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Temporal lobe epilepsy is considered to be one of the most common and severe forms

of focal epilepsies. Patients often develop cognitive deficits and emotional blunting along

the progression of the disease. The high incidence of resistance to antiepileptic drugs

and a frequent lack of admissibility to surgery poses an unmet medical challenge. In the

urgent quest of novel treatment strategies, neuropeptides are interesting candidates,

however, their therapeutic potential has not yet been exploited. This review focuses

on the functional role of the endogenous opioid system with respect to temporal lobe

epilepsy, specifically in the hippocampus. The role of dynorphins and kappa opioid

receptors (KOPr) as modulators of neuronal excitability is well understood: both the

reduced release of glutamate as well of postsynaptic hyperpolarization were shown in

glutamatergic neurons. In line with this, low levels of dynorphin in humans and mice

increase the risk of epilepsy development. The role of enkephalins is not understood

so well. On one hand, some agonists of the delta opioid receptors (DOPr) display

pro-convulsant properties probably through inhibition of GABAergic interneurons. On

the other hand, enkephalins play a neuro-protective role under hypoxic or anoxic

conditions, most probably through positive effects on mitochondrial function. Despite

the supposed absence of endorphins in the hippocampus, exogenous activation of

the mu opioid receptors (MOPr) induces pro-convulsant effects. Recently-expanded

knowledge of the complex ways opioid receptors ligands elicit their effects (including

biased agonism, mixed binding, and opioid receptor heteromers), opens up exciting

new therapeutic potentials with regards to seizures and epilepsy. Potential adverse side

effects of KOPr agonists may be minimized through functional selectivity. Preclinical data

suggest a high potential of such compounds to control seizures, with a strong predictive

validity toward human patients. The discovery of DOPr-agonists without proconvulsant

potential stimulates the research on the therapeutic use of neuroprotective potential of

the enkephalin/DOPr system.
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INTRODUCTION

With a prevalence of 1–2% worldwide, epilepsy is one of
the most frequent neurological diseases affecting people of all
ages (Thurman et al., 2011; WHO, 2015). Of the 870 million
people living in the European Region, over 5 million suffer
from epilepsy. Epilepsy has major adverse effects on both
social and psychological well-being, including social isolation,
stigmatization, or disability, thus, resulting in lower educational
achievement and worse employment outcomes (WHO, 2015). In
line with this, the International League Against Epilepsy (ILAE)
defined epilepsy as “a disorder of the brain characterized by an
enduring predisposition to generate epileptic seizures and by the
neurobiologic, cognitive, psychological, and social consequences
of this condition.”

The term epilepsy comprises of a group of chronic
neurological diseases that can be characterized by epileptic
seizures, as a result of excessive electrical discharges in a group
of brain cells (Fisher et al., 2005, 2014). Epileptic seizures
are episodes that vary from brief and nearly undetectable
to prolonged convulsions, and may involve a part of the
brain (partial) or multiple brain centers or the entire brain
(generalized), and are sometimes accompanied with a loss of
consciousness and control of bowel or bladder functions. The
cause of epilepsy is mostly unknown (ca. 60%), although several
patients have a history of brain injury, stroke, brain tumor,
and substance use disorders (Berkovic et al., 2006; Thurman
et al., 2011; WHO, 2015). Genetic, congenital, or developmental
epilepsies are more common among younger people, while brain
tumors and stroke are more common causes in older people.

About 70% of all epilepsy patients suffer from focal seizures
arising from a distinct brain region, the temporal lobe. Mesial
temporal lobe epilepsy (mTLE, with the hippocampus as
epileptogenic focus) is considered as one of the most frequent
types of epilepsy (Blumcke et al., 2012; Goldberg and Coulter,
2013). mTLE with hippocampal sclerosis represents one of
the most refractory forms of human epilepsy (Asadi-Pooya
et al., 2017). One main factor responsible for neuronal losses
and seizure induction is excessive glutamate release (Meldrum,
2002), which may result from impaired inhibitory signaling.
The mainstay treatment of epilepsy relies on antiepileptic
drugs (AEDs), mostly for the person’s entire life. Notably, 30–
50% of the patients are refractory to the presently available
pharmacological treatments (Laxer et al., 2014). Moreover, the
current pharmacotherapies of epilepsy causes a number of side

effects (e.g., sedation, nausea, depression, headache, ataxia) in

10 to 90% of people (Eadie, 2012; Perucca and Gilliam, 2012).
In 2008, the FDA issued a black-box warning that several AEDs

increased the risk of suicidal thoughts and behavior among the
users (Mula and Sander, 2013). In patients whose seizures cannot
be efficiently controlled by AEDs or neuro-stimulation, surgical
resection of the epileptogenic focus remains the ultimate solution
(Duncan, 2007; Bergey, 2013). Besides, only about 50–80% reach
seizure freedom for at least 1 year (Spencer and Huh, 2008).

In the quest for alternative treatment options, neuropeptides
have received an increasing attention. Neuropeptide systems
have been demonstrated to play crucial roles in the

modulation of neuronal excitability. Several neuropeptides,
such as neuropeptide Y, galanin, somatostatin, ghrelin, and
dynorphin, have been reported to have direct antiepileptic and
antiepileptogenic effects, and they represent promising potential
drug targets (Kovac and Walker, 2013). The aim of this review
is to reflect upon the opioid system’s function in epileptogenesis
and temporal lobe epilepsy as well as their therapeutic potentials.

THE ENDOGENOUS OPIOID SYSTEM IN
THE HIPPOCAMPUS: GENERAL ASPECTS

The three classical opioid receptors, the kappa opioid receptor
(KOPr), delta opioid receptor (DOPr), and mu opioid receptor
(MOPr), are Gi/o-coupled 7-transmembrane domain proteins,
and they share highly homologous protein sequences (60%
amino acid sequence identity) including a common opioid
receptor binding pocket within the helical transmembrane core.
The extracellular domains are crucial for selectivity, however,
the opioid system is fairly promiscuous and the affinities of
dynorphins, endorphins, and enkephalins to KOPr, MOPr, and
DOPr vary only in the range of one potency (Schwarzer, 2009).

The opioid receptor-like (ORL)-1 receptor was also classified
as an opioid receptor due to its genetic sequence homology
to other opioid receptors. It displays, however, distinct
pharmacological properties, and therefore, is not considered to be
a classical opioid receptor. Although ORL-1 and its endogenous
ligand nociceptin might be involved in seizures and epilepsy
(Bregola et al., 2002a,b; Binaschi et al., 2003; Aparicio et al., 2004;
Rocha et al., 2007, 2009), it will not be discussed in this review.

The Dynorphin/KOPr System
Although there is only one prodynorphin (pDyn) gene known
in mammals, different splice variants (Horikawa et al., 1983;
Telkov et al., 1998; Nikoshkov et al., 2005), and a variety of
different mature peptides, were reported from brain (Yakovleva
et al., 2006). In vitro studies of different pDyn-derived peptides
applied to KOPr suggested a rank order of potency with Dyn
A1-17 > (10–20 times) BigDyn = Dyn B = Dyn B 1-29 = α-
neo-endorphin > (10–20 times) Dyn A 1-8 = β-neo-endorphin
(James et al., 1984). Regional regulation of the trafficking and
processing of pDyn at synapses may be important for the fine-
tuning of synaptic transmission (Yakovleva et al., 2006).

High pDyn mRNA expression was observed in the
amygdala, entorhinal cortex, dentate gyrus, nucleus accumbens,
dorsomedial hypothalamus, and premammillary nucleus in
humans (Hurd, 1996; Nikoshkov et al., 2005) and rodents
(Morris et al., 1986; Merchenthaler et al., 1997; Lin et al., 2006).
In the limbic system, strong expression of pDyn mRNA was
noted in human (Hurd, 1996), while entorhinal cortex lacks
expression in rat (Merchenthaler et al., 1997) or mouse (Lin
et al., 2006). Neurons of the central amygdala contain the highest
amounts of pDyn in rodents, in human brain, cortical subnuclei
express higher amounts of pDyn (Capper-Loup and Kaelin-Lang,
2008).

Immunoreactivy and mRNA distribution display little
mismatch (Khachaturian et al., 1982; Vincent et al., 1982b; Fallon
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and Leslie, 1986). Immunoreactive fibers, such as hippocampal
mossy fibers or local circuits in the cortex and amygdala were
found (Vincent et al., 1982a; Weber and Barchas, 1983; Code and
Fallon, 1986; Fallon and Leslie, 1986). Ultrastructural evidence
suggests the presence of Dyn also in dendrites (Van Bockstaele
et al., 1995; Hara et al., 2006). In fact, beside the N-type
calcium channel-mediated Dyn release at axon terminals, L-type
channel-dependent somatodendritic Dyn release was proposed
to play an important functional role (Simmons et al., 1995). The
distribution of KOPr suggests axonal and dendritic auto- and/or
heteroreceptors. How this complex situation may influence
neuronal excitability is best demonstrated in the hippocampal
granule cells. KOPr on the dendrites of hippocampal granule
cells (Mathieu-Kia et al., 2001) may be activated by the Dyn
originating from perforant path fiber in humans (Hurd, 1996),
or from granule cell dendrites in guinea pigs (Simmons et al.,
1995). This is supported by potentially presynaptic KOPr
mediated inhibition of perforant path terminals upon the
stimulation of hippocampal granule cells (Wagner et al., 1993;
Drake et al., 1994). Besides guinea pig, other rodents too
display such effects, closely depending on the presence of kappa
opioid receptors on the perforant path terminals (Salin et al.,
1995). The KOPr present in axo-axonal synapses of mossy
fibers mediate heterosynaptic inhibition of neighboring mossy
fibers (Weisskopf et al., 1993). CA3 pyramidal neurons may by
hyperpolarized through postsynaptic KOPr. Dyn acting on KOPr
placed on CA1 pyramidal cells may be derived from perforant
path fibers in humans. Functionally, KOPr were shown to be
involved in the modulation of hippocampal transmission and
LTP (Wagner et al., 1993; Salin et al., 1995; Terman et al., 2000;
Huge et al., 2009). Beside glutamatergic neurons, some groups of
GABAergic interneurons also express KOPr (Racz and Halasy,
2002). The potential inhibition of inhibitory neurons suggests
some excitatory effects under certain conditions.

Taken together, the Dyn/KOPr system is ideally positioned to
modulate synaptic transmission at all excitatory synapses of the
hippocampus. Most prominent is the control of the granule cells,
which are considered a main input filter of the limbic system.

The Enkephalin/DOPr System
Met- and Leu-enkephalin (Enk) are pentapetides encoded in the
proenkephalin gene. Moreover, Met-Enk can be processed from
proopiomelanocortin (POMC) and Leu-Enk from pDyn. The
strongest expression of Enk is found in the basal ganglia, with
comparably low expression levels in the hippocampus (Miller
and Pickel, 1980). In the rat hippocampus, Enk immunoreactivity
was observed in the lateral perforant path and a small number
of morphologically characteristic granule cells (Gall et al., 1981;
Stengaardpedersen, 1983). Immunoreactivity was also observed
in mossy fibers and pyramidal cells in the area CA4 of rats
(Stengaardpedersen, 1983), however at a very low level. Low
levels of immunoreactivity in rodents are in line with low levels of
Met-Enk mRNA (Bing et al., 1997; Schwarzer and Sperk, 1998).
In human hippocampi, Enk immunoreactivity was observed in
numerous granule cells, interneurons in the molecular layer, as
well as pyramidal cells in the hippocampus proper and subiculum
(Kulmala, 1985). However, no Enk was observed in the primate

perforant path fibers (Gall, 1988). Species differences in Enk
immunoreactivity in the hippocampus proper appear to depend
on the expression of Enk in the perforant path.

Enks preferentially bind to DOPr, but with only 10-fold lower
affinity to MOPr (Clarke et al., 2003). Also, DOPr has a relatively
high affinity for β-endorphin (Hughes et al., 1975). The action
of DOPr and also that of MOPr in the hippocampus is mainly
disinhibitory (Zieglgansberger et al., 1979): MOPr and DOPr
activation reduce GABAergic input, thus causing disinhibition
(Neumaier et al., 1988) and thereby facilitating synaptic plasticity
and seizure susceptibility (Cohen et al., 1992; Morris and
Johnston, 1995). The location of Enk in the hippocampus
supports the notion of the Enk/DOPr’s role in the modulation
of inhibitory transmission; Leu-Enk-immunoreactive terminals
are often close to GABAergic terminals, perikarya, and dendrites
(Commons and Milner, 1996). In mouse hippocampi, DOPr
are mainly located presynaptically on inhibitory GABAergic
interneurons with some intracellularly located receptors in
the pyramidal and granule cells (Rezai et al., 2012). Whether
these intracellular receptors represent a pool of spare receptors
or serve specific function is unclear. Activation of DOPr in
the hippocampus inhibits spontaneous GABA release (Lupica,
1995) and results in net excitatory potential (Drake et al.,
2007). Generally, DOPr activation inhibits intracellular cAMP
formation and exerts modulatory effects on Ca2+ and K+

channels and other such 2nd messenger actions (Quock et al.,
1999).

It is important to consider that the Enk/DOPr system is
very dynamic; owing to agonist-induced internalization and
“cross-talk” with other neurotransmitter-systems. Thus, there
are several lines of evidence suggesting MOPr/DOPr crosstalk
and heterodimerization (for review see Peppin and Raffa, 2015).
Thus, MOPr-dependent effects on migration of intracellularly
localized DOPr to the membrane surface (Cahill et al., 2003;
Morinville et al., 2004) were described through inflammation.
Dynamic receptor synthesis and degradation (reviewed by van
Rijn et al., 2013), as well as the fast turnover rates of Enk
(Hughes et al., 1975; Simantov and Snyder, 1976) are important
components of this flexibility.

Due to the location of Enk/DOPr it’s regulatory role is
considered mostly on modulation of inhibitory signaling.
Inhibition of GABAergic interneurons on one hand
facilitates excitatory signaling, on the other hand may loosen
synchronization and control.

The Endorphin/MOPr System
α-, β-, γ- and δ-endorphins are processed from
proopiomelanocortin (POMC), which is expressed by
interneurons of the dentate gyrus (Niikura et al., 2013). β-
endorphin has been reported to be present in the hippocampus
(Zakarian and Smyth, 1979, 1982), but these findings were not
reproduced in later reports (Chavkin et al., 1985; Drake et al.,
2007). α- and β-neoendorphin can be processed from pDyn,
which is expressed in granule cells and contained in perforant
path fibers (see above), but also Dyn and Enk, which may
stimulate MOPr with considerable potency. MOPr receptors
were detected by autoradiography in all sub-regions of the
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hippocampus (Slamberova et al., 2003). These MOPr are
localized perisomatically, dendritically, and presynaptically on
different classes of GABAergic interneurons (Drake and Milner,
2002). Activation of MOPr, like the activation of all other opioid
receptors, causes a reduction of Ca2+ currents through P/Q-, N-
and L-type channels and activation of Kir3 K

+ channels through
direct interaction of the βγ subunits of the G-protein with the
channels (Al-Hasani and Bruchas, 2011). Moreover, MOPr
couple to Gαi, inhibiting cAMP formation upon activation.
Activation of MOPr was shown to alter synaptic plasticity in
CA1, and thereby, impair spatial memory (Mansouri et al.,
1997, 1999; Pourmotabbed et al., 1998). Moreover, the activation
of MOPr disrupts synchronization of CA1 neuronal activity
(Faulkner et al., 1998).

At present it is difficult to judge the role of MOPr in the
hippocampus. Further studies on interaction with the other
opioid systems are required to understand their functional role.

THE ENDOGENOUS OPIOID SYSTEM IN
THE HIPPOCAMPUS: ALTERATIONS IN
EPILEPSY

mTLE is associated with a number of functional, morphological,
and neuropathological alterations, which impact upon the
endogenous opioid system. The resulting alterations in the opioid
system may contribute to or counteract seizure susceptibility,
by modulation of glutamatergic and GABAergic transmission
(Table 1).

The Dynorphin/KOPr System
Dyn is expressed in large quantities in mossy fibers of rodents
(McGinty et al., 1983) and humans (Houser et al., 1990; Houser,

1992). This pool of Dyn is depleted during seizures due to the
long-lasting, high frequency stimulation, inducing the release of
large dense core vesicles. This was observed in animal models of
temporal lobe epilepsy. Thus, kainic acid injection reduced Dyn
levels for several hours when injected intrastriatally (Kanamatsu
et al., 1986b), or several days, when given systemically to
rodents (Gall, 1988; Douglass et al., 1991; Lason et al., 1992b).
Electroconvulsive shocks depleted the Dyn pool for about 6 h
when applied once, but up to 2 weeks upon repetitive treatment
(Kanamatsu et al., 1986a; Xie et al., 1989b). This is paralleled
by a transient increase in mRNA expression, ranging from 200
to 1,300% in distinct models (Xie et al., 1989b; Douglass et al.,
1991; Lason et al., 1992a,b; Hong et al., 1993; Schwarzer and
Sperk, 1998). This causes a transient recovery of the depleted Dyn
pools. Nevertheless, Dyn levels appear subsequently decreased
for a period of at least 28 days (Rocha and Maidment, 2003).

Similar reductions were reported from several kindling
models of epileptogenesis (Iadarola et al., 1986; McGinty et al.,
1986; Morris et al., 1987; Lee et al., 1989; Xie et al., 1989a; Rosen
et al., 1992; Harrison et al., 1995). Functionally important data
came from a microdialysis study, reporting significantly-reduced
extracellular opioid peptide levels during the interictal period
in fully kindled rats (Rocha et al., 1997). In surgically removed
hippocampal tissue of mesial temporal lobe epilepsy patients,
dynorphin immunoreactivity is also reduced (de Lanerolle et al.,
1997), despite elevated mRNA levels in the granule cells of the
hippocampus, if the patient experienced seizures within 48 h
before surgery (Pirker et al., 2009).

Ca2+ may play a dual role in the complex regulation of
expression of pDyn. Ca2+ activates CREB. CREB bound to
CRE sites increases the activity of the pDyn promoter. On the
other hand, Ca2+ also enhances the expression of DREAM
(downstream regulatory element antagonizing modulator),

TABLE 1 | Alterations of the hippocampal endogenous opioid system in epilepsy.

Alteration Model References

Strong Dyn release at seizure onset, followed by Dyn depletion Rodent kainic acid model Kanamatsu et al., 1986b; Gall, 1988;

Douglass et al., 1991; Lason et al., 1992b

Dyn depletion after seizures Electroconvulsive shocks in rodents Kanamatsu et al., 1986a; Xie et al., 1989b

Variable transient increase in Dyn mRNA expression after seizures Various models Xie et al., 1989b; Douglass et al., 1991;

Lason et al., 1992a,b; Hong et al., 1993;

Schwarzer and Sperk, 1998

Reduction in Dyn protein and mRNA levels Rodent kindling models Iadarola et al., 1986; McGinty et al., 1986;

Morris et al., 1987; Lee et al., 1989; Xie

et al., 1989a; Rosen et al., 1992; Harrison

et al., 1995; Rocha et al., 1997

Reduced KOPr binding in CA1, reduced Dyn immunoreactivity,

elevated Dyn mRNA levels

Hippocampal tissue of mesial temporal lobe

epilepsy patients

de Lanerolle et al., 1997; Pirker et al., 2009

Strong release of Enk and Dyn after status epilepticus, followed by

reduction of peptide levels

Rodent kainic acid model Rocha and Maidment, 2003

Upregulated Enk expression in granule cells subsequent to

seizures

Electroconvulsive shocks and kainic acid model in

rodents

Hong et al., 1980; Yoshikawa et al., 1985

MOPr and DOPr change distribution patterns and function in

accordance with morphological and pathological alterations

Pilocarpine and kainic acid model in rodents Bausch and Chavkin, 1997; Skyers et al.,

2003

Increased MOPr binding upon seizures PET studies in human mTLE patients Frost et al., 1988; Rocha et al., 2009

Brain-region specific upregulation of opioid receptor availability PET studies in human mTLE patients Hammers et al., 2007
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which counteracts CREB by binding to the DRE (downstream
regulatory element) sequence in the promoter (Cheng et al.,
2002). Pronounced seizure-induced DREAM expression was
shown in the mouse hippocampus (Matsu-ura et al., 2002).

Besides the regulation of pDyn expression, the Dyn/KOPr
system in the hippocampus is also affected by pathological
and morphological changes. Partial loss of KOPr expressing
somatostatin-immunoreactive interneurons (Racz and Halasy,
2002), and pyramidal neurons are characteristic features of
temporal lobe epilepsy. By contrast, mossy fibers sprout to the
supergranular layer (for review see (Ben-Ari, 2001) and innervate
the basal dendrites of granule cells.

Dyn immunoreactivity in tissue of patients suffering from
mesial temporal lobe epilepsy differs between epilepsies with
or without mossy fiber sprouting (Houser et al., 1990; de
Lanerolle et al., 1997, 2003). pDyn mRNA (de Lanerolle et al.,
1992) and peptide (Gall, 1988; de Lanerolle et al., 1997) were
observed in hilar interneurons and CA3 pyramidal neurons in
mesial temporal lobe epilepsy. This was neither observed in
healthy brain nor in epilepsies without hippocampal sclerosis and
mossy fiber sprouting, such as mass-associated or paradoxical
temporal lobe epilepsy (Hurd, 1996). Reduced tissue levels of
Dyn-immunoreactivity in mTLE (de Lanerolle et al., 1997) may
be due to neuronal loss, excessive release during seizures (Sperk
et al., 1986; Marksteiner et al., 1989; McDermott and Schrader,
2011), or Dyn down-regulation.

Like for Dyn–immunoreactivity, the hippocampi of patients
suffering from mass-associated or paradoxical temporal lobe
epilepsy displayed similar [3H]U69,593 binding as post-mortem
controls. Reduced binding in area CA1 in mTLE patients appears
to be dependent on neuronal loss, as the subiculum is spared from
both (de Lanerolle et al., 1997).

The loss of Dyn, probably resulting in a lack of inhibition
of voltage-gated Ca2+ currents in the hippocampal granule cells
(Jeub et al., 1999), may be functionally important. Increased Ca2+

currents lead to augmented glutamate release, thereby facilitating
the generation of seizures. Of note is the fact, that the loss of
inhibition of voltage-gated Ca2+ currents was closely associated
with mossy fiber sprouting and hippocampal sclerosis.

Overall, alterations in the Dyn/KOPr system in epilepsy
suggests a loss of inhibition on glutamatergic neurons
(Table 1). This may contribute to the progression of disease
development and severity. However, the depletion of Dyn,
whilst conservation of the KOPr offers the possibility of
pharmacological intervention.

The Enkephalin/DOPr System and MOPr
The expression of Enk in the hippocampi of naive rodents
is mostly restricted to interneurons. However, Enk expression
is upregulated in granule cells subsequent to seizures (Hong
et al., 1980; Yoshikawa et al., 1985). In the model of unilateral
injection of kainic acid into the dorsal hippocampus of mice,
the upregulation of pEnk mRNA appeared to be independent
of seizures, which is distinct of the regulation of other
neuropeptides like pDyn or pNPY. The promoter of the
Enk gene contains 2 CRE sites, that regulate the cAMP and
phorbol-ester-inducible expression of pEnk in conjuction with

a downstream AP-2 site (Comb et al., 1986, 1988; Grove
et al., 1989). Moreover, PKA was shown to influence the
activity of the human pEnk promoter (Huggenvik et al., 1991).
In human patients, β-endorphin appears to be elevated in
the CSF postictally (Pitkanen et al., 1987). Judging from the
plasma levels of the patients, Marek et al. (2010) suggest that
β-endorphin concentrations are related to the frequency of
seizures and the duration of the disease, while leu-enkephalin
concentrations are related primarily to the duration of the
disease.

Under physiological conditions, DOPr and MOPr are
distributed in diffuse patterns in the hippocampus, as shown
by receptor autoradiography (Mansour et al., 1988), with MOPr
being more prominent, however, they are relatively distant from
synapses (Drake and Milner, 1999). Upon seizures, both MOPr
and DOPr have been reported to change their distribution
patterns and function in accordance with both morphological
and pathological alterations (Bausch and Chavkin, 1997; Skyers
et al., 2003). The number of DOPr or MOPr immunopositive
neurons in the hippocampus appears to be reduced in both, the
hilus and granule cell layer. By contrast, diffuse immunoreactivity
for DOPr and MOPr appeared increased in the inner molecular
layer in the pilocarpine model of TLE (Bausch and Chavkin,
1997). The increase in MOPr in the inner molecular layer may
be associated with a variety of fibers originating from granule
cells or surviving GABAergic interneurons, as well as septal
or supramamillary projections (Skyers et al., 2003). Receptor
binding of MOPr also increases upon seizures in human mTLE,
however, this effect seems to be restricted mainly to the temporal
cortex (Frost et al., 1988; Rocha et al., 2009). Specific MOPr
splice variants were observed in some forms of intractable
epilepsy (Fricchione et al., 2008), however, their function remains
unclear.

In epilepsy numerous GABAergic interneurons die,
suggesting a large reduction of neurons expressing DOPr
or MOPr. However, survival of interneurons in animal models
of TLE differ quite significantly from human conditions, thus
translatability of rodent studies has to be considered carefully
(Table 1).

THE ENDOGENOUS OPIOID SYSTEM IN
THE HIPPOCAMPUS: IMPLICATIONS IN
EPILEPSY

Opioids, and, in particular, dynorphin, have been implicated
in the modulation of neuronal excitability in-vitro (Henriksen
et al., 1982; Siggins et al., 1986). In-vivo, opioid receptors,
with their ligands form neuromodulatory systems, playing major

roles not only in nociceptive pathways, in affective behavior,

neuroendocrine physiology, and autonomic functions (Kieffer

and Evans, 2009), but also in epilepsy, and importantly, through

their action in the hippocampus. That the opioid systems

modulate seizure activity has been shown by opiates (Hong et al.,

1993), and that opioid receptors adapt following spontaneous
seizures has been demonstrated by using a non-subtype selective
opioid receptor PET radioligand, showing a brain-region specific
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upregulation of opioid receptor availability (Hammers et al.,
2007).

Dyn and Enk, despite the similar molecular actions of
their preferential receptors (KOPr and DOPr/MOPr) exert
very different effects on seizure-induction, most likely due
to their differential localization within the hippocampus
(see Figure 1). However, though KOPr is predominantly
expressed on glutamatergic neurons and their activation
yields a net inhibitory effect, DOPr and MOPr are often
located on neurons inhibiting glutamatergic principal neurons,
thus, their activation may results in net disinhibitory effects
(Table 2).

The Dynorphin/KOPr System
The dominant effect of the endogenous dynorphin is
anticonvulsant (Tortella et al., 1986, 1989, 1990; Przewlocka
et al., 1995; Solbrig et al., 2006), antiepileptogenic, and is
mediated via the kappa opioid receptor (Loacker et al., 2007).
Deletion of the coding region of the prodynorphin gene in
mice resulted in an increased seizure susceptibility and affected
neurodegeneration during epileptogenesis. In line with this, low
prodynorphin levels, due to mutations in the promoter regions
in humans (Stogmann et al., 2002; Gambardella et al., 2003),
result in an increased vulnerability toward epilepsy.

The Enkephalin/DOPr System and MOPr
Mazarati et al. (1999) showed that DOPr inhibition prevents,
and DOPr-activation facilitates self-sustained status epilepticus
in a model of perforant path stimulation. These effects are,
however, strongly dependent on the applied agonists (Saitoh
et al., 2011; Clynen et al., 2014; Chung et al., 2015), and might
differ across species. For example, the DOPr agonist SNC80
appears to produce stronger convulsions in the rat (Broom
et al., 2002; Jutkiewicz et al., 2006), than in the rhesus monkey
(Negus et al., 1998; Danielsson et al., 2006). Induction of seizures,
furthermore, might be predominantly depending on the DOPr
activation on forebrain GABAergic neurons, as Chung et al.
(2015) demonstrated using SNC80 on mice with DOPr knocked
out specifically in those neurons.

Due to the mainly inhibitory net effects of MOPr in
the hippocampus, microinjections of β-endorphin into the
hippocampus result in generalized convulsions, however,
administration into the ventricle strongly reduces this
effect (Cain et al., 1990). Systemic administration of MOPr
agonists occasionally even result in anti-convulsant effects,
maybe due to the differential actions in other brain regions
(reviewed in Simmons and Chavkin, 1996). Still, seizure
development appears to be more dependent on MOPr
activation than on DOPr activation, as the former, but not

FIGURE 1 | Simplified scheme of hippocampal dentate gyrus network control by opioid receptors. Blue represents KOPr, red DOPr and yellow MOPr for more

detailed descriptions of the individual opioid systems’ functions in the hippocampus, see Drake and Milner (1999), Rezai et al. (2012), and Schwarzer (2009). DOPr are

often located on GABAergic neurons containing neuropeptide Y (NPY) and somatostatin (SOM) (Commons and Milner, 1996), MOPr are often on GABAergic neurons

containing parvalbumin (PARV) (Drake and Milner, 1999). Note that especially DOPr and MOPr could also be active as heterodimers. Activation of both, MOPr and

DOPr has predominantly disinhibitory effects on granule cells.
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TABLE 2 | Implications of the hippocampal endogenous opioid system on excitability, epilepsy, and neuroprotective potentials.

Implications Model References

Stimulation of hippocampal granule cells inhibits perforant path

terminals potentially via presynaptic KOPr on perforant path axons

Guinea pig, rodents Wagner et al., 1993; Drake et al., 1994;

Salin et al., 1995

Stimulation of mossy fibers inhibits neighboring mossy fibers via Dyn Guinea pig Weisskopf et al., 1993

Dyn exerts anticonvulsant effects Various rodent models Tortella et al., 1986, 1989, 1990;

Przewlocka et al., 1995; Solbrig et al.,

2006; Loacker et al., 2007

Antiepileptogenic effects of Dyn is mediated via the KOPr Rodent kainic acid model Loacker et al., 2007

Low pDyn levels due to mutations in the promoter regions result in

increased vulnerability for epilepsy

Human epilepsy patients Stogmann et al., 2002; Gambardella et al.,

2003

KOPr activation in periods of low Dyn suppresses seizures Various rodent models Tortella, 1988; Takahashi et al., 1990;

Solbrig et al., 2006; Loacker et al., 2007

KOPr activation during epileptogenesis increases neuronal survival Rodent kainic acid model Schunk et al., 2011

Pharmacological MOPr or DOPr activation has disinhibititory effects

and facilitats synaptic plasticity/seizure susceptibility

Rodents Neumaier et al., 1988; Cohen et al., 1992;

Lupica, 1995

DOPr inhibition prevents, and DOPr-activation facilitates self-sustained

status epilepticus

Performant path stimulation in rats Mazarati et al., 1999

Subcutaneous DOPr agonist administration produce convulsions Rodent kindling model Broom et al., 2002; Jutkiewicz et al., 2006

DOPr agonists produce moderate convulsions Non-human primate kindling model Negus et al., 1998; Danielsson et al., 2006

Intrahippocampal β-endorphin injections result in generalized

convulsions, administration into the ventricle strongly reduces this effect

Rodent kindling model Cain et al., 1990

Neuroprotection of DOPr activation Hypoxia/ischemia, glutamate-induced

excitotoxic injury and oxidative stress models

Mayfield and D’Alecy, 1994; Zhang et al.,

2000; Narita et al., 2006; Yang et al., 2009

the latter, causes convulsions (Lee et al., 1989; Hong et al.,
1993).

Interestingly, agonists at DOPr can block certain effects of
MOPr agonists and vice versa (ONeill et al., 1997), potentially
reflecting the competition of the different agonists at the receptor
subtypes or heterodimerization.

THE ENDOGENOUS OPIOID SYSTEM IN
THE HIPPOCAMPUS: POTENTIALS IN
EPILEPSY THERAPY

The patterns of regulations during epileptogenesis differ strongly
between Dyn and Enk, which is demonstrated for mRNAs
in response to status epilepticus (Hong et al., 1993). While
the increase of pDyn mRNA was transient, followed by a
reduction, pEnk expression appeared to be lastingly increased.
Whether such continuous Enk mRNA upregulation plays a
role in promoting epileptogenesis or in counteracting effects
requires further investigation, and that has been discussed
below (Table 2). With respect to the described anti-convulsant
properties of Dyn, reduced mRNA levels suggest that the
application of exogenous KOPr-agonists in these periods may be
beneficial.

The Dynorphin/KOPr System
The approach to activate KOPr in the periods of low Dyn has
indeed been shown to have a potential to suppress seizures
(Tortella, 1988; Takahashi et al., 1990; Solbrig et al., 2006;
Loacker et al., 2007), and it increases the survival of neurons
in the hippocampus and amygdala after unilateral injection

of kainic acid into the hippocampus of mice (Schunk et al.,
2011). Clinical trials, using the full KOPr agonists spiradoline
or enadoline, have failed due to dysphoric side-effects in
the 1990s (Barber and Gottschlich, 1997; Schwarzer, 2009).
As a consequence, industrial research has been essentially
discontinued. Recently, we reported that by using biased KOPr-
agonists, the anticonvulsant/antiseizure effects can be separated
from the dysphoric effects (Zangrandi et al., 2016), opening new
therapeutical potentials.

A promising approach to target the opioid system and
counteract seizures in a disease modifying way, is adeno-
associated virus (AAV) gene therapy. AAV-gene therapy is a
promising tool to target a broad array of neurological diseases
(Weinberg et al., 2013). Several pre-clinical studies on AAV-
mediated gene-delivery of neuropeptides are already available
(for a review see Kovac andWalker, 2013). Gene-therapy for Dyn
might be an interesting approach to activate KOPr and achieve
anti-convulsant effects through replenishing Dyn in different
phases of depletion of endogenous Dyn. Due to local restriction
of the therapy, side effects known from systemic application of
KOPr agonists may be avoided.

The Enkephalin/DOPr System
The described pro-convulsant properties of some DOPr agonists
and the initial continuous upregulation of Enk mRNA during
epileptogensis suggest Enk to act as a potential driving force
of epileptogenesis. Interestingly, however, the activation of
DOPr has also been implicated in neuroprotection, suggesting
their potential dual role in epilepsy; upregulation during
epileptogenesis might be beneficial, even though the net effect of
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DOPr activation seems to be pro-convulsant. Neuroprotection
of DOPr has been reported specifically for hypoxia/ischemia
(Mayfield andD’Alecy, 1994; Zhang et al., 2000; Yang et al., 2009),
glutamate-induced excitotoxic injury (Zhang et al., 2000), and
oxidative stress (Narita et al., 2006), potentially via their positive
effects on mitochondrial function (Zhu et al., 2009, 2011). Leu-
Enk peptide has been shown to be upregulated in hippocampus
and cortex after hypoxic preconditioning (Gao et al., 2012).
Also, DOPr is upregulated through hypoxic preconditioning,
and a decrease of Leu-Enk during severe hypoxia is inhibited,
counteracting the increased p38 MAPK activity, cytochrome c
release and apoptosis, induced by severe hypoxia (Ma et al.,
2005).

Furthermore, the differential effects of different MOPr
agonists, the complexity and dynamics of the Enk/MOPr system,
and the dubiety whether the hippocampal Enk/MOPr system is
required for MOPr induced seizures warrant further elucidation
of this system’s involvement, especially in epileptogenesis.

Importantly, the convulsive properties of some DOPr agonists
represent a major drawback in their great pharmacological
potentials for chronic pain (reviewed by Gaveriaux-Ruff and
Kieffer, 2011) and mood disorders (reviewed by Chung and
Kieffer, 2013); DOPr are importantly involved in the control
of emotional responses, such as anxiety and depression-like
behaviors (Filliol et al., 2000; Pradhan et al., 2011). An anxiogenic
phenotype has been reported for both, DOPr- (Filliol et al., 2000)
and Enkephalin-knockout (Konig et al., 1996) mice, which is
not the case in mice deficient for KOPr or MOPr. Accordingly,
pharmacological tools have been used to target many of these
behavioral effects of the DOPr/Enk system (Pradhan et al., 2011).
In general, DOPr agonists tested in clinical trials for other
applications (like ADL5859 and 5747, AZD5258 and AZD2327),
appeared to have elicited no severe adverse effects, and were,
overall, well-tolerated (Charles and Pradhan, 2016; Richards
et al., 2016). Therefore, DOPr agonists (without proconvulsive
potential) represent promising drug-candidates, despite all of
the mentioned examples failing to reach their primary clinical
endpoints for their respective purposes.

The availability of MOPr in the hippocampus and its
involvement in seizure susceptibility makes it a potential target
in epilepsy and seizures. This system is understudied in epilepsy
research, however, owing probably also to a lack of primary
endogenous ligands to study regulations in epilepsy.

CONCLUSION

In conclusion, a better understanding of the complex opioid
system in the hippocampus, including functionally selective
agonists and di-/oligomerizations of opioid receptors and
neuroprotective effects (in particular of DOPr), is giving rise
to new therapeutic concepts, and will drive research on new
medical applications of the opioid systems. Specifically, the
Dyn/KOPr system bears great potentials to target epilepsy
and epileptogenesis, also for the fashioning of disease-
modifying treatments, with the possibility of the elimination
of side-effects through design, and the selection of relevant
agonists and attractive delivery methods, such as gene therapy
approaches. Pro-convulsant properties of DOPr activation
can be avoided by the selection of adequate agonists with
the desired functional selectivity to specifically exploit the
neuroprotective potential of DOPr activation. Yet, the
neuroprotective effects of DOPr activation require further
investigations. Providing the identification of DORr agonists,
which conserve the neuroprotective but lack proconvulsant
effects, may be of great interest in the course of epilepsy
therapy.
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