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Chaperones have long been recognized to play well defined functions such as to:
(i) assist protein folding and promote formation and maintenance of multisubunit
complexes; (ii) mediate protein degradation; (iii) inhibit protein aggregation; and
(iv) promote disassembly of undesired aberrant protein aggregates. In addition to these
well-established functions, it is increasingly clear that chaperones can also interact
with aberrant protein aggregates, such as pre-fibrillar oligomers and fibrils, and inhibit
their toxicity commonly associated with neurodegenerative diseases without promoting
their disassembly. In particular, the evidence collected so far in different labs, exploiting
different experimental approaches and using different chaperones and client aggregated
proteins, indicates the existence of two distinct mechanisms of action mediated by the
chaperones to neutralize the toxicity of aberrant proteins oligomers: (i) direct binding of
the chaperones to the hydrophobic patches exposed on the oligomer/fibril surface, with
resulting shielding or masking of the moieties responsible for the aberrant interactions
with cellular targets; (ii) chaperone-mediated conversion of aberrant protein aggregates
into large and more innocuous species, resulting in a decrease of their surface-to-volume
ratio and diffusibility and in deposits more easily manageable by clearance mechanisms,
such as autophagy. In this review article we will describe the in vitro and in vivo evidence
supporting both mechanisms and how this results in a suppression of the detrimental
effects caused by protein misfolded aggregates.

Keywords: proteostasis, protein misfolding diseases, clustering of aggregates, oligomer toxicity, aggresomes,
inclusion bodies, amyloid fibrils, neurodegeneration

INTRODUCTION

The various proteins that constitute the human proteome are functional if they fold correctly,
remain soluble, can be trafficked properly, form functional complexes and perform their task
correctly. These abilities rely on the existence of a proteostasis network and on its proper
running. The proteostasis network is constituted by the translational machinery, a large body
of molecular chaperones and co-chaperones, the autophagy/lysosome system (ALS) and the
ubiquitin/proteasome system (UPS). Molecular chaperones and co-chaperones can be grouped in
distinct families, including ribosome-binding chaperones, Hsp40s, Hsp70s, chaperonins, Hsp90s,
Hsp100, prefoldins, small heat shock proteins (sHsps) and TPR-domain containing co-chaperones.
It has been estimated that this large body of proteins amounts to ca. 330 distinct polypeptide chains
in the human proteome (Brehme et al., 2014).

Molecular chaperones have long been recognized to: (i) assist protein folding from unfolded
or partially folded states and promote formation and maintenance of multisubunit complexes;
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(ii) mediate protein degradation via the UPS or ALS systems;
(iii) inhibit protein aggregation by binding to fully or partially
unfolded states; and (iv) promote disassembly of undesired
aberrant protein aggregates (Kaushik and Cuervo, 2012;
Labbadia and Morimoto, 2015; Mogk et al., 2015; Balchin et al.,
2016). Although this last function has long been known to involve
only chaperones of the ClpB and Hsp104 families present in
bacteria, protozoa, plants and fungi (Mogk et al., 2015), it has
recently been discovered in higher eukaryotes as well (Nillegoda
and Bukau, 2015; Nillegoda et al., 2015).

However, in addition to these four well established functions,
evidence is mounting that molecular chaperones can also interact
with protein aggregates (macromolecular species resulting from
the aberrant self-assembly of proteins) and inhibit their toxicity
without promoting their disassembly. In this review we will
show the evidence in this direction, showing how molecular
chaperones can interact with both protein oligomers and amyloid
fibrils, that represent the small species forming at the beginning
of the aggregation process and the fibrillar end-product of this
phenomenon, respectively. We will describe the mechanism
through which molecular chaperones suppress the detrimental
effects of such aggregates in the absence of their disaggregation
or clearance.

CHAPERONES BIND TO PROTEIN
OLIGOMERS

An increasing number of reports has shown the ability of
molecular chaperones to interact with oligomeric species that
form early during the aggregation of proteins. The extracellular
chaperone clusterin has been observed, through Thioflavin T
(ThT) kinetics and dot blot assays, to bind to prefibrillar species
formed by six different amyloidogenic proteins or peptides at a
substoichiometric 1:10 molar ratio (Yerbury et al., 2007). Using
transmission electron microscopy (TEM), ThT kinetics and size
exclusion chromatography (SEC), Hsp104 was found to bind to
Aβ42 oligomers and protofibrils, but also to small fibrils, and
abolish their ability to convert into amyloid fibrils through their
further addition to preformed fibrils, as well as to abrogate their
capacity to seed the addition of monomers to the fibril surface,
up to a Hsp104:Aβ42 stoichiometric ratio of 1:1000 (Arimon
et al., 2008). By means of single-molecule fluorescence methods,
clusterin (Narayan et al., 2011) and the sHsp αB-crystallin or
HSPB5 (Narayan et al., 2012) were observed to form long-
lived, stable complexes with Aβ40 oligomers at equimolar ratios.
Such sequestration was found also in the case of αB-crystallin
and SOD1 aggregates, using ThT kinetics and SEC coupled
with SDS-PAGE, with αB-crystallin:SOD1 molar ratios of
1:100 and 1:1, respectively (Yerbury et al., 2013). A quantitative
kinetic analysis and immunochemistry studies revealed that the
chaperone DNAJB6, from the Hsp40 family, preferentially binds
to oligomeric species of Aβ42 at low substoichiometric molar
ratios (up to 1:200), preventing their growth into longer fibrils
as well as the formation of new fibril nuclei (Månsson et al.,
2014).

This ability of chaperones to bind to protein oligomers is
not just aimed at interfering with the process of amyloid fibril

formation, but has also the important effect to inhibit directly
the toxicity of these aberrant species. In fact, oligomers are
characterized by physicochemical properties that make them
harmful to cells (Campioni et al., 2010; Olzscha et al., 2011;
Bemporad and Chiti, 2012). Among the structural determinants
of toxicity identified so far, the small size and the high extent of
hydrophobic surface of the oligomers have been recognized to
play an important role in causing cellular dysfunction (Bolognesi
et al., 2010; Cizas et al., 2010; Mannini et al., 2014). It is just on
these structural determinants that molecular chaperones seem
to act with the goal of counteracting the damages mediated
by the oligomers: in fact chaperones increase the size of the
oligomers and mask hydrophobic patches exposed on their
surface. Such evidence will be described in the next two
sections.

CHAPERONES INDUCE CLUSTERING OF
THE OLIGOMERS AND INHIBIT THEIR
TOXICITY

In an early report, the ability of clusterin to inhibit the toxicity
of preformed oligomers of Aβ42 and of the SH3 domain of
phosphatidylinositol 3-kinase (PI3-SH3) was observed on human
neuroblastoma SH-SY5Y cells at 1:10 clusterin:substrate ratio
(Yerbury et al., 2007). Although the mechanism of action of
the chaperone against the aggregates was not investigated in
detail, the authors reported a sedimentation assay in which the
formation of high molecular weight Aβ42/clusterin complexes
were observed (Yerbury et al., 2007).

Later on, Hsp27 (HSPB1) was found to increase the size
of preformed Aβ42 oligomers, making them unable to exert
their toxicity on N2a mouse neuroblastoma cell cultures (Ojha
et al., 2011). In particular, atomic force microscopy (AFM),
TEM and light scattering showed that the incubation of a
substoichiometric concentration of Hsp27 with preformed Aβ42
oligomers (1:5) in vitro generates larger aggregates. In these
larger species Hsp27 co-precipitated with the Aβ42 oligomers,
without affecting significantly the structure of the oligomers,
as shown by unaltered ThT binding and far-UV circular
dichroism (CD) spectra. Interestingly, even the ability to bind
to 8-anilinonaphthalene-1-sulfonic acid (ANS) was unalterd,
indicating that the extent of the hydrophobic surface exposure
does not change after the incubation with the chaperone.

In another study, five different chaperones, namely,
αB-crystallin, Hsp70 (HSPA1A), clusterin, α2-macroglobulin
and haptoglobin were able to suppress the toxicity of oligomers
formed by three different proteins, the Aβ42 peptide, the
islet amyloid polypeptide (IAPP), and the model protein
HypF-N at a substoichiometric concentration (up to 1:1000)
on SH-SY5Y cells (Mannini et al., 2012). Several methods of
investigation applied to the HypF-N system, such as AFM,
confocal microscopy coupled to immunostaining, centrifugation
assays and intrinsic fluorescence, showed that large clusters of
HypF-N oligomers are formed following the incubation with
substoichiometric concentrations of chaperones. In the resulting
large aggregates, chaperone molecules are trapped inside the
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large aggregates. Again, the chaperone-mediated conversion
of the small oligomers into bigger nontoxic aggregates occurs
without a remodeling of the structure of the oligomers, as
assessed by Fourier-transform infrared spectroscopy and pyrene
labeling (Mannini et al., 2012).

Recently, it was found that high amounts of insoluble
aggregates containing chaperones, in particular the sHsps,
accumulate in the long-lived daf-2 mutants of the nematode
Caenorhabditis elegans during aging, and that such amounts
are higher compared to the wild-type controls that had a
normal lifespan (Walther et al., 2015). It was suggested that
the chaperones neutralize aberrant, potentially toxic, proteins
and soluble oligomers by driving them into insoluble large
aggregates and that this strategy enables to slow down the
decline of the proteostasis network during normal aging and
extend the lifespan of the mutant nematodes (Walther et al.,
2015).

A similar mechanism was observed on various cell culture
systems, such as CHO, N2a, NIH-3T3, PC12 and MEF,
treated with NT219, an inhibitor of the insulin/IGF-1 signaling
pathway (Moll et al., 2016). NT219 was found to enhance
the aggregation of misfolded prion proteins and promote its
deposition in intracellular inclusions such as the aggresomes.
Although NT219 was also found to increase the concentrations
of certain molecular chaperones, it also reduces proteasome
activity and impairs autophagy, indicating that conversion of
proteins into large aggresomes is a protective mechanism even
in the absence of their immediate clearance (Moll et al.,
2016).

CHAPERONES SHIELD THE
HYDROPHOBIC MOIETIES OF THE
OLIGOMERS AND INHIBIT THEIR
TOXICITY

The chaperone-induced clustering of aberrant protein oligomers
is not the only mechanism through which these important
protein molecules protect against oligomer toxicity. Evidence
has been shown, using surface plasmon resonance (SPR),
on the ability of clusterin to bind to toxic Aβ42 oligomers
at substoichiometric ratio (1:1000) and shield their reactive
hydrophobic patches on their surface (Beeg et al., 2016).
The pre-incubation of these aggregates with clusterin also
reverted their ability to reduce the pharyngeal mobility in
C. elegans nematodes (Beeg et al., 2016). In another study,
Hsp70 was modified to be released in the extracellular space
in order to address its protective activity against Aβ42 in
Drosophila melanogaster models (Fernandez-Funez et al., 2016).
The secreted form, called secHsp70, suppressed Aβ42 toxicity,
as deduced by decreased eye degeneration, reduced neuronal
death, structural integrity of adult neurons, suppression of
locomotor neuron dysfunction, and lifespan extension. An
assay based on luciferase-derived luminescence showed that
secHsp70 stabilizes Aβ42 oligomeric species and masks their
neurotoxic epitopes, thus promoting the accumulation of
nontoxic aggregates (Fernandez-Funez et al., 2016). This activity

was carried out in the absence of ATP, indicating therefore
that secHsp70 exploits its holdase function to interact with the
oligomers in the absence of detectable clustering (Fernandez-
Funez et al., 2016). It is interesting to note that other Hsps
that were found able to interact with aggregates, such as
Hsp104 (Arimon et al., 2008; Castellano et al., 2015), Hsp70
(Mannini et al., 2012) and Ssa1p (Xu L. et al., 2013), exert
the capacity to bind to the aggregates without consumption of
ATP.

Stabilization of oligomeric Aβ42 has also been observed in
the presence of human prefoldin (hPFD) at substoichiometric
molar ratio (up to 1:500) using western blot and TEM. Viability
assays on cultured PC12 cells or primary cortical neurons
from embryonic mice show that the Aβ42/hPFD complexes
are less toxic than complexes of similar size obtained by
incubating Aβ42 oligomers with archaeal prefoldin (PhPFD).
The different biological activity was attributed to the higher
hydrophobic exposure and β-sheet content of Aβ42/PhPFD
complexes, as assessed by ANS and ThT binding (Sörgjerd et al.,
2013).

These observations highlight the existence of different
mechanisms of action mediated by the chaperones against the
toxicity of the oligomers, that is ‘‘binding followed by clustering’’
and ‘‘binding causing hydrophobic shielding in the absence
of clustering’’. Both mechanisms have been indeed observed
on a recent report in which the effect of the chaperones
αB-crystallin and clusterin, and an engineered monomeric
variant of transthyretin known to have a chaperone-like activity,
was investigated over a wide range of concentrations, both super-
and sub-stoichiometric relative to HypF-N toxic oligomers,
ranging from 4:1 to 1:16 (Cappelli et al., 2016). AFM images
and light scattering measurements showed that the chaperones
increase the size of the aggregates to an extent that correlates
with chaperone concentration, ranging from null to remarkable
increase. Notably, the protective effect on N2a cells was observed
at all chaperone concentrations, irrespective of the size increase.
Measurements of ANS binding showed that in the large
clusters the overall exposure of the hydrophobic surface does
not change, whereas when the clustering promoted by the
chaperones is negligible the ANS binding is reduced, indicating
that the hydrophobicity on the surface is shielded by the
chaperones.

CHAPERONES BIND TO AMYLOID FIBRILS

Prefibrillar oligomers are not the only molecular target of
molecular chaperones. An increasing body of reports also
describe the ability of these guardian proteins to bind to mature
fibrils. In this regard, the sHsp αB-crystallin has been extensively
studied because it colocalizes with Aβ plaques (Shinohara et al.,
1993) and Lewy bodies (Wakabayashi et al., 2007), that are
the neuropathological hallmarks of Alzheimer’s disease and
Parkinson’s disease, respectively. Indeed, this chaperone has
been found to bind to fibrils from Aβ40 (Raman et al., 2005),
Aβ42 and the Arctic variant E22G Aβ42 (Shammas et al., 2011),
and α-synuclein (Waudby et al., 2010). The binding prevents
fibril growth of Aβ40, as revealed by ThT binding assays,
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total reflection fluorescence microscopy and CD measurements
(Raman et al., 2005). A strong inhibition of fibril growth
was also demostrated for Aβ42 (Shammas et al., 2011) and
α-synuclein (Waudby et al., 2010), by measurements of seeded
fibril elongation kinetics, both in solution and on the surface
of a quartz crystal microbalance (QCM). Immunoelectron
microscopy images showed that αB-crystallin binds along the
entire lenght and ends of the Aβ42 (Shammas et al., 2011) and
α-synuclein fibrils (Waudby et al., 2010). Although cell toxicity
measurements were not reported directly, it was hypothesized
that the binding of αB-crystallin to fibrils may reduce their
toxicity by shielding the exposed hydrophobic residues and by
preventing the generation of new oligomers that occurs on
the fibril surface due to secondary nucleation (Waudby et al.,
2010).

The ability of αB-crystallin to bind to fibrillar species and
inhibit their growth has also been observed with many other
non-neuronal amyloid fibril systems, such as insulin fibrils
at low pH (Knowles et al., 2007), β2-microglobulin (β2-m)
fibrils at low pH (Raman et al., 2005) and apolipoprotein
C-II (apoC-II) fibrils at neutral pH (Binger et al., 2013).
Interestingly, by exploiting the property of β2-m fibrils to
depolymerize when shifted to neutral pH, it was found that
αB-crystallin retards fibril depolymerization (Raman et al., 2005).
A chaperone-induced stabilization effect was also observed in
the case of apoC-II fibrils, when their fragmentation promoted
by dilution was inhibited in the presence of the chaperone
(Binger et al., 2013). In the same report, αB-crystallin was also
found, using TEM images and sedimentation assays, to induce
the formation of large fibrillar tangles. Although the authors
did not provide direct experimental evidence, they argued
that these stabilized clumped inclusions represent a protective
strategy because they are unable to release cytotoxic oligomers
and to promote events of secondary nucleation (Binger et al.,
2013).

A direct proof of the beneficial effect of the binding of
chaperones to fibrils was obtained for the human Brichos domain
(Cohen et al., 2015). This chaperone binds to the surface of
Aβ42 fibrils, where the formation of oligomeric intermediates
is catalyzed, and therefore minimizes the formation of toxic
species, as demonstrated by several techniques, such as ThT
kinetic analysis, TEM coupled with immunogold labeling, SPR
and SEC in cojunction with immunoblot. Electrophysiology
experiments in living mouse brain tissue, as well as cell viability
measurements based on the MTS assay and the capsase-3 activity
quantification on SH-SY5Y cultured cell lines, verified that
this mechanism effectively suppresses the oligomer-mediated
damage.

THE ABILITY OF OTHER
NON-CHAPERONE PROTEINS
TO BIND TO PROTEIN AGGREGATES
AND INHIBIT THEIR TOXICITY

Other proteins that are generally not classified as chaperones
have been recognized to bind to aggregates and suppress their

toxic effects, thus acting as officially recognized molecular
chaperones. Soluble collagen VI was found to rescue mice
neocortical/hippocampal neurons from the toxicity mediated
by Aβ42 oligomers by altering the interaction of the oligomers
with neurons (Cheng et al., 2009). Indeed, immunostained
confocal microscopy images showed that collagen VI prevents
the association of Aβ42 oligomers with the surface of cultured
neurons andwas found to colocalize with Aβ42 into large deposits
in the extracellular space, with the latter finding being confirmed
by AFM. This mechanism of sequestration was found to result
in a lower amount of soluble toxic oligomers in the extracellular
space, with lack of binding to the neuron surface and protection
from the damage (Cheng et al., 2009).

This protective strategy has also been observed, by means
of immunolabeled confocal microscopy images, for the
complement protein C1q, shown to prevent the association
of fibrillar Aβ42 to cultured mouse primary cortical neurons and
to increase the size of Aβ42 oligomeric species (Benoit et al.,
2013). In particular, the accumulation of the oligomers into large
deposits in the extracellular space impedes their internalization
in the neurons, as demonstrated by the lower colocalization
between the oligomers with a lysosomial marker in samples
treated with C1q (Benoit et al., 2013).

Interesting is the case of transthyretin, which has been
recently found to possess a generic ability to deal with protein
misfolded oligomers (Li et al., 2011, 2013; Cascella et al.,
2013). When pre-incubated with two different oligomeric
species formed by the Aβ42 peptide and the HypF-N protein,
human tetrameric transthyretin (hTTR) and its engineered
monomeric variant (M-TTR) effectively suppress their toxicity
on SH-SY5Y cell cultures, again promoting the clusterization
of the oligomers into larger species, as shown by AFM
and immunostained confocal microscopy, in the absence of
their structural reorganization, as shown by ThT fluorescence
and the patterns of the pyrene spectra (Cascella et al.,
2013).

The maltose binding protein (MBP) from Escherichia coli
has been shown to induce the formation of bigger clusters of
preformed Aβ42 oligomers, visible in TEM images, which have
a reduced perniciouness to SH-SY5Y cell cultures (Sharoar et al.,
2013). These assamblies were found to display a lower level of
ThT binding and β-sheet content in the CD spectra, indicating
in this case a change in the secondary structure induced by
MBP. Finally, the protein αs1-casein from bovine milk was found
to inhibit fibril generation of Aβ40 by redirecting the process
towards the formation of amorphous aggregates (Carrotta et al.,
2012). AFM images and data obtained with CD spectroscopy
and ThT binding assays showed that αs1-casein affects the
formation of the oligomers and the growth of the protofibrils.
The aggregates formed in its presence have a lower content in
fibrillar structure and a large globular appearance (Carrotta et al.,
2012).

Following all this experimental evidence it is clear that many
proteins cooperate with molecular chaperones in defending the
cells from the insults caused by aberrant protein oligomers and
that a widespread proteostasis control exists, with a multiplicity
of guardians in vivo.
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FIGURE 1 | Mechanisms used by molecular chaperones to maintain proteins in their soluble states and reduce the toxicity of protein aggregates.
Chaperones assist protein folding, promote formation and maintenance of multisubunit complexes, mediate protein degradation, inhibit protein aggregation and
promote disassembly of undesired protein aggregates. In addition, several strategies are employed by molecular chaperones to reduce the toxicity of protein
aggregates: they act on small soluble oligomers by shielding their hydrophobic patches or by sequestering them into larger aggregates; they also promote the
clustering of the fibrils, inhibit their elongation, the generation of oligomers through secondary nucleation occurring on the fibril surface, their fragmentation/oligomer
release, and mask the reactive hydrophobic residues exposed on the fibril surface.
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ASSEMBLY OF PROTEIN OLIGOMERS
AND FIBRILS INTO LARGE AGGREGATES
IN VIVO

The neutralization of protein misfolded oligomers and fibrils
following their binding to molecular chaperones and subsequent
clustering into larger aggregates observed in vitro has also been
found in vivo. It has been shown that in all living organisms, from
bacteria to high eukaryotes, the aggregates formed intracellularly
are assembled together in one or a limited number of inclusions
(Villaverde and Carrió, 2003; Hyttinen et al., 2014; Miller et al.,
2015), which are termed aggresomes in mammalian cells and
are in close proximity to the centrosome (Johnston et al., 1998;
Hyttinen et al., 2014).

The formation of the aggresome is thought to be a protective
process able to sequester harmful aggregates and to act
as a storage center for eventual degadation via authophagy
(Villaverde and Carrió, 2003; Hyttinen et al., 2014; Miller
et al., 2015). The assembly of small aggregates into the large
aggresome is not mediated by a single chaperone, as observed in
simplified experiments in vitro, but is a finely regulated process
mediated by a complex machinery: misfolded aggregates are
polyubiquitinated and associate with the microtbule-associated
protein dynein, which transports them to the microtubule
organizing center (MTOC) to merge them into the growing
aggresome (Hyttinen et al., 2014). The association of the
polyubiquitinated aggregate to the microtubule/dynein complex
is mediated by chaperones of the Hsp70 family, the Hsp70
co-chaperone Bcl-2-associated athanogene 3 (BAG-3) and the
protein 14-3-3 which has binding sites for both BAG-3 and
dynein (Xu Z. et al., 2013; Jia et al., 2014). It can also be mediated
by histone deacetylase 6 (HDAC6), which has binding sites for
both ubiquitin and dynein (Kawaguchi et al., 2003; Ouyang
et al., 2012). Importantly, however, the outcome is similar to
that observed in vitro, that is neutralization of diffusible and
potentially harmful oligomers into an innocuous and easily
manageable large aggregate, which will later be degraded via
autophagy.

Formation of large inclusion bodies has also been widely
studied in yeasts, where three distinct inclusion bodies have been
observed, namely the cytosolic quality control bodies (Q-bodies
or cytoQ), the intranuclear quality control compartment (INQ,
previously termed JUNQ) and the insoluble protein deposit
(iPOD) forming close to the vacuole (Miller et al., 2015).
Although the molecular mechanisms underlying formation of
such inclusions are still largely unclear, it has been shown that

cytoQ and INQ form from the fusion of smaller aggregates and
that their formation is mediated by chaperones such as the small
heat shock protein Hsp42 and the heat shock protein Btn2,
respectively (Miller et al., 2015).

All the results that have shown the ability of molecular
chaperones to interact with protein oligomers and neutralize
their deleterious effects have mainly been obtained in cultured
cell models. As described above, there is evidence that chaperones
also induce formation of large aggregates in vivo, but the
molecular mechanism by which this occurs and how such a
complex tissue as the human brain benefits from this possibly
protective process awaits specific experimental studies.

CONCLUSIONS

Overall, all the experimental evidence collected so far from both
in vitro and in vivo studies indicate that chaperones do not just
maintain proteins in their soluble native states, as thought until
5 years ago, but also directly bind to protein oligomers and fibrils
and neutralize their deleterious effects. This may occur through:
(i) the direct binding to the hydrophobic patches exposed on the
oligomer/fibril surface, which are responsible for the aberrant
interactions with a number of targets in the cell and on the
cell membrane; or (ii) their conversion into large and more
innocuous species, which appear to minimize their surface-to-
volume ratio, their diffusibility and to be more easily manageable
by clearance mechanisms, such as autophagy. A schematic
representation of the mechanisms used by molecurar chaperones
tomaintain protein homeostasis is shown in Figure 1. In the light
of the fact that the formation of large aggregates in the cells has a
protective role, it is conceivable that the large size and spatially
circumscribed nature of the histopathological signatures of
various neurodegenerative diseases, such as the amyloid plaques
and neurofibrillarly tangles in Alzheimer’s diseases, the Lewy
bodies in Parkinson’s disease, the round and skein inclusions in
amyotrophic lateral sclerosis, represent an extrema ratio of the
cells to limit the damages of these undesired oligomers, the choice
by the cell of the lesser of two evils: the small reactive oligomers
and the large inert deposits, that become unable to be cleared
with aging or disease progression.
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