invasion of GSCs-U87 and GSCs-U251. (C,D) Cell viability was detected by CCK-8 assay. GSCs were treated with EMAP-II (0–0.2 nM) for 0.5 h and TMZ
(0–1600 µM) for 48 h alone or in combination. The Fa-CI plot shows the combination index value (CI) for each fractional effect. The curves were generated using
CompuSyn software. (E) Quantification of cell migration and invasion of GSCs after treated with EMAP-II (0.05 nM, 0.5 h), TMZ (400 µM, 48 h), or EMAP-II (0.05 nM,
0.5 h) + TMZ (400 µM, 48 h). Data are presented as the mean ± standard deviation (SD) (n = 5, each group). ∗P < 0.05 vs. Control group, ∗∗P < 0.01 vs. Control
group, #P < 0.05 vs. EMAP-II group, ∆P < 0.05 vs. TMZ group.
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RESULTS

EMAP-II in Combination with TMZ
Inhibited Cell Viability, Migration
and Invasion in GSCs
The cytotoxic effects of TMZ in GSCs were evaluated by using
CCK-8 assay. As shown in Figure 1A, the cell viability of GSCs
was inhibited by TMZ in a dose and time-dependent manner.
The IC50 values of TMZ in GSCs-U87 and GSCs-U251 at
24 h, 48 h and 72 h were shown in Figure 1B. As shown
in Figures 1C,D, combination of EMAP-II with TMZ resulted
in a significant shift in the cell viability inhibition curve
compared with either drug alone, EMAP-II acted synergistically
(CI < 1.0) with TMZ to inhibit GSCs-U87 and GSCs-U251
cell viability at almost all combination doses tested. As
shown in Figure 1E, the migration and invasion of GSCs
in EMAP-II group, TMZ group or EMAP-II + TMZ group
were inhibited compared with control group. EMAP-II in
combination with TMZ demonstrated even greater inhibitory
effect on the migration and invasion of GSCs than single
drug, respectively. These results suggested that combination of
EMAP-II with TMZ inhibited the malignant biological behaviors
of GSCs.

EMAP-II in Combination with TMZ
Enhanced Autophagy in GSCs
The time line of EMAP-II in combination with TMZ for all
the next experiments was shown in Figure 2A. We further
investigated whether the inhibitory effect of EMAP-II in
combination with TMZ on cell viability was associated with
the induced autophagy and apoptosis. GSCs were pretreated
with autophagy inhibitor 3-MA, autophagy inhibitor CQ or
caspase inhibitor Z-VAD-fmk (Z-VAD). As shown in Figure 2B,
3-MA and CQ pretreatment significantly blocked the inhibitory
effect of EMAP-II on the cell viability, and recovered the cell
viability to the level in control group. The cell viability of
EMAP-II + Z-VAD group was significantly decreased compared
with Z-VAD group, while there was no difference between
EMAP-II + Z-VAD group and EMAP-II group. 3-MA, CQ
and Z-VAD pretreatment partly reverse the anti-proliferative
effect of TMZ. The cell viability was inhibited in EMAP-II
+ TMZ and EMAP-II + TMZ + Z-VAD groups compared
with control group, and there was no significant difference
between these groups. In addition, the cell viability was
increased in EMAP-II + TMZ + 3-MA group or EMAP-II +
TMZ + CQ group compared with EMAP-II + TMZ group,
suggesting that 3-MA and CQ blocked the inhibitory effect
of EMAP-II + TMZ on the cell viability. The above results
suggested that inhibitory effects of EMAP-II + TMZ on the cell
viability might be associated with cell autophagy in GSCs. In
addition, the effects of 3-MA and CQ on the cell viability were
consistent and Z-VAD could not reverse the anti-proliferative
effect of EMAP-II and EMAP-II + TMZ, so we applied the
3-MA to support the findings in Figure 2B on the western
blots assays. As shown in Figures 2C–E, compared with the
control group, EMAP-II, TMZ or EMAP-II + TMZ significantly

up-regulated LC3-II and Beclin-1 protein expression and
down-regulated p62/SQSTM1 protein expression. Combination
of EMAP-II with TMZ more significantly increased LC3-II and
Beclin-1 protein expression and decreased p62/SQSTM1 protein
expression than either EMAP- II or TMZ alone. In addition,
the protein expression of LC3-II and Beclin-1 were decreased
and the protein expression of p62/SQSTM1 was increased when
combined 3-MA with EMAP-II or TMZ. Certainly, 3-MA could
also decrease the protein expression of LC3-II and Beclin-1 as
well as increased the protein expression of p62/SQSTM1 in the
EMAP-II + TMZ group.

As shown in Figure 2F, electron microscopy displayed
autophagic vacuoles (AVs) in EMAP-II, TMZ or EMAP-II
+ TMZ treated GSCs, whereas control cells showed few
such features. The AVs increased more obviously in the
combination of EMAP-II with TMZ group than either
EMAP-II or TMZ alone. As shown in Figure 2G, GSCs
were stained with anti-LC3 and LysoTracker Red by
immunofluorescence, compared with the control group,
high magnification of punctate aggregates were found in
GSCs treated with EMAP-II, TMZ or EMAP-II + TMZ.
Combination of EMAP-II with TMZ more obviously increased
the punctate distribution and density of LC3 in GSCs than
either EMAP-II or TMZ alone. In addition, there was a
significant overlap between LC3 and lysosomal signals. The
immunofluorescence assay of p62/SQSTM1 displayed opposite
results as above (Figure 2H). These results suggested that
EMAP-II in combination with TMZ enhanced autophagy in
GSCs.

EMAP-II in Combination with TMZ Induced
GSCs Autophagy via Up-Regulating
miR-590-3p
As shown in Figure 3A, miR-590-3p expression level was
significantly lower in GSCs than that in non-GSCs. EMAP-II,
TMZ or EMAP-II + TMZ up-regulated the expression level of
miR-590-3p compared with the control group. Combination
of EMAP-II with TMZ more significantly increased the
expression level of miR-590-3p than either EMAP-II or
TMZ alone (Figure 3B). As shown in Figures 3C–E, the
protein expression level of LC3-II and Beclin-1 significantly
up-regulated and the p62/SQSTM1 protein expression
level significantly down-regulated in pre-miR-590-3p group
compared with pre-NC group, whereas, anti-miR-590-3p
group showed the opposite effect. These results revealed that
EMAP-II in combination with TMZ induced GSCs autophagy
via up-regulating miR-590-3p.

EMAP-II in Combination with TMZ Induced
GSCs Autophagy via Down-Regulating
MACC1
As shown in Figure 4A, compared with NBTs, the protein
expression of MACC1 in glioma tissues was significantly
increased, in addition, MACC1 expression was positively
correlated with the increasing pathological grades of
glioma. MACC1 expression levels in GSCs were obviously
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FIGURE 2 | Combination of EMAP-II with TMZ induced GSCs autophagy. (A) Timeline of the next combination treatment researches. (B) CCK-8 assay were
performed to detect the cell viability of GSCs which were incubated with EMAP-II, TMZ or EMAP-II + TMZ and combined with 3-MA, chloroquine (CQ) or Z-VAD,
respectively. OD value of cells was measured by a microplate reader at the wavelength of 450 nm. (C–E) Western blot analysis was performed to detect the
expression of autophagy-related genes. (F) Electron microscopy showed ultrastructural features in GSCs treated with EMAP-II, TMZ or EMAP-II + TMZ. Arrows show
autophagic vacuoles. (G) The colocalization of LC3 and LysoTracker Red in GSCs treated with EMAP-II, TMZ or EMAP-II + TMZ were observed by
immunofluorescence assay. Pictures are respective magnification (n = 5, each). (H) The down-regulation of p62/SQSTM1 in GSCs were observed by
immunofluorescence assay after treated with EMAP-II or TMZ or EMAP-II + TMZ. Data are presented as the mean ± SD (n = 5, each group) ∗P < 0.05 vs. Control
group, ∗∗P < 0.01 vs. Control group, #P < 0.05 vs. EMAP-II group, ##P < 0.01 vs. EMAP-II group, ∆P < 0.05 vs. TMZ group, ∆∆P < 0.05 vs. TMZ group,
&P < 0.05 vs. EMAP-II + TMZ group, &&P < 0.01 vs. EMAP-II + TMZ group.
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FIGURE 3 | MiR-590-3p expression in glioblastoma (GBM) cell lines and GSCs. (A) Expression of miR-590-3p in non-GSCs and GSCs. Data are presented as
the mean ± SD (n = 5, each group) ∗∗P < 0.01 vs. non-GSCs group. (B) qRT-PCR analysis for the expression of miR-590-3p in GSCs treated with EMAP-II, TMZ or
EMAP-II + TMZ. Data are presented as the mean ± SD (n = 5, each group) ∗P < 0.05 vs. Control group, ∗∗P < 0.01 vs. Control group, ##P < 0.01 vs. EMAP-II
group, ∆P < 0.05 vs. TMZ group. Overexpression of miR-590-3p induced GSCs autophagy. (C–E) Western blot analysis was performed to detect the expression of
autophagy-related genes. Data are presented as the mean ± SD (n = 5, each group) ∗P < 0.05 vs. pre-NC group, #P < 0.05 vs. anti-NC group.

increased compared with non-GSCs (Figure 4B). These results
suggested that MACC1 might play an oncogenic role in GBM
development.

EMAP-II, TMZ or EMAP-II + TMZ decreased the protein
expression ofMACC1 in GSCs compared with the control group.
EMAP-II in combination with TMZ more remarkably decreased
the protein expression of MACC1 than either EMAP-II or TMZ
alone (Figure 4C). The knockdown efficiency of MACC1 by
shRNA was shown in Figures 4D,E. As shown in Figures 4F–H,
compared with sh-NC group, the protein expression of LC3-II
and Beclin-1 in sh-MACC1 group was increased, whereas the
p62/SQSTM1 protein expression was decreased. These results
showed that EMAP-II in combination with TMZ induced GSCs
autophagy via down-regulating MACC1.

MiR-590-3p Inhibited the Expression
of MACC1 by Targeting its 3′-UTR
MACC1 was predicted as a potential target gene of miR-590-3p
by using the bioinformatics databases (Targetscan, Pictar,
miRanda). In order to confirm the predict result, GSCs
were transfected with pre-miR-590-3p or anti-miR-590-3p,
and assessed mRNA and protein levels of MACC1 by
quantitative RT-PCR and Western blot, respectively. MiR-590-
3p overexpression decreased the mRNA and protein expression
of MACC1, and not surprisingly, inhibition of miR-590-3p

increased the mRNA and the protein expression of MACC1 in
GSCs (Figures 5A,B). These results suggested that miR-590-3p
could inhibit MACC1 expression in GSCs.

Luciferase reporter assay was conducted to illuminate the
molecular mechanism. MACC1 was predicted harbor three
putative miR-590-3p binding sites in the 3′-UTR by using
Targetscan, we choose two of them to perform luciferase assays
because their scores are higher. The seeds for miR-590-3p to
MACC1 fragment were shown in Figure 5C. As shown in
Figure 5D, compared with the pre-NC + MACC1-Wt1(Wt2),
luciferase activity was significantly decreased in the pre-miR-
590-3p + MACC1-Wt1(Wt2) group, while the luciferase activity
in the pre-miR-590-3p + MACC1-Mut1(Mut2) group was not
changed comparing with the pre-NC + MACC1-Mut1(Mut2).
These results suggested that these two putative binding sites were
functional.

EMAP-II in Combination with TMZ
Inhibited the Malignant Biological
Behaviors of GSCs via
miR-590-3p/MACC1 Inducing Autophagy
To confirm whether the effect of miR-590-3p in the combined
therapy was mediated by MACC1, MACC1 up-regulation
by anti-miR-590-3p was rescued using sh-MACC1 prior
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FIGURE 4 | Metastasis-associated in colon cancer 1 (MACC1) acted as an oncogenic role in glioma tissue and GSCs. (A) MACC1 protein expression
levels in nontumorous brain tissues (NBTs), low-grade glioma tissues (World Health Organization [WHO] I–II), and high-grade glioma tissues (WHO III–IV). Data are
presented as the mean ± SD (n = 3, each group) ∗P < 0.05 vs. NBTs group. (B) MACC1 protein expression levels in U87, U251 and GSCs. Data are presented as
the mean ± SD (n = 5, each group) ∗P < 0.05 vs. non-GSCs group. (C) Western blot assay was performed to detect the expression of MACC1 in GSCs treated with
EMAP-II, TMZ or EMAP-II + TMZ. Data are presented as the mean ± SD (n = 5, each group) ∗P < 0.05 vs. Control group, ∗∗P < 0.01 vs. Control group,
#P < 0.05 vs. EMAP-II group, ∆P < 0.05 vs. TMZ group. MACC1 knockdown induced GSCs autophagy. (D,E) The knockdown efficiency of MACC1 by shRNA were
detected by qRT-PCR and Western blot assay. (F–H) Western blot analysis was performed to detect the expression of autophagy-related genes. Data are presented
as the mean ± SD (n = 5, each group) ∗P < 0.05 vs. sh-NC group. Data are presented as the mean ± SD (n = 5, each group) ∗P < 0.05 vs. sh-NC group,
∗∗P < 0.05 vs. sh-NC group.

to the assessment of the cell viability, migration, invasion
and autophagy. As shown in Figure 6A, miR-590-3p
down-regulation increased the cell viability of GSCs, whereas
MACC1 knockdown reduced the cell viability of these cells.
MACC1 knockdown rescued the tumor-promoting effect of
miR-590-3p down-regulation on the cell viability of GSCs.
Similar to earlier results, miR-590-3p down-regulation
promoted the migration and invasion of GSCs, whereas
MACC1 knockdown inhibited the migration and invasion of

GSCs. MACC1 knockdown rescued the tumor-promoting effect
of miR-590-3p down-regulation on the migration and invasion
of GSCs (Figure 6B). In addition, miR-590-3p down-regulation
decreased the protein expression of LC3-II and Beclin-1 and
increased the protein expression of p62/SQSTM1, whereas
MACC1 knockdown increased the protein expression of
LC3-II and Beclin-1 and decreased the protein expression
of p62/SQSTM1. MACC1 knockdown rescued the tumor-
promoting effect of miR-590-3p down-regulation on the
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FIGURE 5 | Overexpression of miR-590-3p inhibited the expression of MACC1 by targeting its 3′-UTR. (A) Effect of miR-590-3p on the mRNA expression
of MACC1 in GSCs. (B) Effect of miR-590-3p on the protein expression of MACC1 in GSCs. Data are presented as the mean ± SD (n = 5, each group)
∗P < 0.05 vs. pre-NC group, #P < 0.05 vs. anti-NC group. (C) The predicted miR-590-3p binding sites in the 3′-UTR region of MACC1 (MACC1-3′-UTR-Wt1 (Wt2))
and the designed mutant sequence (MACC1-3′-UTR-Mut1 (Mut2)) were indicated. (D) Luciferase activities were significantly reduced in human embryonic kidney
(HEK) 293T cells co-transfected with MACC1-Wt1 (MACC1-Wt2) and pre-miR-590-3p, but not in in HEK 293T cells co-transfected with MACC1-Mut1
(MACC1-Mut2) and pre-miR-590-3p. Data are presented as the mean ± SD (n = 5, each group) ∗P < 0.05 vs. MACC1-Wt1 (MACC1-Wt2) + pre-NC group.

expression of autophagy related genes of GSCs (Figures 6C–E).
The above results revealed that the effect of miR-590-3p
in combination of EMAP-II with TMZ induced autophagy
inhibited malignant biological behaviors of GSCs was mediated
by MACC1.

EMAP-II in Combination with TMZ Induced
GSCs Autophagy Through
MACC1 Inhibiting PI3K/AKT/mTOR
Signaling Pathway
EMAP-II, TMZ or EMAP-II + TMZ decreased phosphorylated
PI3K, Akt, mTOR, S6 and 4EBP in GSCs compared with control
group, combination of EMAP-II with TMZ more significantly
decreased phosphorylated PI3K, Akt, mTOR, S6 and 4EBP
than either EMAP-II or TMZ alone, while total PI3K, Akt,
Mtor, S6 and 4EBP were not changed (Figures 7A–E). These
results showed that EMAP-II in combination with TMZ more
significantly inhibited PI3K/AKT/mTOR signal pathway than
either EMAP-II or TMZ alone. As shown in Figures 7F–J,
MACC1 knockdown decreased phosphorylated PI3K, Akt,
mTOR, S6 and 4EBP in GSCs, while total PI3K, Akt, mTOR,
S6 and 4EBP were not change. These results suggested that
MACC1 knockdown inhibited the PI3K/AKT/mTOR signal
pathway.

To further investigate the role of PI3K/AKT/mTOR signal
pathway in the autophagy, PI3K/AKT agonist IGF-1 was
used. As shown in Figures 7K–M, the protein expression
of LC3-II and Beclin-1 were decreased and the protein
expression of p62/SQSTM1 was increased when combined
IGF-1 with EMAP-II or TMZ. Certainly, IGF-1 could also
decreased the protein expression of LC3-II and Beclin-1 as
well as increased the protein expression of p62/SQSTM1 in

the EMAP-II + TMZ group. These above results demonstrated
that combination of EMAP-II with TMZ induced GSCs
autophagy through MACC1 inhibiting PI3K/AKT/mTOR signal
pathway.

Combination Treatment with EMAP-II, TMZ
and miR-590-3p Suppressed Tumor
Growth In Vivo
As shown in Figures 8A,B, the results showed that the tumor
sizes were smaller in the miR-590-3p group or EMAP-II +
TMZ group compared with the control group. The smallest
tumor sizes were observed in the miR-590-3p + EMAP-II
+ TMZ group. Compared with the miR-590-3p group or
EMAP-II + TMZ group, the tumor sizes were smaller in the
miR-590-3p + EMAP-II + TMZ group. These results showed
that miR-590-3p overexpression and combination of EMAP-II
with TMZ significantly suppressed tumor growth in vivo,
in addition, miR-590-3p overexpression enhanced the tumor
suppressive effect of combination treatment with EMAP-II and
TMZ.

As shown in Figure 8C, the expression level of miR-590-
3p in tumor tissues were up-regulated in miR-590-3p group,
EMAP-II + TMZ group ormiR-590-3p + EMAP-II + TMZ group
compared with the control group. Compared with the miR-
590-3p group or EMAP-II + TMZ group, the expression level
of miR-590-3p in tumor tissues were significantly up-regulated
in miR-590-3p + EMAP-II + TMZ group. As shown in
Figures 8D–F, compared with the control group, miR-590-3p,
EMAP-II + TMZ ormiR-590-3p + EMAP-II + TMZ significantly
up-regulated LC3-II and Beclin-1 protein expression and
down-regulated p62/SQSTM1 protein expression in tumor
tissues. Compared with miR-590-3p group or EMAP-II + TMZ
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FIGURE 6 | MACC1 mediated the effect of miR-590-3p in the combination treatment inhibited the malignant biological behaviors of GSCs via
inducing autophagy. (A) Cell viability was detected by CCK8 assay to evaluate the effect of miR-590-3p and MACC1. (B) Cell migration and invasion of GSCs was
measured by transwell assay to evaluate the effect of miR-590-3p and MACC1. (C–E) Western blot assay was performed to detect the expression of
autophagy-related genes to evaluate the effect of miR-590-3p and MACC1. Data are presented as the mean ± SD (n = 5, each group) ∗P < 0.05 vs.
anti-NC + sh-NC group, #P < 0.05 vs. anti-miR-590-3p + anti-NC group.

group, miR-590-3p + EMAP-II + TMZ significantly up-regulated
LC3-II and Beclin-1 protein expression and down-regulated
p62/SQSTM1 protein expression in tumor tissues. All the results
above demonstrated that miR-590-3p levels and autophagy were
associated with the tumor growth.

DISCUSSION

In this study, we demonstrated that combination of EMAP-II
with TMZ inhibited malignant biological behaviors of GSCs
by inducing autophagy. Further, miR-590-3p was up-regulated
and MACC1 was down-regulated by the combined therapy;
MiR-590-3p overexpression and MACC1 knockdown
induced GSCs autophagy; MACC1 was confirmed to be the
target of miR-590-3p and MACC1 mediated the effects of

miR-590-3p in the combined therapy. Furthermore, EMAP-II
in combination with TMZ inhibited PI3K/AKT/mTOR signal
pathway; MACC1 knockdown also inhibited PI3K/AKT/mTOR
signal pathway. The in vivo study showed that nude mice
carrying overexpressed miR-590-3p cells and treated with
EMAP-II and TMZ produced the smallest tumors. The
mechanism underlying the suppression of GSCs by EMAP-II
in combination with TMZ is schematically presented in
Figure 9.

TMZ is the first-line chemotherapeutic drug for GBM
patients, but the efficacy of using TMZ alone is limited (Santoni
et al., 2012). Accumulating evidences showed that combination
of some drugs with TMZ enhanced the antitumor capacity
of TMZ in human glioma cells or GSCs, such as metformin
(Soritau et al., 2011), demethoxycurcumin (Shi et al., 2015)
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FIGURE 7 | EMAP-II in combination with TMZ induced GSCs autophagy through MACC1 inhibiting PI3K/AKT/mTOR signaling pathway. (A–E) GSCs
were treated with EMAP-II, TMZ or EMAP-II + TMZ. Western blot assay was performed to detect the PI3K, Akt, mTOR, S6 and 4EBP signal molecules.
(F–J) MACC1 knockdown inhibited the PI3K/AKT/mTOR pathway. Western blot analysis of the PI3K/AKT/mTOR pathways regulated by MACC1 in GSCs. Data are
presented as the mean ± SD (n = 5, each group) ∗P < 0.05 vs. sh-NC group. (K–M) PI3K/Akt agonist IGF-1 partly blocked the effect of EMAP-II, TMZ or EMAP-II +
TMZ on the expression of autophagy related genes. Data are presented as the mean ± SD (n = 5, each group) ∗P < 0.05 vs. Control group, ∗∗P < 0.01 vs. Control
group, #P < 0.05 vs. EMAP-II group, ∆P < 0.05 vs. TMZ group, &P < 0.01 vs. EMAP-II + TMZ group.

and olive leaf extract (Tunca et al., 2012). EMAP-II could
suppress endothelial cell adhesion to fibronectin, induce
endothelial cell apoptosis, exert antiangiogenic effects
(Berger et al., 2000; Schwarz et al., 2005). In pancreatic
cancer, combination of EMAP-II with bortezomib has
anti-proliferative and pro-apoptotic effects (Awasthi et al.,
2010). Our previous works showed that 0.05 nM EMAP-II
significantly inhibited the cell viability of GSCs at 0.5 h
(Liu et al., 2014). In this study, our results showed that the
cell viability of GSCs was decreased by TMZ in a dose and

time-dependent manner. A previous study demonstrated
that 400 µM TMZ inhibited the cell viability of nearly
50% at 48 h for GSCs (Yu et al., 2015b). In addition,
combination of EMAP-II with TMZ inhibited the cell
viability at almost all combination doses tested. The statistical
combination index (CI) was determined for the dual therapy
to determine whether combination therapy was synergistic
(CI < 1), additive (CI = 1), or antagonistic (CI > 1). We
found that EMAP- II acted synergistically (CI < 1.0) with
TMZ to inhibit the cell viability of GSCs at almost all
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FIGURE 8 | Combination treatment with EMAP-II, TMZ and miR-590-3p suppressed tumor growth in vivo. (A) Representative images of mice and tumors
removed from the xenografted mice were shown. (B) Tumor volume was recorded every 5 days, and the tumor was excised and weighed after 45 days.
(C) qRT-PCR analysis for the expression of miR-590-3p in tumor tissues. (D–F) Western blot analysis was performed to detect the expression of autophagy-related
genes in tumor tissues. Data are presented as the mean ± SD (n = 5, each group) ∗P < 0.05 vs. Control group, ∗∗P < 0.01 vs. Control group, #P < 0.05 vs.
miR-590-3p group, ∆P < 0.05 vs. EMAP-II + TMZ group.

combination doses tested. Our results also demonstrated
that combination of EMAP-II with TMZ inhibited cell
migration and invasion towards GSCs. Thus, combination
of EMAP-II and TMZ inhibited malignant biological behaviors
of GSCs.

Autophagy can lead to either cancer cell survival or cell death,
depending on the cellular context (Carew et al., 2008; Gewirtz,
2014). Some previous reports stated that CQ and its analogs
enhance TMZ cytotoxicity in glioma by blocking autophagy
(Golden et al., 2014; Rosenfeld et al., 2014). However, according

Frontiers in Molecular Neuroscience | www.frontiersin.org 13 March 2017 | Volume 10 | Article 68

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Zhou et al. Combinaion of EMAP-II with TMZ in GSCs

FIGURE 9 | Diagrammatic presentation of the mechanism of EMAP-II
in combination with TMZ suppressed malignant biological behaviors
of GSCs via miR-590-3p/MACC1 inhibiting PI3K/AKT/mTOR signaling
pathway.

to other studies, various therapeutic drugs could enhance
autophagic cell death in glioblastomas, such as thalidomide (Gao
et al., 2009) and vitamin (Bak et al., 2016). Several previous
studies suggested that EMAP-II inhibited the cell viability of
GSCs via inducing autophagy rather than inducing apoptosis
(Ma et al., 2015; Chen et al., 2016). In addition, TMZ-induced
autophagy and apoptosis inhibited the cell viability of human
glioma cells (Chen et al., 2015; Yu et al., 2015b). Our research
results are consistent with these studies. We also found that
3-MA and CQ pretreatment significantly blocked the inhibitory
effect of EMAP-II + TMZ on the cell viability, while Z-VAD
pretreatment could not reverse the anti-proliferative effect of
EMAP-II + TMZ. In order to further define the effect of
autophagy in combination of EMAP-II and TMZ inhibited
malignant biological behaviors of GSCs, several assays were
performed. Western blot assays showed that combination of
EMAP-II with TMZ more significantly increased the protein
expression of LC3-II and Beclin-1 as well as decreased the
protein expression of p62/SQSTM1 than either EMAP-II or
TMZ alone. The immunofluorescence assay of LC3-II and
p62/SQSTM1 displayed similar results with the western blot
assays. The electron microscopy displayed that autophagic
vacuoles increasedmore obviously in the combination treatment.
Our results suggested that the combination of EMAP-II with
TMZ induced GSCs autophagy and thereby inhibited malignant
biological behaviors of GSCs.

There was ample evidence that miRNAs are associated with
cell proliferation, migration, invasion and autophagy (Ambros,
2004; Gammell, 2007; Kim Y. et al., 2015). MiRNAs are also
involved in the antineoplastic process of chemotherapeutic drugs
in various types of cancer. MiR-15a/16 induces autophagy by
mTORC2 enhances the chemosensitivity of camptothecin in
hela cells (Huang et al., 2015b). Overexpression of miR-193b
promotes autophagy and non-apoptotic cell death and thereby

significantly impedes the ability of esophageal cancer cells to
recover following 5-fluorouracil (5-FU) treatment (Nyhan et al.,
2016). MiR-590-3p functions as a suppressor of GBM and
inhibits cell migration, invasion and epithelial-mesenchymal
transition by targeting ZEB1 and ZEB2 in human GBM
cells (Pang et al., 2015). Our present data indicated that
combination of EMAP-II with TMZmore significantly increased
the expression level of miR-590-3p than single drug, respectively.
To verify the exact mechanism of miR-590-3p was involved
in the combined therapy, the autophagy related genes were
detected by western blot assays. We found that miR-590-3p
overexpression up-regulated the protein expression levels of
LC3-II and Beclin-1 and down-regulated the protein expression
level of p62/SQSTM1. We might draw a conclusion that
combination of EMAP-II with TMZ induced autophagy via
up-regulating miR-590-3p.

MACC1 has been discovered to be related to the cell
proliferation, invasion and metastasis in various tumors (Stein
et al., 2009; Yao et al., 2015a). MACC1 inhibits the cell
apoptosis by targeting the HGF/c-MET/PI3K/AKT signaling
pathway in hepatocellular carcinoma (Yao et al., 2015a). MiR-
338-3p suppresses epithelial-mesenchymal transition in gastric
cancer cells by targetingMACC1/Met/Akt pathway (Huang et al.,
2015a). MACC1 promoted theWarburg effect via the PI3K/AKT
signaling pathway, which enhanced the resistance to trastuzumab
in gastric cancer (Liu et al., 2016). Our results showed that
MACC1 played an oncogenic role in GBM and GSCs. Previous
studies verified that silencing of MACC1 enhance the apoptosis
and growth inhibitory rates of U251 glioma cells, and thereby
increase their sensitivity to DDP chemotherapy (Shang et al.,
2015). In this study, we found that combination of EMAP-II
with TMZmore significantly decreased the protein expression of
MACC1 than either EMAP-II or TMZ alone. To verify the exact
mechanism of MACC1 was involved in the combined therapy,
the autophagy related genes were detected by western blot assays.
We found that MACC1 knockdown up-regulated the protein
expression levels of LC3-II and Beclin-1 and down-regulated
the protein expression level of p62/SQSTM1. MACC1 acted as
a target gene for miRNAs, and it has been reported that the
expression of MACC1 was down-regulated by miR-143 inhibited
the cell migration and invasion in colorectal cancer (Zhang et al.,
2012) and MACC1 was down-regulated by miR-200a inhibited
the hepatocellular carcinoma cell proliferation and migration
(Feng et al., 2015). In our study, miR-590-3p overexpression
decreased the expression of MACC1, in addition, MACC1 was
identified as a putative target of miR-590-3p. Based on these
results, we wondered combination of EMAP-II with TMZ
inhibited malignant biological behaviors of GSCs via miR-590-
3p inducing autophagy was partially dependent on the regulation
of MACC1. Several studies were performed to support this
hypothesis. We found that MACC1 down-regulation rescued
the tumor-promoting effect of miR-590-3p low-expression on
the cell viability, migration, invasion and autophagy of GSCs.
Thus, miR-590-3p up-regulation was significant in the effect
of EMAP-II in combination with TMZ induced autophagy
inhibited malignant biological behaviors of GSCs, which was
partly through the inhibition of MACC1 expression.
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PI3K/AKT/mTOR signaling pathway plays important roles in
regulating cell proliferation, migration, invasion and autophagy
(Heras-Sandoval et al., 2014; Yousef et al., 2016). Themammalian
target of rapamycin (mTOR) is a key regulator of the
initiation of autophagy (Maiese et al., 2013; Roy et al., 2014).
mTOR is activated by the PI3K/AKT pathway and regulates
ribosomal biogenesis and protein synthesis by phosphorylating
the downstream effectors, S6 and 4EBP (Misra and Pizzo,
2012). EMAP-II induces autophagy through PI3K/AKT/mTOR
signaling pathway inhibits malignant biological behaviors of
human GBM cells and GSCs (Ma et al., 2015). It has been
proposed that PI3K/AKT/mTOR pathway could play the dual
roles of responding to TMZ treatment for GBM. On one hand,
Lenz G and colleagues found that acute treatment with TMZ
induces the sustained inhibition of Akt-mTOR, which produced
a transient induction of autophagy, leading to cell resistance
of the therapy (Filippi-Chiela et al., 2015). On the other hand,
Yu et al.’s (2015a) group demonstrated that TMZ inhibits the
cell proliferation and promotes apoptosis through inhibiting the
PI3K/AKT/mTOR signaling pathway, and the dual PI3K-mTOR
inhibitor NVP-BEZ235 enhances the cytotoxicity of TMZ for
GBM. In the study, we found that combination of EMAP-II
with TMZ more significantly decreased phosphorylated PI3K,
Akt, mTOR, S6 and 4EBP than either EMAP-II or TMZ alone.
In addition, MACC1 knockdown also decreased phosphorylated
PI3K, Akt, mTOR, S6 and 4EBP. PI3K/Akt agonist IGF-1 partly
blocked the effect of combination treatment on the expression
of autophagy related genes. Our previous results showed that
combination of EMAP-II with TMZmore significantly decreased
the protein expression of MACC1 and MACC1 knockdown
induced GSCs autophagy. Therefore, combination of EMAP-II
with TMZ induced GSCs autophagy through MACC1 inhibited
PI3K/AKT/mTOR signaling pathway.

A previous report established that tumors derived from
GSCs were significantly suppressed in EMAP-II-treated nude
mice (Liu et al., 2014), and not surprisingly, TMZ could also
suppress tumor growth in vivo xenograft models (Kim S.-S. et al.,
2015). Our vivo tumor xenografts study demonstrated that the
combination of EMAP-II with TMZ significantly suppressed
tumor growth. Overexpression of miR-590-3p also significantly
suppressed tumor growth. In addition, the smallest tumor sizes
were observed in the miR-590-3p + EMAP-II + TMZ group.

Moreover, in order to clarify the mechanism of the reduction
in tumor growth by the combination therapy, qRT-PCR and
western blots were used. We found that the expression level
of miR-590-3p in tumor tissues were up-regulated in miR-590-
3p + EMAP-II + TMZ group compared with the miR-590-
3p group or EMAP-II + TMZ group, besides, miR-590-3p +
EMAP-II + TMZ significantly up-regulated LC3-II and Beclin-1
protein expression and down-regulated p62/SQSTM1 protein
expression in tumor tissues compared with the miR-590-
3p group or EMAP-II + TMZ group. These results showed
that miR-590-3p levels and autophagy are associated with the
tumor size.

In conclusion, our results demonstrated that miR-590-3p
was up-regulated by the combination of EMAP-II with TMZ
inhibited the expression of MACC1 induced GSCs autophagy
through the inhibition of PI3K/AKT/mTOR pathway, and
thereby inhibited malignant biological behaviors of GSCs,
providing an attractive new therapeutic approach for human
GSCs.
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