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Cells regularly synthesize new proteins to replace old or damaged proteins. Deposition of
various aberrant proteins in specific brain regions leads to neurodegeneration and aging.
The cellular protein quality control system develop various defense mechanisms against
the accumulation of misfolded and aggregated proteins. The mechanisms underlying
the selective recognition of specific crucial protein or misfolded proteins are majorly
governed by quality control E3 ubiquitin ligases mediated through ubiquitin-proteasome
system. Few known E3 ubiquitin ligases have shown prominent neurodevelopmental
functions, but their interactions with different developmental proteins play critical roles in
neurodevelopmental disorders. Several questions are yet to be understood properly.
How E3 ubiquitin ligases determine the specificity and regulate degradation of a
particular substrate involved in neuronal proliferation and differentiation is certainly
the one, which needs detailed investigations. Another important question is how
neurodevelopmental E3 ubiquitin ligases specifically differentiate between their versatile
range of substrates and timing of their functional modulations during different phases of
development. The premise of this article is to understand how few E3 ubiquitin ligases
sense major molecular events, which are crucial for human brain development from its
early embryonic stages to throughout adolescence period. A better understanding of
these few E3 ubiquitin ligases and their interactions with other potential proteins will
provide invaluable insight into disease mechanisms to approach toward therapeutic
interventions.
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INTRODUCTION

Development of brain is a long, self-oriented, tightly regulated, complex molecular process
governed by various crucial genes, linked with cell proliferation and differentiation (Gilbert et al.,
2005). Previous findings have revealed the role of neural stem cells and several other genes
in different neurobiological stages of brain development, such as differentiation of the neural
progenitor cells, neural tube formation, neural patterning, neurogenesis to neuronal migration
and neuronal myelination (Stiles and Jernigan, 2010; Gage and Temple, 2013). But, how these
genes and their relevant end product proteins are stringently regulated under the entire span of
neurodevelopment is not well understood. Previous studies suggest that E3 ubiquitin ligases play
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a pivotal role in different neurodevelopmental stages (Huang,
2010; Stegmuller and Bonni, 2010). Several other genes
share and regulate the overall burden of neurogenesis and
brain development (Preuss, 2012). Mutations or genetic
disturbances in these genes generally affect the cognition and
behavior, which may also represent the functional loss of
crucial cellular processes, such as, synaptic functions, protein
translation, cellular proliferation and differentiation (Ernst,
2016). Continuous cellular and molecular deficits of these
neurobiological mechanisms are noticeable, which may result in
several neurodevelopmental disorders (Sahin and Sur, 2015).

Eukaryotic cell evolution is one of the greatest landmarks in
the history of life, marking the formation of hyper-structures and
ultra-specialized cellular systems, which are probably developed
from the earlier simpler forms of organisms, i.e., prokaryotes
(Norris and Root-Bernstein, 2009; Archibald, 2015). These
cells perform a variety of cellular tasks with utmost accuracy;
and while doing so, cells need a large number of proteins
with varying shapes, sizes, subcellular locations, and functions
(Zimmerberg and Kozlov, 2006; Ananthakrishnan and Ehrlicher,
2007). Although cells contain around 20,000 different kinds
of protein-coding genes, they still produce and retain only a
set of proteins at a time, from all the available sequences, in
accordance with the requirements of the cells (Kim et al., 2014;
Wilhelm et al., 2014). Furthermore, cells need a tight regulation of
synthesis and degradation of proteins, without which successful
execution of cellular functions is not possible (Gallastegui and
Groll, 2010). Cells comprise a subset of approximately 1400
specialized proteins in their repertoire, which is essentially
required to achieve and maintain a functional state of its
proteome (Balchin et al., 2016). A large number of chaperones
and their cofactors assist newly synthesized linear polypeptide
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Hsc70-interacting protein; CNTNAP2, contactin-associated protein-like 2; CRL,
cullin-RING like ubiquitin ligases; DDB1, DNA damage-binding protein 1; DISC1,
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schizophrenia; SHANK3, SH3 and ankyrin domain-containing protein 3; SK2,
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chains in attaining their functional three-dimensional shapes
by intercepting unfruitful inter-domain interactions and protect
them against various kinds of cytotoxic stresses, in order
to prevent unwanted misfolding events inside the crowded
cytoplasmic milieu (Ellis, 1987; Hartl and Hayer-Hartl, 2009;
Hartl et al., 2011). Defying such kind of tight control, a subset of
proteins still remains structurally disordered in the cell, and are
further taken care by molecular chaperones (Walter and Buchner,
2002; Dunker et al., 2008).

Age-related changes and continuous stresses cause a
significant decline in efficiency of molecular chaperones, which
may result in accumulation of proteinaceous aggregates inside
the cells (Tyedmers et al., 2010). Such conditions may result in
progression of various types of cancers and neurodegenerative
diseases (Morimoto, 2008; Kim et al., 2013). To avoid such
unwanted deleterious changes, chaperones may also opt to
degrade accumulated toxic proteinaceous burden of the cell,
in concerted mechanisms, carried out by cellular proteolytic
systems, viz., autophagy and UPS (Arndt et al., 2007; Hartl et al.,
2011). Protein degradation machinery of the cell facilitates the
degradation of cellular proteins, which have greatly varying
half-lives, ranging from few minutes to several hours (Bachmair
et al., 1986; Belle et al., 2006; Schwartz and Ciechanover, 2009).
Both of these pathways recognize small ubiquitin molecules
attached to cellular proteins (the process is called ubiquitylation),
as the tags of death, and initiate the degradation pathways.
Ubiquitin is a very small protein of 76 amino acids in length, and
approximately 8.5 kDa of molecular weight (Ciehanover et al.,
1978; Glickman and Ciechanover, 2002; Ciechanover, 2005).

Ubiquitylation is a type of post-translational modification of
a protein, in which a concerted action of multiple players, lying
into a cascade of reactions, attaches a small ubiquitin moiety to
a substrate (Hershko et al., 1983, 2000). It may lead either to a
functional modulation, or it may also be treated as death signals,
depending upon the pattern, the ubiquitin molecules are attached
(Woelk et al., 2007; Komander and Rape, 2012). As illustrated
in Figure 1, the original discoverers have identified a series of
enzymatic reactions, in which, the formation of a thioester bond
between C-terminal glycine residue of ubiquitin and a cysteine
residue present on E1 ubiquitin activating enzyme activates
the ubiquitin in an ATP-dependent manner (Haas and Rose,
1982). Thereafter, the activated ubiquitin is transferred to another
cysteine residue, present on a different class of enzymes, called
E2, through transesterification (Hershko and Ciechanover, 1992;
Ciechanover, 1994). Afterward, transfer of activated ubiquitin to
the target protein is mediated by a large group of another set of
enzymes, known as E3 ubiquitin ligases (Hershko et al., 1983).
Increasing reports suggest that the number of E3 ubiquitin ligases
is reaching around thousand, which enables them to provide
substrate specificity inside the cells to take control of most of the
major and minor cellular pathways (Nakayama and Nakayama,
2006).

These enzymes attach the ubiquitin molecule to the ε-amino
group of an internal lysine residue of the substrate protein,
or in other cases, to one of the seven lysine residues present
on an already attached ubiquitin molecule (Ciechanover, 1994;
Hershko et al., 2000). The way, the number, and the pattern,

Frontiers in Molecular Neuroscience | www.frontiersin.org 2 May 2017 | Volume 10 | Article 151

http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive


fnmol-10-00151 May 18, 2017 Time: 17:32 # 3

Upadhyay et al. Neurobiological Journey of E3 Ubiquitin Ligases

FIGURE 1 | An illustration of the orchestration of factors involved in neurodevelopment and neurodegeneration: The upper part of the figure represents
how stepwise modifications occur during the prenatal period of brain development. As described in respective sections of the text, few crucially important genes,
which play pivotal roles at various stages of brain development, have been mentioned at the top. To establish a better understanding, schematic of cellular
translation machinery along with other PQC systems has also been drawn. A state of proteostasis and active control of PQC system regulate the processes of
growth, adolescence, and development. However, aging related metabolic changes, including various kinds of stresses and successive deterioration of quality
control systems may lead to accumulation of several proteins, causing the formation of inclusion bodies, which results in late-stage neurodegeneration. Few
important established protein candidates, involved in various such diseases have been mentioned at the bottom panel; for details, please refer text.

into which the ubiquitin moieties get attached to a given protein,
provide the code, on which other cellular systems act and decide
their diverse fates, as they could be sorted, trafficked, functionally
or structurally modulated or degraded (Rotin and Kumar,
2009; Rajalingam and Dikic, 2016). After finding a suitable
degradatory signal, the proteolytic machinery of the cell, the
26S proteasome degrades the substrate into smaller oligopeptides

(Finley, 2009). However, to prevent such degradation signals
from being constitutive, cells need to remove these ubiquitin
chains immediately from the substrate proteins, once they have
been utilized. For this, cells employ another set of approximately
a 100 different deubiquitinating (DUBs) enzymes, which by
shredding off ubiquitin moieties from proteins, contribute largely
to their proper recycling (Komander et al., 2009; Reyes-Turcu
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et al., 2009). Therefore, similar to kinases and phosphatases,
E3 ubiquitin ligases and DUBs also provide a mechanism
of reversible modifications of cellular proteins to alter their
functions (D’Andrea and Pellman, 1998; Dikic and Robertson,
2012).

Roles of E3 ubiquitin ligases have been recognized in the
developing, maintaining, as well as in degrading the components
of the cells. Developing roles include those, which are played
by E3 ubiquitin ligases in developmental processes, such as,
cell division, stem cell differentiation and organogenesis, etc.
(Nakayama and Nakayama, 2006; Yokomizo and Dzierzak,
2008; Stegmuller and Bonni, 2010). Maintenance responsibilities
include, cell signaling, metabolism, transcriptional control,
protein sorting, trafficking, cell to cell communication and
modulation of inflammatory responses, etc. (Liu, 2004; Weake
and Workman, 2008; Acconcia et al., 2009; Hampton and Garza,
2009; Huang, 2010; Polo, 2012). However, E3 ubiquitin ligases
are also profoundly associated with the establishment of cellular
proteostasis by regulating the turnover of cellular proteins, using
degradatory pathways of UPS and autophagy (Schwartz and
Ciechanover, 2009; Kuang et al., 2013). Induction of apoptotic
pathways could also be attributed to degradatory functions of the
E3 ubiquitin ligases (Vucic et al., 2011). Continuous degradation
of intracellular proteins via proteasome or autophagy also
facilitates recycling of amino acid pool of the cells for synthesis
of new proteins (Lilienbaum, 2013).

It is well accepted that brain development is one of the most
complex biological processes, which starts in early gestation
period and lasts up to adolescence, and is orchestrated and
affected by both genetic and environmental factors (Lenroot
and Giedd, 2008; Stiles and Jernigan, 2010). Several billion
neurons integrate together to form a network called neural
circuitry, which receives and transmits electrochemical signals
in order to perform cognitive and behavioral functions with
regulatory control (Pakkenberg and Gundersen, 1997; Tau
and Peterson, 2010). Therefore, to completely understand the
process of neurodevelopment and to address the problems of
developmental abnormalities, representation of a comprehensive
overview of the majorly associated environmental and genetic
factors is needed. We, here, are providing a brief outline of
how several external stresses, pollutants, toxic chemicals and
consumption of certain compounds may obstruct the successful
development.

Regulatory control over a large set of processes makes E3
ubiquitin ligases a putative therapeutic target, with huge potential
in the upcoming years of research, in the field of developmental
disorders, neurodegeneration, ageing, and cancer (Sun, 2006;
Eldridge and O’Brien, 2010; Goru et al., 2016). In this review, a
comprehensive description of few important E3 ubiquitin ligases,
which are crucial for various kinds of developmental processes,
has been provided. We have also given a concise overview
of few emerging players, which have been evolved in past
few years as crucial regulators of various neurodevelopmental
and neurodegenerative disorders, for example, ITCH, E6-AP,
MGRN1, and HACE1, which certainly need attention of scientific
community for their remedial exploration (Rotin and Kumar,
2009; Upadhyay et al., 2015a).

A large number of E3 ubiquitin ligases form an intricate
network, over which regulatory mechanisms of several cellular
pathways are built. This is why the UPS is considered to
be a highly specific degradation mechanism for intracellular
proteins, unlike autophagic and lysosomal degradation pathways.
As stated earlier, there is increasing evidence clearly indicating
the involvement of E3 ubiquitin ligases in tight regulation of
most, if not all, of the cellular processes (Hilt and Wolf, 2000;
Joshi et al., 2016). These E3 ubiquitin ligases sense various kinds
of changes and stresses quickly inside the cytosol, and mount a
simultaneous response by affecting the turnover or functionality
of cellular proteins, which play regulatory roles in several cellular
processes, e.g., different receptors, tumor suppressors, kinases,
and transcriptional regulators, etc. (Mayer et al., 2005; Woelk
et al., 2007; Polo, 2012). In the subsequent sections, we will briefly
provide a summary of research done so far, in the field of both,
proteolytic and non-proteolytic ways of regulation of cellular
proteins, mediated by a plethora of E3 ubiquitin ligases.

NEURODEVELOPMENTAL PROCESSES
AND NEURODEGENERATIVE DISEASES
ARE AFFECTED BY ENVIRONMENTAL
AND GENETIC FACTORS

Neurodevelopment associated problems have always remained
a great challenge to understand for physicians and scientists.
Considering research done in last few decades, it would
be obvious to say that environment has a deep impact on
organism growth, development, evolution, and extinction (Jirtle
and Skinner, 2007). Developmental scientists have reported
since decades, about how environmental constituents are
crucial factors shaping the developmental processes and how
environmental stresses and toxicities retard the growth and put
challenges before these processes (Knobloch and Pasamanick,
1960). Over the years, it has been observed that prenatal
development is a well-programmed process (Huxley et al.,
2000) and exposure to various kinds of radiations (Koturbash
et al., 2006), xenobiotic chemical compounds (Ho et al., 2006),
maternal behavior (Weaver et al., 2004), post-weaning nutrition
(Waterland et al., 2006), environmental pollutants (Perera and
Herbstman, 2011), and heavy metals (Kampa and Castanas,
2008) have multifactorial deleterious effects on the embryonic
health.

Alcohol consumption by the mother during pregnancy may
also impair cognitive and behavioral growth (Ornoy and Ergaz,
2010); whereas microcephaly and congenital anomalies are other
reported symptoms (Ouellette et al., 1977). Smoking and alcohol
intake may also cause ADHD (Mick et al., 2002). On the
other hand, increased risks of asthma (Stick et al., 1996) and
obesity (Power and Jefferis, 2002) have also been observed in
offspring of mothers, who regularly smoke during pregnancy.
Regular consumption of marijuana products and drugs like
cocaine during gestations period may also have detrimental
effects in newly born infants, including lower weight and
height (Zuckerman et al., 1989), ADHD and declining cognitive
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functioning (Huizink and Mulder, 2006). In utero exposure to
environmental pollutants, e.g., polycyclic aromatic hydrocarbons
(Brown et al., 2007), bisphenol A (Ho et al., 2006), arsenic
(Smith et al., 2006), and phthalates (Kang and Lee, 2005) could
also exert epigenetic hazards, genotoxicity, high risks of lung
cancer, and endocrine disruption, etc. (Perera and Herbstman,
2011). There are several other factors and chemical compounds,
e.g., oxidative stress, valproic acid, caffeine, lithium chloride,
and retinoic acid, which could have many toxic and teratogenic
effects on embryonic development (Dennery, 2007; Selderslaghs
et al., 2009). But, adding to all these, genetic alterations and
mutations constitute the major factors, lying at the bottom of
many developmental disorders.

Notably, an increasing line of evidence has also established
the confounding roles of a number of genes on developmental
processes. These genes could have multiple direct or indirect
influences on various pathways and reactions, which are essential
for organism development (Wells et al., 2005; Raff, 2012; Zoghbi
and Bear, 2012). A well-regulated expression levels of few genes,
e.g., p53, BRCA1, Hox, etc., throughout prenatal period are
considered to be a crucial factor for development (Choi and
Donehower, 1999; Wells et al., 2005; Schuettengruber et al.,
2007), whereas mutations reported in other genes have also
shown occurrence of some developmental disorders(Mitchell,
2011). Autism is a heterogeneous condition of the spectrum
of communication and developmental disabilities in children;
it includes several sets of disorders with varying features and
commonly known as ASD (Lord et al., 2000; Frith and Happé,
2005).

More than a 100 different genes have been reported so
far to be disrupted, deleted or mutated in ASD, developing
several kinds of symptoms and disorders like ID and epilepsy
(Geschwind and Levitt, 2007; Betancur, 2011; Miles, 2011).
Triplet codon CGG expansion and hypermethylation lead to
the suppression of FMR1 gene that is a common cause
associated with the fragile X syndrome, a well-known intellectual
and emotional disorder (Jin and Warren, 2000). Genetic
mutations of X-linked genes neuroligin-3 and -4 (NLGN3
and NLGN4) have also shown similar kinds of symptoms
leading to autistic disorders (Jamain et al., 2003). CNTNAP2
(Alarcon et al., 2008), neurexin-1 (NRXN1) (Ching et al.,
2010) are two other genes, which have been investigated
in recent years for their wider implications in various
kinds of developmental processes and association with these
diseases. Another autistic condition, neurofibromatosis type 1
(NF1), is an autosomal dominant neurodevelopmental disorder,
mainly caused by mutations in gene NF1 (Wallace et al.,
1990).

Rett syndrome is an X-linked dominantly inherited,
autistic neurodevelopmental disorder leading to mental
retardation in early childhood (Rett, 1966; Chahrour and
Zoghbi, 2007). Reports suggest that the disease occurs due
to mutations in MECP2 (Amir et al., 1999). PMS, a global
developmental delay related disorder, is found to be associated
with disruption of SHANK3 (Bonaglia et al., 2001). Similarly,
DISC1 and 2 are other genes, which have been reported to
cause a well-known psychiatric mental disorder SCZ, with

reported symptoms of anxiety and depression (Millar et al.,
2000). NDE1 plays essential roles in mitosis and microtubule
arrangements, so have crucial implication in neurodevelopment
(Bradshaw Nicholas et al., 2013). NDE1-null mice have been
reported recently to develop smaller brain, with cerebral
cortex affected mostly (Alkuraya et al., 2011; Ramalingam
et al., 2011); whereas single nucleotide mutations in this
gene may also result in SCZ like symptoms (Kimura et al.,
2015).

The past decades have seen tremendous advancements in
health care leading to better health management and hence
people living longer. The increase in longevity has led to
increased prevalence of neurodegeneration in the elderly people.
The risk factors for neurodegenerative diseases could be both,
endogenous or exogenous; but have not been well described
(Cannon and Greenamyre, 2011; Kanthasamy et al., 2012).
Most of the neurodegenerative diseases occur at a late-age,
either because of several genetic mutations, or aging-associated
decline in cellular repair mechanisms (Finch and Tanzi, 1997;
Niccoli and Partridge, 2012; Yerbury et al., 2016). These
detrimental changes include alterations in various components
of the cellular PQC system, e.g., declined chaperone capacity,
weakening proteolytic functioning of autophagy and UPS, and
compromised mitochondrial health and ER proteome balance
(Germain, 2008; Koga et al., 2011; Kaushik and Cuervo,
2015). Similar to earlier describe developmental abnormalities,
environmental factors and various genotoxic stresses also
contribute in neurodegeneration and aging processes (Stokes
et al., 1999; Cannon and Greenamyre, 2011; Yegambaram et al.,
2015). A major hallmark of neurodegenerative diseases is the
abnormal intra- or extracellular accumulation of disease-causing
aggregate-prone proteinaceous species, which further hinder
with the normal functioning of neuronal cells leading to
their death, causing cognitive impairment, dementia, and
behavioral abnormalities (Kanazawa, 2001; Ross and Poirier,
2004).

As we have described, several genetic mutations lead to
developmental deformities or may also cause embryonic
mortality in some cases, it is now easily understandable how
important genomic integrity is, for the proper functioning
of the organism. Several aging-related changes and late-
onset neurodegenerative disorders may also add up to the
pathologies generated, either due to some genetic mutations,
or structural and functional modifications in disease-associated
proteins (Bertram and Tanzi, 2005; Esiri, 2007; Douglas and
Dillin, 2010). Most prevalent of these, Alzheimer’s disease,
has been reported to be caused due to mutations in genes,
like APP (Goate and Chartier-Harlin, 1991), presenilins
(Scheuner et al., 1996), tau (Hutton et al., 1998), etc.
Apolipoprotein E (ApoE), in recent years, have also been
shown as one of the risk factors for the disease (Saunders et al.,
1993).

Parkinson’s disease is the second most death-causing
neurodegenerative disorder and is also linked with several
genes viz. PINK1 (Valente et al., 2004), parkin (Kitada et al.,
1998), α-synuclein (Polymeropoulos et al., 1997), as disease-
onset factors. Prion diseases are another class of diseases,
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where genetic mutations alter the structure and function
of the cellular prion protein, which may develop into the
neurodegenerative changes (Prusiner and DeArmond, 1994).
ALS is a disease, related to loss of motor neurons, which
is caused by aggregation of protein products of several
inclusion-forming proteins, e.g., SOD1 (Wong et al., 1995)
and TDP-43 (Iguchi et al., 2013). Several proteins may also
attain a property to aggregate due to the expansion of glutamine
coding CAG trinucleotide repeats in their gene sequences (La
Spada et al., 1991). Aberrant forms of huntingtin (DiFiglia
et al., 1997) and ataxin (Orr et al., 1993) are major examples
of polyglutamine expansion proteins, which are directly
associated with the amyloid-like aggregate formation in different
diseases.

Neurodegeneration is not a spontaneous process; exposure
to various neurotoxicants present in the environment
over a period of time leads to irreparable damages. These
neurotoxicants interfere with the metabolism and disturb the
homeostasis. Heavy metals, herbicides, pesticides, biogenic
metals have been described as potential risk factors for
neurodegeneration (Brown et al., 2005; Ritz et al., 2009;
Chin-Chan et al., 2015). Essential trace elements (aluminum,
zinc, and copper) have been found to be associated with
aggregated proteins in Alzheimer’s disease (Bush et al.,
1994; White et al., 1999; Bharathi et al., 2008). Lead
toxicity is also a well-described phenomenon and exposure
of children to lead at early developmental stages might
influence the occurrence of neurodegeneration, at later
stages (Basha et al., 2005). Rural settings with improper
sanitation and industrial waste disposal, agricultural runoff,
etc., all carry neurotoxicants and pose threat to human
beings.

Neurotoxicants can damage or cross blood brain barrier, gain
access through receptors having similar ligands (McCormack
and Di Monte, 2003). The damage of neurons affects
neurotransmission due to lipid peroxidation, which leads
to increased ROS generation and oxidative stress (Nunomura
et al., 2001; Aruoma et al., 2006; Reed, 2011). The increased
oxidative stress results in the formation of protein aggregates,
which in turn activates the glial cells. These cells contribute
in enhancing inflammation at the site along with the release
of NO, leading to further upregulation in oxidative stress,
by the formation of ONOO-peroxynitrite (Vincent et al.,
1998). The emerging understanding of pathophysiology of
neurodegenerative disorders is helping us to understand the
potential risk of environmental factors on human health
and also come up with novel strategies for therapeutics.
Several E3 ubiquitin ligases in past have been explored
for their significant contribution in neurodevelopmental
processes and involvement in establishment of cellular
proteostasis. In the upcoming section, we are briefly describing
few similar quality control (QC) E3 ubiquitin ligases and
elaborating on how they appear to be silent for a long
time interval in life span and how they suddenly become
proactive and play a crucial role at the time of requirement
against misfolded and accumulated proteins, linked with
neurodegeneration.

GOOD PROGRAMMING OF UBE3A: HOW
IT IS IMPORTANT FOR NEURONAL
DEVELOPMENT AND
NEURODEGENERATION?

E3 ubiquitin ligase E6-AP is encoded by UBE3A gene; mutations
and genetic imprinting in this gene result in Angelman syndrome
(AS), which can be described by symptoms like frequent
laughter, tremor, ataxia, abnormal gait, seizures, and neurological
impairments (Kishino et al., 1997). Several studies identified
critical neuronal dysfunctions in UBE3A maternal-deficient
mice (AS mice model), which include defective synaptic
plasticity, neurological deficits, aberrations in LTP, defects in
rotarod performance, abnormal dendritic spine morphology,
deficits in contextual learning, abnormalities in neocortex
maturation, reduced brain weight, cognitive dysfunction and
abnormalities in fluid consumption behavior and grip strength
(Kuhnle et al., 2013; Silva-Santos et al., 2015). The emerging
function of E6-AP were discovered later and is associated
with its E3 ubiquitin ligase like capabilities, through which
it can play a very important neuroprotective role in cellular
QC mechanisms and its functional presence is involved in
different neurodegenerative diseases through clearance of several
misfolded proteins (Upadhyay et al., 2015a).

Under different stress conditions, E6-AP expression
levels are dramatically induced and provide cytoprotection
against different proteotoxic insults. E6-AP interacts with
Hsp70 and preferentially targets aggregatory proteins for
their UPS-dependent clearance. Recruitment of E6-AP with
aggresomes at peripheral nuclear regions reveals its capability
to recognize large misfolded inclusion-like structures in cells
(Mishra et al., 2009b). Considering the efficiency of E6-AP in
cellular protein QC mechanisms, it is expected that E6-AP
might target neurodegenerative disease-associated proteins. In
another study, we have demonstrated that E6-AP facilitates
the ubiquitin-mediated degradation of polyglutamine proteins
aggregates and alleviates toxicities generated by them in
cells. The high expression of E6-AP protects cells against the
massive buildup of misfolded proteins that can cause cellular
toxicity and finally leads to cell death (Mishra et al., 2008).
After understanding the potential of E6-AP against misfolded
protein clearance, we again checked its capability in another
neurodegenerative disease. We noticed that E6-AP recognizes
misfolded SOD1 aggregates and targets them for ubiquitylation
and also promotes their degradation via UPS machinery (Mishra
et al., 2013).

Previously, we have also found that E6-AP mediates the
ubiquitylation and proteasome-dependent degradation of p53
tumor-suppressor protein without E6 oncoprotein (Mishra and
Jana, 2008). Lack of E6-AP function results in inefficient
elimination of p53, hence may also alter cell cycle progression,
and affect the normal physiological functions of different brain
regions (Jiang et al., 1998). Interestingly, another study from our
group indicates a strong potential of E6-AP in the degradation
of cyclin-dependent kinase inhibitor p27. Probably, such type
of regulation of p27 and a loss-of-function of E6-AP, both
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contributes to the molecular pathogenesis of AS (Mishra et al.,
2009a). Earlier reports have shown that p27 lack-of-function
in knockout mice exhibits increased brain size, which could
be possible because of high cellular proliferation rate (Fero
et al., 1996; Tarui et al., 2005). E6-AP mediated ubiquitylation
and endocytosis of SK2 is implicated in synaptic plasticity and
formation of memory and learning (Sun et al., 2015).

E6-associated protein possesses a capacity to regulate cell
cycle regulatory proteins, which are vital for cellular proliferation
and division. Therefore, E6-AP may contribute significantly in
different neurodevelopmental phases, and simultaneously, it can
also reduce the accumulation of misfolded proteins in cells and
clears the unwanted toxicity generated due to misfolded proteins
to avoid neurodegeneration. Interestingly, a finding indicates that
AS adults also develop bradykinesia and Parkinsonism symptoms
(Harbord, 2001). By truncating or silencing Ube3A-antisense
transcript (ATS), improvements in cognition and behavioral
functions in AS mice model has been observed (Meng et al., 2013,
2015). Additionally, topoisomerase inhibitor topotecan has also
shown to reactivate dormant Ube3a allele having applications
in AS therapy (Huang et al., 2011). To summarize and as
has been represented in Figure 2A, E6-AP in cells provides a
pivotal link between NDDs and neurodegenerative diseases. The
essential question in near future would be to look up to the
molecular functions of E6-AP and to understand how this E3
ubiquitin ligase is capable of switching its neurodevelopmental
responsibilities and its QC functions and how it contributes to
the alleviation of the pathobiology of neurodegenerative diseases.

ACCURATE AND WIDE SPREAD
FUNCTIONS OF AIP4 GENE PRODUCT
ORIENTS NEURONAL DEVELOPMENT
AND SURVIVAL

Atrophin-1-interacting protein 4 gene encodes a HECT-
containing ITCH E3 ubiquitin ligase. Loss-of-function of
this protein exhibits various immunological problems in
mice. ITCH a protein of more than 100 kDa catalyzes the
degradation of multiple substrates with the help of UPS (Perry
et al., 1998). Regulated protein elimination via autophagy
and UPS contributes in different molecular pathways of brain
development, e.g., axon guidance, axon and dendritic branching,
synaptogenesis and building synaptic connections. Numb protein
is important for cell fate determination, differentiation of
progenitors of cerebellar granule cells, cell migration and also
targets the critical substrates for ITCH and help in their
ubiquitylation (Cayouette and Raff, 2002; McGill and McGlade,
2003; Klein et al., 2004). Few fundamental questions always
appear in mind, such as what is the physiological relevance of
these few specific E3 ubiquitin ligases in neurodevelopmental
period?

Currently, we are short of understanding how dysfunctions of
E3 ubiquitin ligases or aberrant elimination of unwanted proteins
contribute to multiple NDDs and neurodegenerative diseases.
To challenge such questions, it was important for us to explore

the molecular functions of ITCH under various multifactorial
stress conditions, where the massive accumulation of aberrant
polypeptides can cause failure of QC mechanisms. For the
first time, our study established the QC function of ITCH E3
ubiquitin ligase against cytosolic aberrant aggregates, as has been
represented in Figure 2B. In our findings, we have noticed that
ITCH endogenous levels get elevated after various genotoxic and
proteotoxic cellular insults. Sequestosome-1 (SQSTM1) or p62
(early autophagic structures) and 20S proteasome get recruited
to the site of the cytoplasmic misfolded aggregate formation
with ITCH. Our study also suggests a preferential interactions
of ITCH with expanded polyglutamine proteins and further
overexpression of this protein reduces aggresomes formation and
mitigates the toxic insults generated by expanded polyglutamine
proteins (Chhangani et al., 2014b).

Other developmental roles of ITCH are ubiquitylation of JunB
for proteasomal degradation to carry out regulation of osteoblasts
differentiation from mesenchymal progenitor cells, which may
serve as the target of therapies for patients having bone loss
(Zhang and Xing, 2013). ITCH also induces Numb-mediated
suppression of Hedgehog signaling via ubiquitylation and
degradation of transcription factor Gli1 (Di Marcotullio et al.,
2006). Deficiency of ITCH has been linked with morphological
and developmental abnormalities in addition to multisystem
autoimmune disease, as described previously (Lohr et al., 2010).
Studies, aiming to understand recognition and interaction of
ITCH, may prove to be beneficial in regulating activities of this E3
ubiquitin ligase (Bellomaria et al., 2012; Upadhyay et al., 2015a),
which can be further used in studying roles of ITCH in normal
metabolism and developing therapeutic interventions against
various protein conformational disorders. In the future, it is
important to uncover the hidden potential of ITCH E3 ubiquitin
ligase, which plays an important role in NDDs as wells as in
neurodegenerative diseases. We have to investigate further how
the loss-of-function of ITCH contributes to the progression of
neurobiological pathomechanism conditions for both NDDs and
neurodegeneration. Further, studies should be aimed to solve the
problem of aberrant ITCH protein functions and its involvement
in neuronal dysfunction.

MGRN1 ULTRA-COMPACT NEURONAL
FUNCTIONS CLEAN-UP OVERLOAD OF
UNWANTED ACCUMULATION OF
ABNORMAL PROTEINS, AND
IMPLICATIONS IN NEURONAL
DEVELOPMENTAL DISORDERS AND
NEURODEGENERATION

A recent review explains the neurobiological functions of another
RING finger family member, i.e., MGRN1, an E3 ubiquitin
ligase; lack of function of this E3 ubiquitin ligase causes
developmental defects such as abnormal left-right axis patterning
and congenital heart defects (Cota et al., 2006; Upadhyay
et al., 2015b). Previous studies suggest that development of
neurons and synaptogenesis are the highly controlled molecular
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FIGURE 2 | Schematic representation of emerging roles of neurobiological QC E3 ubiquitin ligases implicated in neurodevelopment, synaptogenesis,
and, their lack of functions contribute to the pathogenesis of neurodegeneration: (A) Genetic defects in UBE3A gene results in defective E6-AP protein,
which is responsible for Angelman syndrome neurodevelopmental disorder. Functional E6-AP promotes the ubiquitylation of tumor-suppressor proteins such as p53
and p27 and regulates cellular proliferation and growth. E6-AP also plays a significant role in the clearance of mutant misfolded proteins linked with various
neurodegenerative diseases. (B) ITCH specifically ubiquitylates several cytoplasmic protein inclusions for their removal from the dense crowded cellular milieu. The
central segment represents overall functional roles of QC E3 ubiquitin ligases due to their crucial involvement in the neurodevelopment and neurodegeneration.
(C) Mahogunin functions as a RING finger E3 ubiquitin ligase; and a null mutation in mahogunin is linked with spongiform neurodegeneration. Our studies reveal the
potential roles of MGRN1 as a QC E3 ubiquitin ligase involved in the elimination of mutated proteins linked with polyglutamine and ALS neurodegenerative diseases.
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mechanism. MGRN1 expression is also high in both human
and mouse brain regions. How does the expression of MGRN1
determine neurodevelopmental events, left-right axis formation
and how aberrant functions of MGRN1 cause congenital heart
defects are not well-understood? The neurobiological functions
of MGRN1 are largely unknown. Growing number of findings
indicate the role of MGRN1 in neurodegenerative diseases.
MGRN1 null mutants bring much more insights into neuronal
functions of MGRN1; loss of MGRN1 causes oxidative stress
and mitochondrial abnormalities linked with neurodegeneration
(Cheng and Cohen, 2007; Sun et al., 2007).

Mahoganoid mutant mice exhibit the problem of spongiform
neurodegeneration. Another study also indicates interaction
of MGRN1 with both toxic cytosolic form (cyPrP) and
transmembrane isoform linked with prion disease (CtmPrP)
(He et al., 2003; Chakrabarti and Hegde, 2009). Interestingly,
our recent findings represent cellular QC capacity of MGRN1
under various proteotoxic stress conditions and establish a
neurobiological role of MGRN1 against toxic misfolded mutants
of SOD1 and expanded polyglutamine proteins, which are
involved in causing ALS and polyglutamine diseases, respectively
(Chhangani et al., 2014a, 2016). As depicted in Figure 2C,
recent studies have strongly suggested potential neurobiological
roles of MGRN1 in NDDs and neurodegenerative diseases.
All the above-summarized studies on MGRN1 show its
roles in neurodevelopmental processes and in modulating the
QC pathways under different neurodegenerative pathologies
(Upadhyay et al., 2015b). These works have paved the way for
identifying and characterizing novel E3 ubiquitin ligases, which
may act as modulators for neurodevelopmental proteins and
probably can also regulate proteostatic pathways, thus would be
effectively able to control the occurrence of neurodegenerative
disorders. Future research is important to identify the new
mechanisms that explore the functions of MGRN1 in brain
development, synaptogenesis, synaptic transmission and how the
aberrant functioning of this protein contributes to human brain
molecular pathophysiology.

HACE1 E3 UBIQUITIN LIGASE: EFFORTS
AGAINST NEURODEVELOPMENTAL
DISORDERS AND
NEURODEGENERATIVE DISEASES

Another E3 ubiquitin ligase HACE1, which has an essential
implication in NDDs and neurodegenerative diseases, also
demonstrates an insight into the relationship between QC
mechanism and neurobiological functions. HACE1 encodes
a HECT domain-containing E3 ubiquitin ligase involved
in the regulation of Rac1 and small GTPases. An exome
sequencing analysis identified aberrant functional mutations in
HACE1, which leads to autosomal recessive neurodevelopmental
disorders with ID, spasticity, and abnormal gait (Hollstein et al.,
2015). E3 ubiquitin ligase HACE1, along with UBCH7 E2
enzyme recognizes specific proteins for proteasomal degradation.
It also targets Rac1 for polyubiquitylation and regulates

its activity. Rac1 dysregulation generates neurodevelopmental
abnormalities, whereas an increase in its function exhibits
anterior cerebellar deficits, therefore Rac1 is important for
defining cerebellar morphology patterning in mice (Torrino et al.,
2011; Mulherkar et al., 2014).

Another interesting report indicates that HACE1 promotes
the synthesis and stabilization of NRF2 protein, while the
lack of function generates oxidative stress. HACE1 expression
provides neuroprotective response against toxicity generated by
mutant huntingtin protein and interestingly HACE1 level was
found to be decreased in Huntington’s disease patients striatum
(Rotblat et al., 2014). Pam is an E3 ubiquitin ligase that contains
C-terminal RING finger domain and reduction of Pam activity
in primary neurons causes downregulation of mTOR signaling
and stabilization of tuberin. It is homologous to PHR protein
family members and is involved in synaptogenesis (D’Souza
et al., 2005; Han et al., 2012). How normal functions of Pam
occupy a role in neurodevelopmental phases? Whether lack or
aberrant functions of Pam can also aggravate the accumulation
of misfolded proteins in cells? These are few unanswered
questions for future studies linked with neurobiological functions
of Pam E3 ubiquitin ligase. Different reports have shown
that E3 ubiquitin ligases, like HACE1 and Pam, are suitable
candidates, which take part in neurodevelopment, and may also
modulate stress responses via different signaling mechanisms
(Han et al., 2008; Rotblat et al., 2014; Hollstein et al., 2015). But,
future endeavor based on the existing knowledge of these E3
ubiquitin ligases should focus more on how to effectively utilize
this understanding in the development of a suitable therapy
for treating disorders, which are affected by these signaling
mechanisms.

E3 UBIQUITIN LIGASES ARE CRUCIAL
FOR BRAIN DEVELOPMENT AND THEIR
ABERRANT FUNCTIONS ARE FATAL

Most of the studies on E3 ubiquitin ligases are somewhere
related to neurodegeneration and associated disorders, which
commonly occur at old age (Chhangani et al., 2012; Upadhyay
et al., 2015a). In developing brain, different E3 ubiquitin ligases
play crucial roles (Stegmuller and Bonni, 2010). They participate
in various processes of neuronal development, such as in synapse
formation, neurogenesis, neurite enlargement, dendrite growth,
axonal development, neural tube formation, and differentiation
(Yan et al., 2009; Kawabe and Brose, 2011). Developmental events
of neurons depend on various proteins, whose levels are regulated
by their respective E3 ubiquitin ligases. Alterations in the levels
of these substrate proteins due to loss-of-function or inactivation
of E3 ubiquitin ligases have been shown to cause abnormal
phenotypic outcomes and may result in neurodevelopmental
disorders (Kuhnle et al., 2013; Morice-Picard et al., 2016). Despite
being an interesting target, having multiple substrates with
involvements in different signaling mechanisms, E3 ubiquitin
ligases seem to be difficult candidates to be exploited for
therapeutic applications. For example, ITCH suppresses the
aggregation of cytoplasmic misfolded proteins (Chhangani et al.,
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2014b), while it also negatively regulates Hippo pathway that
promotes tumorigenicity (Salah et al., 2011).

However, E3 ubiquitin ligase-mediated ubiquitylation and
degradation have gained notable importance as an essential
part of the early development of eukaryotes, including both
animals and plants (Hellmann and Estelle, 2002; Stegmuller
and Bonni, 2010). In Caenorhabditis elegans cullin RING
ligases (CRLs) play an important role for the molecular
mechanism of self-renewal and differentiation in embryonic
cells during early embryogenesis. SKN-1 transcription factor
mediates this differentiation process; and CRLs regulate this
crucial molecular switching (Du et al., 2015). In the early
C. elegans embryo regulation of asymmetry and persistence of the
SKN-1 transcription factor also require a defined control, which
is provided by a HECT E3 ubiquitin ligase, EEL-1 (Page et al.,
2007). Downregulation of katanin, at an early embryogenesis
stage of meiosis to mitosis transitions, is a necessity and this
crucial step is majorly controlled by CUL-3 (Pintard et al., 2003).
In an experimental model of the zebrafish embryo, Lnx-2a, an E3
ubiquitin ligase, balances the differentiation of exocrine cells in
the early pancreatic bud, which could be achieved by fine tuning
the Notch signaling via destabilization of Numb (Won et al.,
2015).

Mammalian E3 ubiquitin ligases are also very crucial
for the execution of various developmental processes, with
striking control over neurogenesis (Stegmuller and Bonni, 2010).
Hematopoietic stem cells highly express DDB1, a component of
CUL4-DDB1 E3 ubiquitin ligase complex, which monitors stem
cell divisions by ubiquitylation and proteasomal degradation
of p53 (Gao et al., 2015). An early development transcription
factor SOX-9, is ubiquitinated and degraded by Fbxw7 E3
ubiquitin ligase (Hong et al., 2016). ASB4 and ASB2/Cullin5/Rbx
complexes degrade filamin B proteins, and play important
roles in myogenic differentiation (Bello et al., 2009; Townley-
Tilson et al., 2014); whereas, S-phase kinase-associated protein1-
cullin1-F-box protein (SCFSkp2) complex plays important roles
in differentiation of the neuronal cells (Boix-Perales et al., 2007).
The functions of E3 ubiquitin ligases are required from the
initiation of neuronal differentiation and up to the maturation
of neurons and formation of synapses (Yi and Ehlers, 2007;
Ding and Shen, 2008). Various mutations in E3 ubiquitin ligase
genes and UPS dysfunction may lead to different kinds of
abnormalities and disorders related to the neuronal development
and functioning (Tai and Schuman, 2008; Kawabe and Brose,
2011). In Figure 3, we have schematically represented several
reported E3 ubiquitin ligases that significantly contribute in
regulation of various processes and pathways of neuronal
development.

Huwe1, an upstream regulator of N-Myc-DLL3-Notch
signaling pathway restricts proliferation and initiates
differentiation of neuronal stem cells (Zhao et al., 2009).
Dorfin also plays an important role in neurogenesis; as reported
in a recent study, Dorfin−/− mice show an overall decrease
in the ubiquitylation level of various proteins (Park et al.,
2015). Another crucial neurodevelopmental E3 ubiquitin
ligase, involved in regulation of Notch signaling, is Mib, which
ubiquitinate Delta followed by endocytosis (Itoh et al., 2003).

XIAP plays regulatory roles in differentiation and neurogenesis,
by controlling the formation of axons and dendrites; which is
mediated by activation of MEK pathway (Fado et al., 2013). Other
E3 ubiquitin ligases, like HACE1, and β-TRCP (SCFβ−TRCP), also
have roles in controlling neuronal differentiation, via interaction
and degradation of different client proteins (Westbrook
et al., 2008; Hollstein et al., 2015). Lin41-mediated terminal
differentiation sets the timing of neural tube closure, and
mutation of this gene results in embryonic lethality (Maller
Schulman et al., 2008). Similarly, deficiency of TRAF6 causes
abnormal neural tube closure and may result in exencephaly
(Lomaga et al., 2000).

Hrd1, an ER stress E3 ubiquitin ligase, facilitates induced
neuronal differentiation and reduced neurite outgrowths
(Kawada et al., 2014); whereas, Smurf1 promotes neurite
outgrowth by ubiquitylation and proteasomal degradation of
RhoA (Bryan et al., 2005). ZNRF1 E3 ubiquitin ligase mediates
similar positive effects on neuritogenesis by interacting with
tubulin (Yoshida et al., 2009). Mib E3 ubiquitin ligase also has
significant control over neuritogenesis (Choe et al., 2007), as
well as dendritic morphogenesis (Smrt et al., 2010). A study on
granule neurons of cerebral cortex identified a critical role of
PIASx, a SUMO E3 ubiquitin ligase, in postsynaptic dendritic
differentiation (Shalizi et al., 2007). Ubiquitylation-mediated
degradation of Rap2A and PTEN by NEDD4-1 are crucial
events in dendritic development (Kawabe et al., 2010) and
axonal branching, respectively (Drinjakovic et al., 2010). RNF6
and CHIP are also involved in axonal developmental processes
by affecting the degradation of their development-associated
substrates, viz., LIMK1 and katenin-p60, respectively (Tursun
et al., 2005; Yang et al., 2013). Further, Ubr1-mediated N-end
rule protein degradation of some unknown neurite outgrowth
inhibitory protein also has critical involvement in neurite
outgrowth and axonal regeneration processes (Kavakebi
et al., 2005). Neuronal pruning is another crucial step of
neurodevelopment, which is influenced by another E3 ubiquitin
ligase, i.e., cullin1 based SCF complex (Wong et al., 2013).

Cell cycle regulatory E3 ubiquitin ligase, APC/C, has also
been characterized for its determining roles in neuronal
morphogenesis and connectivity (Yang et al., 2010). A complex of
Cdh1-APC has shown control over axonal growth and patterning
(Konishi et al., 2004), while Cdc20-APC E3 ubiquitin ligase
has shown regulatory effects over dendritic morphogenesis and
presynaptic axonal differentiation, helping synapse formation
and development of neuronal circuits (Kim et al., 2009; Yang
et al., 2009). Fbxo45, an F-box containing protein, instead of
interacting with SCF, forms an E3 ubiquitin ligase complex with
PAM, and this complex is important for neuronal migration
and synapse formation at neuromuscular junctions (Saiga et al.,
2009). SAG, a RING domain protein of SCF complex targets NF1
and modulates Ras-MAPK signaling pathway to affect neuronal
development (Tan et al., 2011b).

There are several E3 ubiquitin ligases, whose loss-of-function
has prominent roles in one or more developmental abnormalities
or disorders. CUL4B mutation may result in X-linked mental
retardation (Zou et al., 2007); whereas TRIM family of E3
ubiquitin ligases have been implicated in several developmental
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FIGURE 3 | Proposed diagrammatic representations comprehend the neurobiological roles of few E3 ubiquitin ligases associated with normal brain
development. The complex molecular mechanisms governed by these E3 ubiquitin ligases throughout the entire life span starting from learning skills
(neurodevelopment) to kills (neurodegeneration) are still unknown.

disorders, e.g., TRIM50 in Williams–Beuren syndrome (Micale
et al., 2008), Midline 1 (MID1) in Opitz syndrome (Quaderi
et al., 1997), and TRIM37 in Mulibrey Nanism (Kallijarvi et al.,
2002). As discussed above, most of the substrates of E3 ubiquitin
ligases are regulatory proteins involved in different signaling
pathways, controlling cell cycle progression, cellular metabolism,
apoptosis, etc., and hence may impact development and growth
of organism (Bielskiene et al., 2015). Thus, disturbances caused
in the ubiquitylation mechanism due to impairment in E3
ubiquitin ligases functionalities may lead to different kinds of

abnormal conditions, developmental disorders, and embryonic
lethality (Huang and Dixit, 2016). Therefore, identification and
characterization of methodologies that may have the ability to
modulate or stabilize the activities of E3 ubiquitin ligases may
prove to be a beneficial strategy in controlling the progression of
various disorders (Goldenberg et al., 2010).

The overall development of the brain is affected by multiple
factors, including above described environmental factors and
genes participating in neurodevelopmental processes; and
various disease conditions could originate either due to their
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dysregulation or non-functional QC system of the cells (van Loo
and Martens, 2007; Bale et al., 2010). Once neurodevelopmental
period reaches its completion, several internal and external
factors start presenting threats and challenges before neurons
(Cannon and Greenamyre, 2011; Chin-Chan et al., 2015).
A progressive decline in function of cellular defense mechanisms
may drive organisms toward aging and result in late-age
neurodegeneration (Pettegrew et al., 2000; Crawley, 2006).
Age-related neurodegeneration is directly or indirectly associated
with various diseases like Alzheimer’s, Parkinson’s, Huntington’s,
ALS, and many more (Hung et al., 2010; Niccoli and Partridge,
2012). Roles of E3 ubiquitin ligases and the cellular PQC
system have largely been explored and their deficiency has been
attributed to several prominent diseases, associated with protein
misfolding (Ardley and Robinson, 2004; Chhangani et al., 2012).
Interestingly, several reports have shown that a well-regulated
proteolysis, mediated by E3 ubiquitin ligases, is an important
measure to ensure an error-proof development of organisms,
which also holds true for plants (Vierstra, 1996; Sullivan et al.,
2003).

There are number of E3 ubiquitin ligases, which have been
identified in plants, affecting major developmental pathways,
including perception of hormones and their respective signaling
(Schwechheimer and Schwager, 2004; Stone and Callis, 2007).
Abscisic acid signaling is an important regulator of plant growth
and development at various stages, including seed dormancy
and germination, embryonic development and reproduction, and
vegetative growth, etc. (Wasilewska et al., 2008). Several E3
ubiquitin ligases have been identified for their roles in regulation
and maintenance of abscisic acid biosynthesis and signaling
pathways (Liu and Stone, 2011). CHIP (Luo et al., 2006), Keep
on Going (KEG) (Stone et al., 2006), ABI3-interacting protein
2 (AIP2) (Zhang et al., 2005), and senescence-associated E3
ubiquitin ligase 1 (SAUL1) (Raab et al., 2009) are major regulators
of ubiquitination and proteasomal degradation mediated control
of the plant development. Auxins are the hormones that are
implicated in plants root development. Transport inhibitor
response 1 (TIR1), XB3 ortholog 2 in Arabidopsis thaliana
(XBAT32), and seven-in-absentia of A. thaliana 5 (SINAT5) E3
ubiquitin ligases actively regulate auxin signaling and formation
of lateral roots (Xie et al., 2002; Nodzon et al., 2004; Tan
et al., 2007). Several other signaling pathways and mechanisms
have also been explored in detail, where E3 ubiquitin ligases
are extensively involved in development of plants (Moon
et al., 2004; Stone and Callis, 2007; Chen and Hellmann,
2013).

It is now well-known that the environmental toxicants
affect both, the processes of neurodevelopment, as well
as neurodegeneration; and thus may increase the risk of
brain-related disorders multiple folds (Gressens et al., 2001;
Landrigan et al., 2005; Aschner and Costa, 2015). So, it is
worthy to ask questions of how we can protect our cellular
systems from toxicities and damages produced by these external
factors. Considering the enormous potential of E3 ubiquitin
ligases in the modulation of functions of intracellular proteins
and regulation of cellular processes, it is obvious to question if
we can modulate these mechanisms and pathways exogenously.

To exploit therapeutic potential of E3 ubiquitin ligases, several
attempts have been made to devise therapeutic strategies against
various diseases.

E3 UBIQUITIN LIGASES: POSSIBLE
EMERGING MOLECULAR FUNCTIONS,
TARGETS, AND THERAPEUTIC
APPLICATIONS

Past few years of research have documented several efforts
toward the development of therapeutic strategies by exploiting
druggability of these E3 ubiquitin ligases, by using many natural
and synthetic small molecules, having modulating effects over
these ligases. As shown in Table 1, we have summarized various
available reports so far. Previous studies on natural molecules,
like curcumin or diferuloylmethane, extracted from the rhizomes
of herb Curcuma longa induces apoptosis in cancerous cells
by inhibiting the Cdc27/APC3 component of APC, which is
important for its ubiquitylation function (Lee and Langhans,
2012). Trehalose, a disaccharide has been reported to increase
levels of CHIP and further induce autophagy in CHIP mutation
related ataxia in fibroblast cells (Casarejos et al., 2014). A similar
effect on the level of CHIP and autophagy induction has recently
been reported for lanosterol, an intermediate compound of
cholesterol biosynthesis (Upadhyay et al., 2017). MLN4924, an
inhibitor of E3 ubiquitin ligase activity of SAG-SCF, has shown
a promising effect in sensitizing leukemia cells toward the effects
of retinoic acid (Tan et al., 2011a). It has also been shown that
blocking the enzymatic activity of Nedd4, thereby modulating the
budding of viruses, filoviruses, arenaviruses. and rhabdoviruses,
may help in the development of a novel class of antiviral therapy
(Han et al., 2014). A proteasome inhibitor, MG132 has also been
shown to increase the level of Ubr1, and this may act as a useful
therapeutic strategy in pathologies caused due to reduced amount
of Ubr1, like pancreatic dysfunctions and mental abnormalities,
characteristics of Johanson-Blizzard syndrome (Zenker et al.,
2005). Similar effects of increasing E3 ubiquitin ligase activity
have also been demonstrated for ZNRF1, in response to treatment
of 6-hydroxydopamine (Wakatsuki et al., 2015).

To devise the molecular therapeutics that can be used as
potential strategies for modulating the functions and activities
of various E3 ubiquitin ligases in treating multiple disorders,
extensive studies are required, which can characterize these
lead molecules for their efficacy, side effects, safety and
pharmacological profiles. Although few drugs, such as Nutlin-3,
a Mdm2-p53 interaction inhibitor, is used for treating pathology
of cancer(Vassilev et al., 2004), but it is still in clinical trials and
has also shown few side effects in the treatment of retinoblastoma
(Secchiero et al., 2011). Development of ubiquitin variant probes
having the abilities to target the ubiquitylation functions of E3
ubiquitin ligase can also prove to be an effective strategy in
disease treatment (Zhang et al., 2016). Finding out solutions to
these problems will help significantly in bringing these drugs or
small molecules from basic research to the level of therapeutic
applications.
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TABLE 1 | Summarizes E3 ubiquitin ligases involved in process of neurodevelopment and promising molecules that have been shown to modulate their
activity and retain possible therapeutic potential.

Modulators/Stress
inducing agents

E3 ubiquitin
ligases

Molecular mechanism Reference

Curcumin APC Inhibits by binding to APC leading to cell cycle arrest and apoptosis. Lee and Langhans, 2012

Trehalose CHIP Increases expression level of CHIP. Casarejos et al., 2014

Macrocyclic
N-methyl-peptides

E6AP Inhibits the E6AP catalyzed polyubiquitination of peroxiredoxin 1
and p53.

Yamagishi et al., 2011

Ubiquitin variant HACE1 Reduces activity of HACE1 by inhibiting ubiquitin transfer to its
substrate Rac1.

Zhang et al., 2016

Thapsigargin/
Tunicamycin

HRD1 Increases expression level of HRD1 at mRNA and protein levels by
induction of endoplasmic reticulum stress.

Kaneko et al., 2007

Doxycycline Huwe1 Decreases expression of Huwe1 which in turn stabilizes
MYC-associated protein MIZ1 causing inhibition of MYC function.

Peter et al., 2014

Compounds 4 and
5

Nedd4 Inhibits Nedd4-PPxY interaction thereby blocking egress of RNA
viruses.

Han et al., 2014

PF-03084014 Numb Reverses docetaxel mediated decreased expression of Numb, an
endogenous notch inhibitor producing an increased cytotoxic effect
of docetaxel.

Zhang et al., 2013

Cisplatin RNF6 Inhibits RNF6 expression level in A549 cell line as compared to
A549 cisplatin resistant cells (A549/CDDP cells).

Qin et al., 2012

MLN4924 SAG Impede SAG activity by blocking its cullin neddylation which can
sensitize leukemia cell lines HL-60 and KG-1 to retinoic acid.

Tan et al., 2011a

CpdA SCF Interferes with SCF (Skp2) ligase function causing p27 mediated
cell cycle arrest and activation of autophagy.

Chen et al., 2008

A01 and A17 Smurf1 Inhibits Smurf1 mediated Smad1/5 proteasomal degradation by
reducing its ubiquitination and increases bone morphogenetic
protein (BMP-2) signal responsiveness.

Cao et al., 2014

Bortezomib TRAF6 Decreases expression of TRAF6 at both protein and mRNA level
leading to inhibition of osteoclasts maturation and function in
peripheral blood mononuclear cells (PBMCs) of multiple myeloma
patients.

Hongming and Jian, 2009

MG132 UBR1 Induces upregulation of ubr1 through ubiquitin-proteasome
pathway.

Yu et al., 2010

XIAP antagonist XIAP Inhibits by binding to the baculovirus IAP repeat 3 (BIR3) domain of
XIAP.

Seigal et al., 2015

6OHDA ZNRF1 Induces ZNFR1 E3 ligase activity by EGFR-mediated
phosphorylation.

Wakatsuki et al., 2015

The need of cost-effective therapies that have minimal side
effects and which can reach up to every individual is not yet
successfully fulfilled, and thus extensive exploration of natural
and synthetic compounds will enable us to devise useful, and
effective strategy to prevent and cure such diseases (Tsukamoto,
2016; Collins et al., 2017). The above mentioned small molecules
are merely a fraction of research, which could be considered for
upcoming strategies to treat fatal neurodegenerative disorders,
cancer or other complex diseases, but there still remains a need
for more research to be done (Eldridge and O’Brien, 2010;
Gurevich and Gurevich, 2014; Skaar et al., 2014). Targeting
specific E3 ubiquitin ligase for the treatment of particular disease
is not an easy way to exercise in therapeutic applications, as
these E3 ubiquitin ligases get involved in multiple pathways
simultaneously. Therefore, there remains an immense need
of understanding complete functionality and specificity, which
these E3 ubiquitin ligases could provide in order to get the
maximum beneficial outcome for future drug development
strategies.

KEY QUESTIONS AND FUTURE
PROSPECTIVE

All proteins originate through a common mechanism of
synthesis, but they largely differ in their degradatory pathways
(Ciechanover, 2005; Tai and Schuman, 2008). Neuronal cells,
which have unique characteristics with a distinct morphology,
critically require a well-regulated system of synthesis and
degradation of proteins at the time of development, as well
as in later life stages (Yi and Ehlers, 2007; Takano et al.,
2015). They maintain a polar shape, in order to develop a
functional neuronal circuitry (Tahirovic and Bradke, 2009). It
is now evident from multiple studies that cellular proteolytic
machinery is exquisitely implicated in the formation of synapses
and neuronal circuitry, by maintaining the polarity of neurons
(Murphey and Godenschwege, 2002; Bingol and Schuman, 2005).
Several crucial E3 ubiquitin ligases, viz., TRIM2, TRIM46,
and FBXO31-SCF, have been found to have a regulatory
control over migration, polarization and synapse formation
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(Khazaei et al., 2011; Vadhvani et al., 2013; van Beuningen
et al., 2015). A number of reports postulate the decisive
involvement of PQC system in the maintenance of cellular
proteostasis, and thus in ameliorating the toxicities generated
by the accumulation of misfolded proteins in late-age. But, in
past many years, indispensable roles of E3 ubiquitin ligases in
proteasome-mediated proteolysis of crucial substrate proteins,
which play important roles in several pathways of neuronal
development, have been investigated in detail (Segref and Hoppe,
2008; Tai and Schuman, 2008; Yamada et al., 2013).

Major neurodevelopmental abnormalities are genetically
complex disorders, and are caused by multifactorial aberrations
in the developing brain. A very genuine challenge is to
understand the precision of molecular pathomechanisms
involved in NDDs. The future research on brain disorders must
address the importance of QC E3 ubiquitin ligases in regulation
of major signaling pathways that could link critical substrates
involved in NDDs and neurodegenerative diseases. Dysregulation
of protein synthesis, comprising proper folding of proteins, has
found to be involved in induction of several stress-response
pathways. Accumulation of abnormal proteins may affect the
synaptic functions, neuronal connectivity and can also alter
normal brain functions. Improper protein translation with a lack
of cellular protein QC mechanism is the most prominent factor,
which disturbs normal cellular proteostasis and can cause genetic
diseases, neurodegeneration, and aging.

So far, we have not understood completely how cellular
protein QC machinery contributes to the regulation of those
genes, which are important for brain development and normal
functions of brain throughout lifespan. Despite many findings
in basic human molecular genetics reveal the underlying causes
and thus enable us to challenge the occurrence of NDDs and
neurodegeneration; still a conclusive solution to modulate the
large number of genes and their end product proteins in a
favorable manner at early and old age, is a real challenge
in development of successful therapeutic strategies. It will be
interesting in upcoming research to find out how QC E3

ubiquitin ligases control synapse formation and axon branching
during developmental period. How these QC E3 ubiquitin ligases
regulate protein synthesis, and prevent accumulation of toxic
and non-functional proteins in neurons at later stages of life?
Hence, in future, it is important to understand how we can tightly
regulate cellular PQC mechanisms during early and later phases
of life with the help of known cellular quality control markers
such as QC E3 ubiquitin ligases.
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