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Mania causes symptoms of hyperactivity, impulsivity, elevated mood, reduced anxiety
and decreased need for sleep, which suggests that the dysfunction of the striatum, a
critical component of the brain motor and reward system, can be causally associated
with mania. However, detailed molecular pathophysiology underlying the striatal
dysfunction in mania remains largely unknown. In this study, we aimed to identify the
molecular pathways showing alterations in the striatum of SH3 and multiple ankyrin
repeat domains 3 (Shank3)-overexpressing transgenic (TG) mice that display manic-like
behaviors. The results of transcriptome analysis suggested that mammalian target of
rapamycin complex 1 (mTORC1) signaling may be the primary molecular signature
altered in the Shank3 TG striatum. Indeed, we found that striatal mTORC1 activity,
as measured by mTOR S2448 phosphorylation, was significantly decreased in the
Shank3 TG mice compared to wild-type (WT) mice. To elucidate the potential underlying
mechanism, we re-analyzed previously reported protein interactomes, and detected a
high connectivity between Shank3 and several upstream regulators of mTORC1, such
as tuberous sclerosis 1 (TSC1), TSC2 and Ras homolog enriched in striatum (Rhes),
via 94 common interactors that we denominated “Shank3-mTORC1 interactome”.
We noticed that, among the 94 common interactors, 11 proteins were related to
actin filaments, the level of which was increased in the dorsal striatum of Shank3 TG
mice. Furthermore, we could co-immunoprecipitate Shank3, Rhes and Wiskott-Aldrich
syndrome protein family verprolin-homologous protein 1 (WAVE1) proteins from the
striatal lysate of Shank3 TG mice. By comparing with the gene sets of psychiatric
disorders, we also observed that the 94 proteins of Shank3-mTORC1 interactome
were significantly associated with bipolar disorder (BD). Altogether, our results suggest
a protein interaction-mediated connectivity between Shank3 and certain upstream
regulators of mTORC1 that might contribute to the abnormal striatal mTORC1 activity
and to the manic-like behaviors of Shank3 TG mice.
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INTRODUCTION

Bipolar disorder (BD), characterized by recurrent mood swings
between depression and mania, is a highly heritable and
chronic mental illness that affects approximately 2.5% of the
population worldwide (Merikangas et al., 2011). Manic episodes
are the defining feature of BD, and manic symptoms include
hyperactivity, impulsivity, elevated mood, reduced anxiety and
decreased need for sleep (Grande et al., 2016). These core
symptoms suggest that a dysfunction of the striatum, the key
component of the brain motor and reward systems, may be
involved in the pathogenesis of manic disorder. This hypothesis
is supported by structural and functional abnormalities observed
in the striatum of the patients with BD (Strakowski et al., 1999;
Blumberg et al., 2003; Wessa et al., 2007). However, the detailed
molecular pathophysiology underlying striatal dysfunction in
mania remains largely unknown.

The mammalian target of rapamycin (mTOR) pathway
integrates various external signals and controls diverse cellular
processes including translation, apoptosis, autophagy and energy
metabolism (Laplante and Sabatini, 2012). The serine/threonine
kinase mTOR forms two protein complexes, mTOR complex 1
(mTORC1) and mTORC2, which have different subunit
compositions and cellular functions. The heterodimeric complex
of tuberous sclerosis 1 (TSC1) and TSC2 is a critical
upstream regulator of mTORC1 that functions as a guanosine
triphosphatase (GTPase)-activating protein (GAP) for the small
GTPase Ras homolog enriched in brain (Rheb; Huang and
Manning, 2008). As the active (GTP-bound) form of Rheb
directly binds and activates mTORC1, TSC1/TSC2 complex is
a negative regulator of mTORC1 pathway. In the striatum,
Ras homolog enriched in striatum (Rhes, encoded by Rasd2
gene), a small GTPase highly enriched in the striatal medium
spiny neurons (MSNs), has roles similar to Rheb in directly
binding and activating mTORC1 in a GTP-dependent manner
(Subramaniam et al., 2011). The activity of Rhes is regulated by
Ras guanyl releasing protein 1 (RasGRP1), a guanine nucleotide
exchange factor (GEF), in the striatum (Shahani et al., 2016).

In the brain, the mTOR pathway is involved in various
aspects of neuronal development and function including
dendrite formation, axonal elongation and synapse formation
and plasticity (Hoeffer and Klann, 2010; Takei and Nawa,
2014). This pathway has critical roles in normal brain function,
as abnormalities in the expression and/or activity of its
upstream and downstream components have been identified in
numerous neurodevelopmental and neuropsychiatric disorders,
including autism spectrum disorders (ASDs), drug addiction,
intellectual disability (ID), major depressive disorder (MDD),
and schizophrenia (SCZ; Costa-Mattioli and Monteggia,
2013). Specifically, it has been shown that mTORC1 pathway
is compromised in the prefrontal cortex of patients with
MDD (Jernigan et al., 2011). Furthermore, the therapeutic
efficacy of a fast-acting antidepressant ketamine is dependent
on the activation of mTORC1 pathway that increases the
synthesis of excitatory synaptic proteins (such as PSD-95 and
glutamate receptors) and the number of dendritic spines in
the prefrontal cortex (Li et al., 2010; Abdallah et al., 2015).

However, potential alterations of the mTOR pathway in
the striatum of the patients with mania have been scarcely
investigated.

Several pharmacological and genetic rodent models of mania
have been generated and characterized, and these, even with
some limitations, have provided important insights towards
understanding the pathogenic mechanisms in mania (Chen G.
et al., 2010; Kato et al., 2016; Logan and McClung, 2016).
We recently reported that EGFP-Shank3 (SH3 and multiple
ankyrin repeat domains 3)-overexpressing transgenic (TG) mice
display manic-like behaviors at the adult stage (8 to 12-
week-old), such as locomotor hyperactivity, hypersensitivity
to amphetamine, increased acoustic startle response, reduced
prepulse inhibition and abnormal circadian rhythms. Although
some of the behavioral abnormalities of Shank3 TG mice could
also be observed in mice modeling other disorders such as ASDs
and SCZ, the Shank3 TG mice responded to valproic acid, a
Food and Drug Administration (FDA)-approved drug for the
treatment of manic or mixed episodes in BD (Han et al., 2013b).
The Shank3 TG mice mildly overexpress Shank3 proteins (by
approximately 50%) compared to wild-type (WT) mice, and
thus, could potentially model human patients with SHANK3
gene duplications who usually have an additional copy of
SHANK3 gene. Indeed, we could also identify several patients
with SHANK3 gene duplications who were diagnosed with
mania-like hyperkinetic disorders (Han et al., 2013b). These
results altogether support the construct, face and predictive
validity (Nestler and Hyman, 2010) of Shank3 TG mice to model
human mania. However, importantly, it needs to be validated
whether the SHANK3 duplication patients with mania-like
hyperkinetic disorders indeed express higher Shank3 protein
levels. It is also notable that SHANK3 duplications have been
identified in patients with some other disorders including
Asperger’s syndrome, SCZ, and attention deficit hyperactivity
disorder (ADHD; Durand et al., 2007; Failla et al., 2007;
Moessner et al., 2007). In addition to the behavioral phenotypes,
we also showed abnormalities of synaptic actin cytoskeleton
and dendritic spines in the hippocampus of Shank3 TG mice
(Han et al., 2013b). Nevertheless, the hippocampus might not
be the primary brain region mediating manic-like behaviors
of Shank3 TG mice, especially considering that Shank3 is
enriched in the striatum compared to other brain regions (Peça
et al., 2011; Monteiro and Feng, 2017). Moreover, the identity
of downstream signaling pathways that may be affected by
altered synaptic actin cytoskeleton in Shank3 TG mice remains
uninvestigated.

SHANK3 (also called ProSAP2 for proline-rich synapse-
associated protein 2) gene encodes a core scaffold protein
organizing the macromolecular protein complex of the neuronal
excitatory postsynapse (Sheng and Kim, 2000; Dosemeci et al.,
2016). In addition to duplications, deletions and various point
mutations of SHANK3 gene have been causally associated with
ASDs, ID and SCZ (Durand et al., 2007; Gauthier et al., 2010;
Grabrucker et al., 2011; Jiang and Ehlers, 2013; Guilmatre et al.,
2014; Leblond et al., 2014; Choi et al., 2015; Monteiro and Feng,
2017). Notably, several studies investigating Shank3 knock-out
(KO) mice and Shank3 knock-down in neurons revealed that
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the loss of Shank3 expression results in changes of specific
signaling pathways such as metabotropic glutamate receptor 5
(mGluR5) signaling (Verpelli et al., 2011; Wang et al., 2016;
Vicidomini et al., 2017), and protein kinase B (PKB/Akt)-mTOR
signaling (Bidinosti et al., 2016). Moreover, pharmacological
treatments (mGluR5 modulators, insulin-like growth factor 1
(IGF1), or Cdc2-like kinase 2 (CLK2) inhibitor) targeting these
pathways recued both synaptic and behavioral abnormalities
caused by the loss of Shank3 expression (Bozdagi et al., 2013;
Shcheglovitov et al., 2013; Bidinosti et al., 2016; Wang et al.,
2016; Vicidomini et al., 2017). Therefore, it is conceivable that
such signaling pathways might also be altered especially in the
striatum of Shank3 TG mice, which could potentially provide
an insight into the molecular pathophysiology underlying the
striatal dysfunction in manic-like behaviors.

To address this issue, in this study, we performed a
transcriptome (RNA sequencing) analysis on the striatal tissue
of adult WT and Shank3 TGmice, the results of which suggested
mTORC1 signaling as the primary molecular signature affected
by Shank3 overexpression. Based on the transcriptome analysis,
we examined mTORC1 activity in the striatum of Shank3 TG
mice and found that it was decreased compared to that in
WT mice. To understand the potential underlying mechanisms,
we re-analyzed the previously reported protein interactome
data, which revealed that 94 interactors were shared between
Shank3 and upstream regulators of mTORC1 (TSC1, TSC2 and
Rhes). Moreover, we found that several of the 94 common
interactors were involved in regulating actin filaments (F-actin),
the amount of which was increased in the dorsal striatum of
Shank3 TG mice. By performing a comparison with the disease-
associated gene sets, we found that these 94 common interactors
were significantly associated with BD and SCZ, but not ASDs.
Altogether, our results suggest a protein interaction-mediated
connectivity between Shank3 and certain upstream regulators
of mTORC1 that might contribute to the abnormal striatal
mTORC1 activity and, at least in part, to themanic-like behaviors
of Shank3 TG mice.

MATERIALS AND METHODS

Mice
The enhanced green fluorescent protein (EGFP)-Shank3 TG
mice used in this study have been described previously (Han
et al., 2013b; Lee B. et al., 2017; Lee Y. et al., 2017). The
WT and Shank3 TG mice were bred and maintained on a
C57BL/6J background according to the Korea University College
of Medicine Research Requirements, and all procedures were
approved by the Committees on Animal Research at Korea
University College of Medicine (KOREA-2016-0096). The mice
were fed ad libitum and housed under a 12-h light-dark
cycle.

RNA Sequencing and Analysis
The mice (12-week-old male WT and Shank3 TG, three
mice per genotype) were deeply anesthetized with isoflurane
and decapitated. The striatum was dissected from each brain

using a brain matrix, immediately placed in RNAlater solution
(Ambion), and stored at 4◦C overnight. RNA extraction, library
preparation, cluster generation, and sequencing were performed
by Macrogen Inc. (Seoul, Korea). RNA samples for sequencing
were prepared using a TruSeq RNA Sample Prep Kit v2
(Illumina) according to the manufacturer’s instructions. An
Illumina’s HiSeq 2000 was used for sequencing to generate
101-bp paired-end reads (Supplementary Table S1). Raw data
were submitted to the Gene Expression Omnibus (GEO)
repository with accession GSE97544.

Pre-processing of raw reads was carried out using
Trimmomatic (Bolger et al., 2014) (version 0.35, options:
LEADING:3 TRAILING:3 MAXINFO:80:0.4 MINLEN:36), and
the trimmed reads were mapped to the Mus musculus genome
(GRCm38) using TopHat2 (Kim D. et al., 2013; version 2.1.0,
default options). The gene-level read counts were calculated
from the aligned reads using HTSeq Python package (Anders
et al., 2015). Differential gene expression analysis was performed
using DEseq2 package in R/Bioconductor (Love et al., 2014).
Normalized read counts were computed by dividing the raw
read counts by size factors and fitted to a negative binomial
distribution. The P values were first corrected by applying an
empirical estimation of the null distribution using the R fdrtool
(v.1.2.15) package and then adjusted for multiple testing with
the Benjamini–Hochberg correction. Genes with an adjusted
P value of less than 0.05 were considered as differentially
expressed.

Gene Set Enrichment Analysis (GSEA1; Subramanian et al.,
2005) was used to determine whether a priori-defined gene
sets would show statistically significant differences in expression
between Shank3 TG and WT mice. Enrichment analysis was
performed using GSEAPreranked (gsea2-2.2.2.jar) module on
gene set collections H (Hallmark gene sets; 50 gene sets)
downloaded from Molecular Signature Database (MSigDB)
v5.12. Additionally, GSEA analysis was performed by using
the sets of genes associated with psychiatric disease from the
Psychiatric disorders Gene association NETwork (PsyGeNET)
database (last update: Sept., 2016; Gutierrez-Sacristan et al.,
2015). GSEAPreranked was applied using the list of all genes
expressed, ranked by the fold change and multiplied by the
inverse of the P value with recommended default settings
(1000 permutations and a classic scoring scheme). The False
Discovery Rate (FDR) was estimated to control the false positive
finding of a given Normalized Enrichment Score (NES) by
comparing the tails of the observed and null distributions
derived from 1000 gene set permutations. The gene sets with
an FDR of less than 0.05 were considered as significantly
enriched.

Construction of Interactome Network
To build an interaction network, the sets of Shank3 (Han
et al., 2013b), TSC1/TSC2 (Sakai et al., 2011) and Rhes
(Shahani et al., 2016) interactomes were adopted. The network
graphics were generated using Cytoscape (Shannon et al.,

1http://software.broadinstitute.org/gsea
2http://software.broadinstitute.org/gsea/msigdb

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 June 2017 | Volume 10 | Article 201

http://software.broadinstitute.org/gsea
http://software.broadinstitute.org/gsea/msigdb
http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Lee et al. mTORC1 Signaling in Shank3 TG Mice

2003). To simplify the network, orphan nodes, defined as
the nodes connecting with only one of the hub proteins
(Shank3, TSC1/TSC2 and Rhes), were excluded from the
graphics.

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathway Analysis
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses were performed
using DAVID software (version 6.8; Huang Da et al., 2009).
The set of 94 genes from Shank3-mTORC1 interactome
was tested against a customized background of the entire
mouse genome. Mouse gene names were converted to human
homologs using the Mouse Genome Informatics (MGI)
database3.

Disease Association Analysis
Gene-disease association data were retrieved from the PsyGeNET
(Gutierrez-Sacristan et al., 2015) and Disease gene association
NETwork (DisGeNET) databases (Piñero et al., 2015; last update:
Sept., 2016). PsyGeNET database contains information relevant
to psychiatric diseases and their associated genes integrated from
the DisGeNET (Piñero et al., 2017) database, and data extracted
from the literature by text mining, and further curated by the
experts in the domain. Additionally, the genes associated with
the risk for ASD were obtained from the Simons Foundation
Autism Research Initiative (SFARI) database (syndromic and
category 3 or above4). The enrichment of disease-associated
genes was tested using the hypergeometric distribution test.
Hypergeometric P values were calculated using the phyper
(q: overlapped genes-1, m: Shank3-mTORC1 interactome, n:
protein-coding genes in The HUGO Gene Nomenclature
Committee (HGNC)—m, k: disease associated genes) function
in R package, and were adjusted for multiple testing with
the Benjamini and Hochberg test, as implemented in the
Bioconductor’s q value package. Diseases with adjusted P values
of less than 0.05 were considered as statistically significantly
enriched.

RNA Purification and qRT-PCR
Real-time quantitative reverse transcription PCR (qRT-PCR)
was performed as described previously (Han et al., 2013a;
Kim et al., 2016; Lee B. et al., 2017). Briefly, total RNA
was extracted from the striatum of 12-week-old mice using a
miRNeasy minikit (Qiagen) according to the manufacturer’s
instructions. Two micrograms of total RNA were used for
cDNA synthesis using iScriptTM cDNA Synthesis Kit (Bio-Rad).
Target mRNAs were detected and quantified by a real-time
PCR instrument (CFX96 Touch, Bio-Rad) using SYBR Green
master mix (Bio-Rad). The results were analyzed using the
comparative Ct method normalized against the housekeeping
gene Gapdh. The primer sequences for real-time PCR are as
follows:

3http://www.informatics.jax.org/homology.shtml
4https://gene.sfari.org/autdb/GS_Home.do

Mouse Shank3 forward 5′ TGGTTGGCAAGAGATCCAT 3′,
reverse 5′ TTGGCCCCATAGAACAAAAG 3′

MouseGpr85 forward 5′ ATGCAGCCGACAACATTTTGC 3′,
reverse 5′ CAGGTGGAGCCATTTTTGACA 3′

MouseClic6 forward 5′ CTCTGGGTTAGACTCTCAGGG3′,
reverse 5′ GGTGCCTCTGTGTCCATGTT 3′

Mouse Plk5 forward 5′ CGGCACCCTTGTCAGAGATG 3′,
reverse 5′ TGGGGGAAAGGCAAACACAG 3′

MouseGapdh forward 5′ GGCATTGCTCTCAATGACAA 3′,
reverse 5′ CCCTGTTGCTGTAGCCGTAT 3′

Biochemistry and Antibodies for Western
Blotting
Whole lysates of the mouse brain were prepared as described
previously (Han et al., 2009, 2015). Briefly, the striatum and
hippocampus of 12-week-old mice were homogenized in RIPA
buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.1% SDS,
1% Triton X-100, 0.5% sodium deoxycholate) with freshly
added protease and phosphatase inhibitors (Roche). Protein
concentration was measured using Bradford Protein Assay
(Bio-Rad). Brain lysates were heated in 1x NuPAGE LDS sample
buffer (Invitrogen) containing a 1x NuPAGE reducing agent
(Invitrogen). From each sample, 10∼20 µg of proteins were
loaded for Western blotting. Immunoprecipitation (IP) was
performed as described previously (Han et al., 2013b; Lee Y.
et al., 2017). The GFP-Trap beads (ChromoTek) were used
to pull down EGFP-Shank3 proteins and their interactors.
The antibodies used for Western blotting were Gapdh (Cell
Signaling, #2118), GFP (NeuroMAb, #75-131), Homer1b/c
(Santa Cruz, sc-20807), Rhes (Millipore, ABN31), Shank3 (Santa
Cruz Biotechnology, sc-30193), phospho-mTOR (S2448, Cell
Signaling, #2971), mTOR (Cell Signaling, #2983), and WAVE1
(NeuroMab, 75-048). Western blot images were acquired by
ChemiDoc Touch Imaging System (Bio-Rad) and quantified
using ImageJ software.

Immunohistochemistry and Image Analysis
For each immunohistochemistry (IHC) experiment, 5–7 pairs
of 12-week-old WT and Shank3 TG mice from at least three
different litters were used. The mice were deeply anesthetized
with isoflurane and transcardially perfused with heparinized
(20 units/ml) phosphate-buffered saline (PBS) followed by 4%
paraformaldehyde (PFA) in PBS. Brains were extracted and
post-fixed in 4% PFA overnight. After post-fixation, the brains
were washed with PBS and cryoprotected with 30% sucrose
in PBS for 48 h. Brains were frozen in O.C.T compound
(SAKURA Tissue-Tek, 4583) and sectioned (60 µm) using
a cryostat microtome (Leica, CM3050S). For each staining
set, two sections were randomly selected from each mouse
at a similar anterior posterior level. The following antibodies
were used: GFP (Abcam, ab290, 1:500), neuronal nuclei
(NeuN; Millipore, MAB377, 1:1000), rhodamine phalloidin
(Molecular Probes, R415, 1 unit/200 µl), and Alexa Fluor-
conjugated secondary antibodies (Jackson Immunoresearch,
111-585-003 and 115-585-003, 1:500). Confocal microscopy
(Zeiss, LSM800) was used to acquire images (10× objective
and 0.6× digital zoom) of the striatum (Bregma 0.13–1.7) from
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coronal sections. Whole regions were obtained by tile scanning
and each frame was taken in Z-stacks of 5–10 slices (in total
45–55 µm thickness). Tiled Z-projection images were aligned
and converted into a single flattened image using ZEN software
from Zeiss. From each tiled image, randomly selected two
regions of interests (ROIs) were analyzed for the dorsolateral
(DL), dorsomedial (DM), and dorsoventral (DV; ventral part
of the dorsal striatum) striatum using ImageJ software. All
quantifications were carried out by operators blinded to the
genotype.

Quantification and Statistical Analysis
Values from at least three independent experiments using
were used for quantification and statistical analysis. This
means that we performed at least three independent
technical experiments, and we used different biological
samples for each technical experiment. P values were
calculated by two-tailed unpaired Student’s t-test unless
otherwise specified, using GraphPad Prism 6 software. All
data are presented as mean ± SEM. ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001.

RESULTS

Striatal Transcriptome Analysis of Shank3
TG Mice
To identify which signaling pathways were altered in the
striatum of Shank3 TG mice, we performed transcriptome
(RNA sequencing, RNA-seq) analysis with the striatal tissue
from 12-week-old WT and Shank3 TG mice. Although most
Shank3 proteins function at the excitatory postsynapse,
and thus, are less likely to directly regulate broad gene
transcription, we reasoned that this unbiased approach
might (indirectly) reflect major signaling pathways affected
by mild Shank3 overexpression. As expected, the overall
changes in gene expression were mild in the striatum of
Shank3 TG mice compared to that of WT mice (Figure 1A
and Supplementary Table S2). After applying adjusted P values
(<0.05, Benjamini–Hochberg correction), we could identify
22 up-regulated and 17 down-regulated genes in the Shank3
TG striatum (Supplementary Table S3); Shank3 (1.77 fold),
G protein-coupled receptor 85 (Gpr85, 1.23 fold), and
Chloride intracellular channel 6 (Clic6, 1.16 fold) were the
top three up-regulated genes, while Polo like kinase 5 (Plk5,
−1.28 fold), Immunoglobulin-like and fibronectin type III
domain containing 1 (Igfn1, −1.19 fold), and Inhibitor
of DNA binding 3 (Id3, −1.16 fold) were the top three
down-regulated genes (Figure 1B), some of which were validated
by qRT-PCR (Supplementary Table S3 and Supplementary
Figure S1).

Next, we performed GSEA to identify biologically meaningful
signatures in the Shank3 TG mice striatal RNA-seq data.
We found that several biological pathways including
‘‘mTORC1 signaling’’, ‘‘protein secretion’’, ‘‘Myc targets
V1’’, ‘‘unfolded protein response (UPR)’’, and ‘‘oxidative
phosphorylation’’ were represented by the genes up-regulated

in Shank3 TG striatum (Figure 1C and Supplementary
Table S4). Among them, ‘‘mTORC1 signaling’’ was the
top ranked pathway based on the NES (Figures 1C,D
and Supplementary Tables S4, S5). Moreover, protein
secretion, UPR, and oxidative phosphorylation are the
cellular processes tightly coupled with mTORC1 signaling
(Narita et al., 2011; Appenzeller-Herzog and Hall, 2012;
Morita et al., 2013), which further supports the hypothesis
that mTORC1 signaling may be the primary molecular
signature in the RNA-seq analysis of Shank3 TG striatum.
In contrast to the up-regulated genes, the genes down-regulated
in Shank3 TG striatum depicted no significant enrichment
in any specific biological pathways (Figure 1C and
Supplementary Table S4).

Based on the results from GSEA, we directly investigated
the striatal mTORC1 activity in Shank3 TG mice by measuring
the phosphorylation level of mTOR S2448 residue. The
phosphorylation of mTOR S2448 is predominantly associated
with mTORC1 (Copp et al., 2009), and reflects its activation
as S6 kinase, a downstream target of mTORC1, phosphorylates
the residue in a feedback loop (Chiang and Abraham,
2005). We found that the phosphorylation level of mTOR
S2448 normalized to total mTOR expression was significantly
decreased by approximately 15% in the striatum of Shank3 TG
mice compared to that of WT mice (Figure 1E). The total
expression level of mTOR protein was not significantly altered
in the striatum of Shank3 TG mice (Figure 1E). In contrast
to the striatum, neither phospho nor total mTOR protein was
altered in the hippocampus of Shank3 TG mice (Figure 1F).
Altogether, these results suggest that mild overexpression
of Shank3 decreases mTORC1 activity in the striatum of
Shank3 TG mice.

Protein Interactome Analysis of Shank3
with the Upstream Regulators of mTORC1
What could be the mechanism underlying decreased
mTORC1 activity in the striatum of Shank3 TG mice? The
serine/threonine kinase PKB/Akt is a key positive upstream
regulator of mTORC1 that directly phosphorylates and inhibits
the TSC1/TSC2 complex (Laplante and Sabatini, 2012).
However, in our original report describing the Shank3 TG
mice, we showed that the activities of PKB/Akt and one of its
downstream targets, glycogen synthase kinase 3 (GSK3), were
normal in the striatum of Shank3 TG mice (Han et al., 2013b).
Therefore, we decided to explore alternative targets.

We have previously generated a comprehensive
Shank3 protein interactome consisting of about 400 proteins, by
combining the results from yeast two-hybrid (Y2H) screening
(Sakai et al., 2011) and in vivo IP followed by mass spectrometry
analysis of the mixed hippocampal and striatal tissue isolated
from Shank3 TG mice (Han et al., 2013b). As Shank3 is a core
scaffold protein containing multiple protein-protein interaction
(PPI) domains, it is possible that the functions of Shank3 in
neurons could be largely mediated by the interacting proteins
(Lee Y. et al., 2017). Notably, Sakai et al. (2011) have previously
provided evidence supporting the PPI-mediated connectivity
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FIGURE 1 | RNA-seq analyses and measurements of mammalian target of rapamycin complex 1 (mTORC1) activity in the SH3 and multiple ankyrin repeat
domains 3 (Shank3) transgenic (TG) striatum. (A) Volcano plot for the striatal RNA-seq analysis of Shank3 TG mice. Differentially expressed genes (DEGs), defined by
false discovery rate (FDR) < 0.05, are shown as blue (down-regulated) and red (up-regulated) circles. FC, fold change. The complete lists of RNA-seq analysis and
DEGs are provided in the Supplementary Tables S2, S3. (B) List of top 10 up-regulated and down-regulated DEGs (based on the fold changes) from the striatal
RNA-seq analysis of Shank3 TG mice. (C) The bar graph shows normalized enrichment scores (NES) of gene set enrichment analysis (GSEA) on the Hallmark gene
sets for the striatal RNA-seq analysis of Shank3 TG mice. Asterisks indicate the gene sets with an FDR of less than 0.05. The complete list that contains the results
of GSEA analysis is provided in Supplementary Table S4. (D) The enrichment plot of striatal RNA-seq analysis of Shank3 TG mice on the mTORC1 signaling gene
set. The complete list of mTORC1 signaling genes within the Shank3 TG RNA-seq analysis is provided in Supplementary Table S5. (E) Representative Western blot
images and quantifications show that mTORC1 activity measured by mTOR S2448 phosphorylation is decreased in the striatum of Shank3 TG mice. The total mTOR
expression level is not significantly different between wild-type (WT) and Shank3 TG striatum. Data are presented as mean ± SEM (n = 10 animals per genotype;
∗∗P < 0.01, unpaired two-tailed Student’s t-test). (F) Normal mTORC1 activity and total mTOR protein levels in the hippocampus of Shank3 TG mice (n = 6 animals
per genotype).

between Shank3 and mTORC1 pathway. Specifically, they
showed that Shank3 and TSC1/TSC2 complex are highly
connected by many interacting proteins identified by Y2H
screening, and that Shank3 and TSC1 indeed form an in vivo
protein complex in the mouse brain. In addition, Shahani et al.
(2016) recently published a striatal in vivo protein interactome of
Rhes, another upstream regulator of mTORC1, (‘‘Rhesactome’’)
where Shank3 was identified as a Rhes interactor in the
striatum. Therefore, we re-analyzed these interactomes (Shank3
in vivo + Y2H, TSC1 and TSC2 Y2H, and Rhes in vivo) side
by side to elucidate the identity and the number of proteins
interacting both with Shank3 and the upstream regulators
of mTORC1. Notably, we found an overlap consisting of
94 proteins (about 24%) between the Shank3 interactome
and either TSC1, TSC2, or Rhes interactome (Figures 2A–C
and Supplementary Table S6). Among the 94 proteins, four
interactors including Dynactin 2 (encoded by Dctn2), Ankyrin
repeat domain 35 (Ankrd35), Pleckstrin homology like domain
family B member 1 (Phldb1), and Protein interacting with
C kinase 1 (Pick1) were shared by three proteins (either
Shank3/TSC1/TSC2 or Shank3/TSC1/Rhes), and one interactor,
α-actinin 2 (encoded by Actn2), was shared by all four proteins
(Figures 2B,C).

To understand the representative biological functions or
pathways of the 94 common interactors, we performed GO
and KEGG pathway analysis. We found that terms including
‘‘gene expression’’ in the biological process category, ‘‘protein
binding’’, ‘‘poly(A) RNA binding’’, ‘‘ion channel binding’’,
and ‘‘actin filament binding’’ in the molecular function
category, and ‘‘cytosol’’, ‘‘postsynaptic density’’, ‘‘neuronal
projection’’, and ‘‘dendritic spine’’ in the cellular component
category, and ‘‘carbon metabolism’’ in the KEGG pathway were
significantly associated with these interactors (Figure 2D and
Supplementary Table S7). Together, these results suggest a
high connectivity between Shank3 and the upstream regulators
of mTORC1, mediated by 94 common interacting proteins
involved in defined biological pathways (for simplicity,
we will refer to these 94 proteins as ‘‘Shank3-mTORC1
interactome’’).

Actin-Related Proteins in the
Shank3-mTORC1 Interactome
From the GO and KEGG pathway analysis, we could identify
several molecular/biological functions of the 94 proteins from
Shank3-mTORC1 interactome. Among them, we hypothesized
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FIGURE 2 | Protein interaction-mediated connectivity between Shank3 and upstream regulators of mTORC1. (A) The diagram shows a summary of protein
interaction-mediated connectivity between Shank3 and the upstream regulators of mTORC1 (tuberous sclerosis 1, TSC1/TSC2 and Ras homolog enriched in
striatum, Rhes). (B) The Venn diagram shows the number of interactors shared by Shank3, TSC1, TSC2 and Rhes proteins. The actin filament bundling protein,
α-actinin 2 (ACTN2), is the only common interactor for all four proteins. (C) The interactome network of Shank3, TSC1/TSC2 and Rhes. To simplify the network, the
orphan nodes, defined as nodes connected with only one of the hub proteins (Shank3, TSC1/TSC2 and Rhes), are excluded from the graphics. The nodes for
94 proteins of Shank3-mTORC1 interactome are colored in red. The complete list of interactomes for Shank3, TSC1, TSC2 and Rhes is provided in Supplementary
Table S6. (D) Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analyses of the 94 proteins of Shank3-mTORC1 interactome.
Significant terms (Benjamini adjusted P value < 0.05) are in bold red. The complete list of analyses is provided in Supplementary Table S7.

that actin regulatory pathway might be important, because
ACTN2, an actin filament bundling protein (Djinovic-Carugo
et al., 1999), was identified as the only common interactor for
Shank3, TSC1/TSC2, and Rhes. Moreover, PICK1, a common
interactor for Shank3 and TSC1/TSC2, is also involved in
regulating actin cytoskeleton by inhibiting the actin-nucleating
Arp2/3 complex (Rocca et al., 2008). Previously, we generated a
subnetwork of Shank3 interactome consisting of only 38 actin-
related proteins from the original Shank3 interactome (Han
et al., 2013b). We found that among the 38 actin-related
interactors of Shank3, 11 proteins (approximately 29%) were
shared with the Shank3-mTORC1 interactome (Figure 3A).
Specifically, we noticed that the Wiskott-Aldrich syndrome
protein family verprolin-homologous protein 1 (WAVE1,
encoded by WASF1) and Abelson-interacting protein 1 (Abi1)
proteins, the critical components of the WAVE regulatory
complex (WRC), and Ras-related C3 botulinum toxin substrate
1 (Rac1), the upstream regulator of the WRC, were among
these 11 proteins (Figure 3A). The WRC is an approximately
400 kDa heteropentameric protein complex that consists
of WAVE, Abi, Cytoplasmic FMR1-interacting protein
(Cyfip), Nck-associated protein (Nap) and Hematopoietic
stem progenitor cell 300 (HSPC300) and activates the
Arp2/3 complex to initiate actin polymerization and branching
(Takenawa and Suetsugu, 2007; Chen Z. et al., 2010; Han et al.,
2015).

This result prompted us to test whether the levels of
polymerized actin (actin filament or F-actin) were increased
in the striatum of Shank3 TG mice. We previously showed
that synaptic F-actin levels were increased in the cultured
hippocampal neurons of Shank3 TG mice (Han et al., 2013b).
However, this has not been validated in vivo, especially in
the striatum where Shank3 is enriched compared to other
brain regions. For the analysis, we focused on the dorsal
striatum, the area in which the functional and morphological
changes of striatal synapses in the Shank3 KO mice have
been mainly characterized (Peça et al., 2011; Peixoto et al.,
2016; Wang et al., 2016; Jaramillo et al., 2017). In addition,
the dorsal striatum is closely associated with motor and
executive functions (Balleine and O’Doherty, 2010) both of
which are defective in mania (Marvel and Paradiso, 2004).
Nevertheless, to more precisely characterize F-actin changes,
we subdivided the dorsal striatum into three subareas; DL,
DM and DV compartments, characterized by distinct cellular
compositions, synaptic inputs/outputs, and functional roles in
controlling behavior (Steiner and Tseng, 2010; Ito and Doya,
2015; Matamales et al., 2016; Figure 3B).

First, we carefully set the scanning parameters for fluorescent
confocal microscopy, because Shank3 TG mice express
EGFP-tagged Shank3 proteins. Indeed, we found that under the
scanning condition for Alexa Fluor 488, significant amount of
signal was detected from the striatum of Shank3 TG, but notWT,
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FIGURE 3 | Actin-related proteins in the Shank3-mTORC1 interactome, and
increased F-actin levels in the Shank3 TG striatum. (A) The actin-related
subnetwork of Shank3 interactome where the 11 proteins shared by the
Shank3-mTORC1 interactome are colored in red. The edges of the network
are colored depending on the type of interactions (direct or indirect
interaction). The red dotted circle indicates the components of wave
regulatory complex (WRC; WASF1; Abelson-interacting protein 1 (ABI1), ABI2
and Cytoplasmic FMR1-interacting protein 2 (CYFIP2) and Ras-related C3
botulinum toxin substrate 1 (RAC1)). (B) The diagrams show the atlas of
mouse brain coronal sections for the striatum, and the coordinates of the
exact areas where immunohistochemistry (IHC) experiments were performed
(left panel). The green boxes indicate regions of interests (ROIs).
Representative IHC images show expression of the EGFP-Shank3 proteins in
the dorsal striatum of Shank3 TG, but not WT, mice (right panel). DL,
dorsolateral; DM, dorsomedial; DV, dorsoventral. Scale bar, 500 µm.
(C) Representative IHC images and quantification show increased levels of
F-actin in the DV, but not DM and DL, compartments of Shank3 TG striatum.
Scale bar, 500 µm. Data are presented as mean ± SEM (n = 7 animals per
genotype; ∗P < 0.05, unpaired two-tailed Student’s t-test). (D) Western blot
images show co-immunoprecipitation (IP) of EGFP-Shank3, Rhes, WAVE1,
and Homer1b/c proteins from the Shank3 TG, but not WT, synaptosomal
lysate. For input and flow-through (F/T) lanes, 0.5% of total proteins were
loaded.

mice (Supplementary Figure S2). Therefore, we decided to use
Alexa Fluor 594 and rhodamine for IHC experiments. Next, we
confirmed that the EGFP-Shank3 proteins from the transgene
were expressed in all three striatal subareas of Shank3 TG mice
(Figure 3B). Lastly, we measured F-actin levels by staining

the striatal sections with rhodamine-conjugated phalloidin,
and found that F-actin levels were significantly increased by
approximately 23% in the DV compartment of Shank3 TG
mice (Figure 3C). Trends for an increase were also observed
in DL (P = 0.14) and DM (P = 0.06) compartments, but the
differences were not statistically significant. As a control, the
intensity of NeuN staining in the three subareas of the dorsal
striatum in Shank3 TGmice was comparable to that inWTmice,
suggesting a normal neuronal density in the Shank3 TG striatum
(Supplementary Figure S3).

Previously, Sakai et al. (2011) validated the in vivo interactions
of Shank3, TSC1 and α-actinin using mouse brain lysates.
Therefore, we also tested for the existence of the in vivo
protein complex consisting of Shank3, Rhes and WAVE1 in
the synaptosomal lysate from Shank3 TG mice. We performed
IP using the GFP-Trap beads to pull down EGFP-Shank3 and
its interacting proteins from Shank3 TG mice, as described
previously (Han et al., 2013b; Lee Y. et al., 2017), and found that
Shank3, Rhes, WAVE1 and Homer1b/c (a known interactor of
Shank3) proteins were pulled down together (Figure 3D). This
result is consistent with the previous study of ‘‘Rhesactome’’, in
which the authors performed IP using Rhes antibodies to pull
down endogenous Rhes proteins from the striatal lysate of WT
mice, and identified Shank3 andWAVE1 proteins in the complex
usingmass spectrometry analysis (Shahani et al., 2016). Together,
these results suggest that certain actin-related proteins may be
involved in connecting Shank3 and the upstream regulators of
mTORC1.

Associations of the Shank3-mTORC1
Interactome and Shank3 TG Transcriptome
with the Disease
Recent studies have shown that the genes mutated in
neurodevelopmental and neuropsychiatric disorders such
as ASD or SCZ might also be highly interconnected at the
protein level (De Rubeis et al., 2014; Fromer et al., 2014).
In this regard, we reasoned that neuropsychiatric disorders
affected by pathological Shank3-mTORC1 interactions might be
identified as those significantly associated with the 94 proteins
connecting Shank3 and the upstream regulators of mTORC1.
We selected three established disease-associated gene sets;
psychiatric disorder-associated PsyGeNET gene sets (Gutierrez-
Sacristan et al., 2015), ASD-associated Simons Foundation
Autism Research Initiative (SFARI) gene set5, and broad human
disease-associated DisGeNET gene sets (Piñero et al., 2017) and
compared these gene sets with the 94 genes of Shank3-mTORC1
interactome.

We found that among the eight major classes of psychiatric
disorders in the PsyGeNET, ‘‘BDs and related disorders’’
and ‘‘SCZ spectrum and other psychiatric disorders’’ were
significantly associated with the 94 genes of Shank3-mTORC1
interactome (adjusted P = 0.000186 for both, hypergeometric
test; Figures 4A,B and Supplementary Table S8). Moreover,
when compared with the entire subclasses (117 psychiatric
disorders) of PsyGeNET, only four disorders including ‘‘SCZ’’,

5https://gene.sfari.org/autdb/GS_Home.do
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FIGURE 4 | Associations of the Shank3-mTORC1 interactome and Shank3 TG striatal transcriptome with the disease. (A) Disease association analysis for the
94 genes in Shank3-mTORC1 interactome. Significant disease terms (Benjamini adjusted P value < 0.05) are in bold red. The complete analyses are provided in
Supplementary Tables S8, S9. (B) The Shank3-mTORC1 interactome network with bipolar disorder (BD)- and schizophrenia (SCZ)-associated proteins from
Psychiatric disorders Gene association NETwork (PsyGeNET) database colored in red. (C) The bar graph shows the Normalized Enrichment Scores (NESs) of GSEA
on the PsyGeNET gene sets for the striatal RNA-seq analysis of Shank3 TG mice. Significant disease terms are in bold red. The complete list of GSEA is provided in
Supplementary Table S10. (D) The enrichment plots showing the striatal RNA-seq analysis of Shank3 TG mice on the PsyGeNET gene sets of “depressive disorders”
(left panel) and “BD and related disorders” (right panel).

‘‘BD’’, ‘‘manic’’ and ‘‘manic mood’’ were significantly associated
with the 94 genes (Supplementary Table S8). It is considered that
BD and SCZ have many aspects in common, such as risk genes,
molecular and neuronal pathophysiology, and clinical symptoms
(Berrettini, 2000; Benes and Berretta, 2001; Moskvina et al.,
2009). In contrast to BD and SCZ, the association between ASDs
(SFARI genes) and the 94 genes was not statistically significant
(Figure 4A). Lastly, among the disease classes of DisGeNET,
‘‘SCZ’’, ‘‘Down syndrome’’, ‘‘Alzheimer’s disease’’, ‘‘seizures’’ and
‘‘BD’’ were among the top disorders significantly associated with
the 94 genes of Shank3-mTORC1 interactome (Figure 4A and
Supplementary Table S9).

The above mentioned result showing a significant association
between Shank3-mTORC1 interactome and BD prompted us to
test whether the overall transcriptomic change in the Shank3 TG
striatum might also be associated with BD or other psychiatric
disorders. We therefore preformed GSEA of the Shank3 TG
RNA-seq results with the PsyGeNET gene sets. We found that
more PsyGeNET gene sets were significantly associated with the
RNA-seq results than with the Shank3-mTORC1 interactome.
In addition to SCZ and BD, ‘‘depressive disorders’’, ‘‘alcohol
use disorders’’, and ‘‘cocaine use disorders’’ gene sets were
significantly represented by the genes up-regulated in the Shank3
TG striatum (Figures 4C,D and Supplementary Table S10).
Together, these results suggest that both Shank3-mTORC1

interactome and striatal transcriptome of Shank3 TG mice may
be associated with BD.

DISCUSSION

The aim of this study was to elucidate the molecular
pathophysiology underlying striatal dysfunction in mania. We
performed striatal RNA-seq analysis of Shank3-overexpressing
manic mouse model and identified mTORC1 signaling as the
primary molecular signature. Based on the RNA-seq analysis,
we examined mTORC1 activity and found that it was decreased
in the striatum of Shank3 TG mice. Although the RNA-seq
analysis revealed altered mTORC1 activity, we consider that
the gene expression changes related to mTORC1 signaling
could be a secondary or compensatory effect of decreased
mTORC1 activity for several reasons. First, the GSEA revealed
that mTORC1 signaling was depicted by the genes up-regulated
in Shank3 TG striatum, which is opposite to the change
of striatal mTORC1 activity. Second, Shank3 proteins mainly
function at the excitatory postsynapse, and are thus less likely
to directly regulate a group of genes specifically related to
mTORC1 signaling. Notably, it was recently reported that
Shank3 proteins can undergo synapse-to-nucleus shuttling in
an activity-dependent manner, and that Shank3 localized in
the nucleus may regulate the expression of several genes such
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as leucine rich repeat transmembrane neuronal 1 (Lrrtm1),
synaptotagmin I (Syt1), and cystic fibrosis transmembrane
conductance regulator homolog (Cftr; Grabrucker et al., 2014).
However, none of these potential ‘‘Shank3 target genes’’
was listed among mTORC1 signaling-related genes from our
RNA-seq analysis (Supplementary Table S5), suggesting that
mTORC1 signaling-related genes in the striatum of Shank3 TG
mice were not directly up-regulated by nuclear Shank3 proteins.

Although we did not characterize them in details, there
were several interesting differentially expressed genes (DEGs)
from the striatal RNA-seq analysis of Shank3 TG mice. For
example, an up-regulated GPR85 (also called SREB2 for super-
conserved receptor expressed in brain) gene, encoding a highly
conserved G protein-coupled receptor, has been associated with
SCZ (Matsumoto et al., 2008; Radulescu et al., 2013). Notably,
the Gpr85 TG mice mildly overexpressing GPR85 proteins
display some abnormal behaviors including impaired prepulse
inhibition and decreased social interaction (Matsumoto et al.,
2008), which were also seen in the Shank3 TG mice (Han
et al., 2013b). Therefore, the effects from DEGs, together with
decreased mTORC1 activity, might contribute to the behavioral
phenotypes of Shank3 TG mice.

To understand the detailed mechanism underlying decreased
mTORC1 activity in the Shank3 TG striatum, we re-analyzed
the Shank3, TSC1/TSC2 and Rhes protein interactomes side
by side. This was based on the previous reports showing the
PPI-mediated connectivity between Shank3 and TSC1/TSC2
(Sakai et al., 2011), and the striatal in vivo Rhes protein complex
(‘‘Rhesactome’’) containing Shank3 and several Shank3-
interacting proteins (Shahani et al., 2016). Indeed, we could
identify 94 proteins connecting Shank3 and the upstream
regulators of mTORC1 (Shank3-mTORC1 interactome).
However, one of the limitations of this interactome is not being
strict enough to fully represent the in vivo connections among
Shank3, TSC1/TSC2 and Rhes, because some of the interactions,
especially those for TSC1/TSC2, were identified based only on
in vitro Y2H screening. Nevertheless, Shank3-TSC1 (Sakai et al.,
2011) and Shank3-Rhes (Figure 3D) interactions were validated
in the mouse brain lysates, indicating the existence of protein
complexes containing Shank3, TSC1/TSC2 and Rhes in vivo.

The mechanism underlying the decrease in mTORC1 activity
in response to interactions between Shank3 and the upstream
regulators of mTORC1 in the Shank3 TG striatum remains
unclear. One possibility is that Shank3 overexpression might
shift or sequester TSC1/TSC2 and Rhes proteins from
mTORC1 regulatory complex to actin filaments-related
complex and thereby disturb the maintenance of normal
mTORC1 activity. In support of this hypothesis, we found
that 11 of the 94 proteins from Shank3-mTORC1 interactome,
including ACTN2, WAVE1, Abi and Rac1, were associated with
actin filaments, and that levels of F-actin were increased in the
dorsal striatum of Shank3 TG mice. Similarly, it was recently
shown that, in the mouse striatum, RasGRP1 suppresses the
inhibitory role of Rhes in amphetamine-induced dopamine
receptor signaling, by promoting Rhes to form a specific protein
complex (Shahani et al., 2016). Further biochemical and/or
imaging analyses are necessary to fully understand the functional

significance of Shank3-mTORC1 interactome in the regulation
of the striatal mTORC1 activity. Moreover, we cannot exclude
the possibility that altered mTORC1 activity might contribute
to the increased F-actin levels in the striatum of Shank3 TG
mice. It has been shown that mTORC1 and mTORC2 regulate
motility and metastasis of colorectal cancer cells via modulating
Ras homolog gene family, member A (RhoA) and Rac1 signaling
(Gulhati et al., 2011).

It is notable that mTORC1 activity is also decreased in
the neurons with reduced Shank3 expression, due to increased
steady-state levels of CLK2 (Bidinosti et al., 2016). The
CLK2 phosphorylates and activates the regulatory subunit of
protein phosphatase 2A (PP2A) which in turn inactivates Akt, a
positive regulator of mTORC1. However, this mechanism could
not explain the decrease in mTORC1 activity in the striatum of
Shank3 TG mice, where Akt activity was found to be normal
(Han et al., 2013b). Thus, either loss or gain of Shank3 expression
can induce a decrease in mTORC1 activity, most likely, via
different mechanisms, the details of which will be an interesting
topic for future research. Despite normal Akt activity in the
Shank3 TG striatum, however, treatments with certain molecules
that increase Akt activity such as IGF1, might possibly rescue
the decreased striatal mTORC1 activity and some behavioral
abnormalities in the Shank3 TGmice. Importantly, the treatment
with IGF1 has already been shown as a promising potential
therapeutic approach for the disorders caused by SHANK3
deficiency in model system studies and a pilot clinical trial
(Bozdagi et al., 2013; Shcheglovitov et al., 2013; Kolevzon et al.,
2014; Bidinosti et al., 2016).

By performing Western blot experiments, we found a mild
(approximately 15%) decrease of mTORC1 activity in the
striatum of Shank3 TG mice. While several types of neurons
can be found in the striatum, MSNs, the GABAergic output
neurons of the striatum, account for the majority (>90%)
of the population. The MSNs can be further classified into
D1 and D2-type neurons based on the type of dopamine receptor
expressed and projection pathway (striatonigral direct pathway
and striatopallidal indirect pathway, respectively; Calabresi et al.,
2014). It has been reported that the excitatory synapses of
MSNs in Shank3 KO mice show morphological and functional
abnormalities (Peça et al., 2011; Peixoto et al., 2016; Wang et al.,
2016; Jaramillo et al., 2017). However, these studies did not
address whether D1 and D2-type MSNs could be differentially
affected by the loss of Shank3 expression. Importantly, Wang
et al. (2017) recently showed that several striatal synaptic
functions are selectively impaired in the striatopallidal D2-type
MSNs in a line of Shank3 KO (Shank3B KO) mice. In the same
regard, the striatal mTORC1 activity of Shank3 TG mice may
be preferentially, or even specifically, decreased in the D1 or
D2-type MSNs, but this decrease may be masked by normal
mTORC1 activity of the remaining neuronal populations. More
comprehensive analyses regarding the activities of mTORC1 in
different neuronal populations of the striatum of both Shank3
KO and TG mice will be important, especially considering
that D1 and D2-type MSNs of the striatum have distinct, or
even opposite, roles in controlling behavior (Kravitz et al.,
2010).
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Another important remaining issue is whether decreased
striatal mTORC1 activity is causally associated with manic-like
behaviors in Shank3 TG mice. This issue could be addressed
by testing the effects of drugs, such as IGF1, that can
increase mTORC1 activity on the manic-like behaviors of
Shank3 TG mice. In this case, however, treatment during the
development may be critical given the possibility that the
decrease in mTORC1 activity starts during early development
and chronically affects the striatum to finally result in an
adult onset of manic-like behaviors. This is possible because at
least Shank3 expression itself is increased starting at juvenile
(approximately 3-week-old) stage in the Shank3 TG mice
compared to WT mice (Han et al., 2013b).

We found that, unlike in the striatum, mTORC1 activity
was normal in the hippocampus of Shank3 TG mice. However,
we cannot exclude the possibility that mTORC1 activities in
other brain regions, such as frontal cortex and cerebellum,
could be altered and contribute to manic-like behaviors
of Shank3 TG mice. Interestingly, it has been shown that
intracerebroventricular injection of ouabain, an inhibitor of
Na/K-ATPase, increases Akt and mTORC1 activities in the
frontal cortex and causes manic-like behaviors in rats (Yu et al.,
2010; Kim S. H. et al., 2013). Therefore, mTORC1 activities
of different brain regions might have distinct, or even
opposite, roles in causing manic-like behaviors. Even with
these remaining issues, our bioinformatic analysis showed that
both the genes belonging to Shank3-mTORC1 interactome and
the up-regulated transcriptome of Shank3 TG striatum were
significantly associated with the PsyGeNET BD genes (Figure 4).
Therefore, investigating the role of these Shank3-related BD
genes, together with mTORC1 signaling, in Shank3 TG mice
might enable us to fully understand the molecular mechanisms
of manic-like behaviors in these mice.

In conclusion, our results suggest a decrease in
mTORC1 activity in the striatum of Shank3 TGmice that may be
potentially mediated by the PPI-dependent connectivity between
Shank3 and several upstream regulators of mTORC1. Decreased
striatal mTORC1 activity might contribute to manic-like
behaviors in Shank3 TG mice, but further investigation is
needed to validate such hypothesis. Since both Shank3 and
mTORC1 signaling are implicated in a broad spectrum of
neurodevelopmental and neuropsychiatric disorders, the
connectivity between these two proteins may be an important
converging pathophysiological pathway as well as a potential
therapeutic target for the treatment of various brain disorders.
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FIGURE S1 | Validation of differentially expressed genes in the striatum of
Shank3 TG mice. The graph shows the results of qRT-PCR experiments
validating an increase in the expression of Shank3, Gpr85 and Clic6, and a
decrease in the expression of Plk5 in the striatum of Shank3 TG mice
compared to WT mice. Data are presented as mean ± SEM (n = 4–6 animals
per genotype; ∗P < 0.05, ∗∗∗P < 0.001, unpaired two-tailed Student’s t-test).

FIGURE S2 | Detection of EGFP signal from the striatum of Shank3 TG mice.
To test whether there was any background signal from the striatal sections of
WT and Shank3 TG mice, we performed IHC experiments only with the
secondary antibodies (Alexa Fluor 488 and 555). Under the scanning
condition for Alexa Fluor 488, significant amount of signal (potentially from the
EGFP-Shank3 proteins) was detected from the striatum of Shank3 TG, but not
WT, mice. Meanwhile, no signal was detected for Alexa Fluor 555 from both
WT and TG striatum. DIC, differential interference contrast.

FIGURE S3 | Normal NeuN intensity in the dorsal striatum of Shank3 TG
mice. Representative IHC images and quantification show normal NeuN
intensity in the DM, DL and DV compartments of Shank3 TG striatum. Scale
bar, 500 µm. DL, dorsolateral; DM, dorsomedial; DV, dorsoventral. Data are
presented as mean ± SEM (n = 5 animals per genotype; P > 0.05, unpaired
two-tailed Student’s t-test).
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