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Heat shock proteins (Hsps) are ubiquitously expressed chaperone proteins that enable
cells to cope with environmental stresses that cause misfolding and denaturation of
proteins. With aging this protein quality control machinery becomes less effective,
reducing the ability of cells to cope with damaging environmental stresses and disease-
causing mutations. In neurodegenerative disorders such as Amyotrophic Lateral
Sclerosis (ALS), such mutations are known to result in protein misfolding, which in
turn results in the formation of intracellular aggregates cellular dysfunction and eventual
neuronal death. The exact cellular pathology of ALS and other neurodegenerative
diseases has been elusive and thus, hindering the development of effective therapies.
However, a common scheme has emerged across these “protein misfolding” disorders,
in that the mechanism of disease involves one or more aspects of proteostasis; from
DNA transcription, RNA translation, to protein folding, transport and degradation via
proteosomal and autophagic pathways. Interestingly, members of the Hsp family are
involved in each of these steps facilitating normal protein folding, regulating the rate of
protein synthesis and degradation. In this short review we summarize the evidence that
suggests that ALS is a disease of protein dyshomeostasis in which Hsps may play a key
role. Overwhelming evidence now indicates that enabling protein homeostasis to cope
with disease-causing mutations might be a successful therapeutic strategy in ALS, as
well as other neurodegenerative diseases. Novel small molecule co-inducers of Hsps
appear to be able to achieve this aim. Arimoclomol, a hydroxylamine derivative, has
shown promising results in cellular and animal models of ALS, as well as other protein
misfolding diseases such as Inclusion Body Myositis (IBM). Initial clinical investigations of
Arimoclomol have shown promising results. Therefore, it is possible that the long series
of unsuccessful clinical trials for ALS may soon be reversed, as optimal targeting of
proteostasis in ALS may now be possible, and may deliver clinical benefit to patients.
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INTRODUCTION

Amyotrophic Lateral Sclerosis is a fatal neurodegenerative
disease affecting motor neurons, which results in muscle wasting,
paralysis and death, typically within 2–5 years of diagnosis. The
disease has a prevalence of 4–6 per 100,000 population, with
a lifetime risk of 1:600 (Al-Chalabi et al., 2016). Similar to
other neurodegenerative diseases, ALS affects specific neuronal
populations, in the case of ALS, upper motor neurons in the
motor cortex and lower motor neurons in the spinal cord.
The resulting motor neuron dysfunction and death leads to a
progressive loss of voluntary muscle function and ultimately
death, usually from respiratory failure.

Although our understanding of ALS pathomechanisms has
advanced significantly in recent decades, in part due to the
discoveries of over 50 ALS-causing genes and the generation
of animal models recapitulating the disease (Taylor et al.,
2016), there is still no effective disease modifying therapy that
has a significant impact on patient outcomes. This is likely
due to the highly complex nature of ALS, which involves
deficits not only in motor neurons but also non-neuronal
cells including glial, muscles and even the immune system.
Furthermore, ALS pathology not only involves multiple cell
types but it also affects multiple cellular processes, including
axonal transport, endosomal trafficking, autophagy, proteasomal
degradation, calcium mishandling and mitochondrial function.
However, a common theme that links many of the processes
involved in ALS pathogenesis is that they are potentially caused
by the abnormal maintenance of the proteins that are involved in
these functions, resulting in their misfolding and/or aggregation.
Thus, it is possible that ALS is a protein misfolding disease,
in which deficits in the various stages of protein homeostasis,
including RNA synthesis, processing, protein translation, folding
and degradation can result in the diverse range of cellular deficits
that are known to play a role in ALS. Therefore, the development
of strategies that target specific and individual disease pathways
is unlikely to be successful in modifying disease progression
in ALS, or may, at best, be only partially effective, as other
elements of pathology remain unaltered. However, improving
protein homeostasis and strengthening protein quality control
mechanisms could be an effective complimentary approach to
targeting specific pathways.

One such attractive target for drug development in ALS is the
HSR, an intrinsic cellular defense mechanism that can be targeted
to combat protein dyshomeostasis, which in turn may prevent

Abbreviations: ALS, amyotrophic lateral sclerosis; ALS-FTD, amyotrophic lateral
sclerosis and frontotemporal dementia; BAG1, Bcl2-associated athanogene 1;
BAG3, Bcl2-associated athanogene 3; BiP, binding immunoglobulin protein;
CHIP, C-terminus of Hsp70 Interacting protein; ER, endoplasmic reticulum;
ERAD, ER associated degradation; FTD, fronto-temporal dementia; FUS, Fused-
in-Sarcoma; Hsp, heat shock protein; HSF-1, heat shock factor 1; HSR, heat shock
response; IRE1, Inositol-requiring enzyme 1; IBM, inclusion body myositis; OPTN,
optineurin; PDI, protein disulfide isomerase; PERK, protein kinase R (PKR)-like
endoplasmic reticulum kinase; PINK1, PTEN-induced putative kinase 1; SOD1,
superoxide dismutase 1; SQSTM1, sequestosome-1; TDP-43, TBK-1, tank binding
kinase 1; TRAP1, TNF receptor associated protein 1; TAR DNA-binding protein
43; VCP, valosin containing protein; VAP B, vesicle associated protein B; XBP1,
X-box binding protein 1.

or ameliorate the development of a whole range of secondary
functional deficits. In this review we summarize the evidence that
shows that targeting the HSR, by upregulating a core set of heat
shock proteins (Hsps), may be an effective therapeutic strategy
for ALS.

ALS IS A PROTEIN MISFOLDING
DISEASE

One of the most characteristic neuropathological features of ALS
is the presence of cytoplasmic inclusions in degenerating motor
neurons in post-mortem tissues of ALS patients (Ince et al., 1998;
Okado-Matsumoto and Fridovich, 2002; Shaw et al., 2008), and is
indicative of disturbances in protein homeostasis, or proteostasis.
The presence of ubiquitinated inclusions containing components
of the cytoskeleton, various elements of the protein maintenance
machinery, such as TDP-43 and Hsps are characteristic for
both familial and sporadic ALS cases (Watanabe et al., 2001;
Arai et al., 2006; Neumann et al., 2006; Pokrishevsky et al.,
2012). The presence of ubiquitin in these aggregates implies
that the proteins that have been sequestered into aggregates
were marked for degradation and for some reason, the cell
was not able to degrade them (Garofalo et al., 1991; Leigh
et al., 1991). Recent advances in understanding of the genetic
causes of ALS have revealed that a wide range of the genes
that are implicated in the disease encode proteins that play
roles in different stages of protein homeostasis, including protein
synthesis, folding and clearance, and many of these mutated
proteins have been found to be aggregated in ALS patient tissues
and also in animal models of ALS (see Figure 1 for a summary
of ALS genes in relation to protein homeostasis). The first ALS-
causing mutation discovered was the mutation in the SOD1
gene (Rosen et al., 1993). Although the protein itself does not
play a role in the maintenance of other proteins, mutant SOD1
protein forms aggregates with other proteins as well as cellular
organelles such as mitochondria (Pasinelli et al., 2004; Ahtoniemi
et al., 2008; Li et al., 2010). Since the discovery of mutant
SOD1, all other ALS causing mutations had been implicated in
either protein synthesis or degradation pathways (Figure 1). The
discovery of TDP-43 and FUS mutations in ALS (Sreedharan
et al., 2008; Kwiatkowski et al., 2009) established a link between
ALS and RNA processing and transport, a crucial regulatory
process in protein translation. ALS-causing mutant TDP-43 and
FUS, which play crucial roles in the normal processing of long
mRNA, are also major components of the protein aggregates
observed in motor neurons of familial forms of ALS (except
SOD1-ALS), as well as sporadic cases of ALS in the absence
of TDP-43 and FUS mutations (Arai et al., 2006; Neumann
et al., 2006). TDP-43 and FUS thus have an important role in
regulating the level of expression of huge number of proteins
through regulation of mRNA processing (Lagier-tourenne et al.,
2012). TDP-43 and FUS proteins possess aggregation-prone
prion domains. Due to these prion domains TDP-43 and
FUS mutants are even more susceptible to aggregation (Patel
et al., 2015). Interestingly, TDP-43 function and clearance is
regulated by heat shock and the transcription factor for the
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FIGURE 1 | The involvement of ALS causing mutations in protein homeostasis. The Figure summarizes the areas of protein homeostasis that are perturbed in ALS,
and the relevant disease-causing mutations that are linked to protein quality control. Synthesis of mRNA species is disturbed in mutants expressing hexanuceotide
repeat expansions in the C9ORF72 gene, resulting in the generation of abnormal RNA species. FUS and TDP-43 control mRNA processing and defects in this
process result in abnormal stress granule formation under stress and reduced expression and aggregation of TDP-43. Some ALS causing proteins are highly
aggregation prone, such as SOD1, TDP-43 and FUS. Mutations in UBQLN2, VCP and VAP-B are linked to proteasomal dysfunction, whereas UBQLN, TBK1,
Optineurin, Sequestrosome and VCP are involved in autophagy, which is also impaired in ALS.

HSR, HSF-1 (Chen et al., 2016; Lin et al., 2016; Li et al.,
2017).

An abnormally long intronic hexanucleotide repeat in the
C9ORF72 gene is now known to be a major cause of ALS,
accounting for 40% of familial cases and 8% of sporadic ALS
(DeJesus-Hernandez et al., 2011; Lagier-tourenne et al., 2012).
It is currently thought that the hexanucleotide repeat intronic
sections of the gene are transcribed in both directions of the
gene, causing the appearance of RNA species accumulating
into RNA foci, which are essentially RNA containing inclusions
(DeJesus-Hernandez et al., 2011; Taylor et al., 2016), which
are crucial in maintaining a balance in the amount and
quality of synthesized proteins. Under conditions of cellular
stress, crucial mRNA and protein components of the cell are
assembled into stress granules in order to preserve these species
and to ensure that protein synthesis can be restored rapidly
after the stress conditions have resolved. However, in cells
expressing ALS-causing TDP-43 mutations, disaggregation of
stress granules is delayed following oxidative stress and TDP-
43-containing stress granules persist (Parker et al., 2012; Fan
and Leung, 2016). C9ORF72 mutant cells appear to undergo
transcription, resulting in the production of abnormal RNA
and dipeptide repeat products that in turn get deposited in
RNA foci (RNA species) or in protein aggregates (dipeptides
products of abnormally translated hexanucleotide repeats),
causing toxicity as well as acting as sinkholes for other
functional proteins (Lagier-tourenne et al., 2012; Mizielinska
et al., 2014).

The widespread appearance of protein aggregates in ALS
implies that a generalized protein misfolding phenomenon may
underlie disease, affecting both mutated and normal bystander
proteins which become caught up in aggregates, resulting in a
depletion of functional proteins such as chaperoning Hsps, the
very agents in the cell which are responsible for maintaining
correct protein folding (Ince et al., 1998; Watanabe et al., 2001).
The high ubiquitin content in ALS aggregates also suggests
that cells have recognized the misfolded proteins and have
attempted to clear these through either the proteasome or
through autophagy, both of which are impaired in ALS (Kabashi
et al., 2004, 2012; Li et al., 2008; Cheroni et al., 2009; Chen et al.,
2012). In addition, protein misfolding and the accumulation of
misfolded proteinaceous species can elicit a protective response
from the ER, the Unfolded Protein Response (UPR), which, if it
persists, can turn into a self-destructive cascade leading to cell
death and exacerbation of the disease (Kikuchi et al., 2006; Atkin
et al., 2008). It has been shown that the most vulnerable fast motor
neurons in the spinal cord are more prone to activate this ER
stress pathway in ALS, and this may be the underlying cause of
their heightened vulnerability (Saxena et al., 2009).

Protein aggregation is not only the result of a disturbance in
protein folding, but it is also the result of a failure of the two
major degradation pathways, the ubiquitin proteasome system
(UPS) and the autophagy machinery, which also contribute
to accumulation of misfolded species (Shahheydari et al.,
2017). In the case of ALS, several disease-causing mutations
have a functional role in protein degradation (Figure 1). For
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example Ubiquilin2 (UBQLN2) and Sequestosome-1 (SQSTM1)
are adaptors in both the proteasome and autophagy pathways
(Gal et al., 2009; Osaka et al., 2016), whereas Optineurin
(OPTN) is an autophagy receptor, mediating the clearance of
dysfunctional mitochondria through phosphorylation of another
disease causing gene product, TBK-1 (Wong and Holzbaur, 2014;
Moore and Holzbaur, 2016; Richter et al., 2016). The Valosin
Containing Protein (VCP), and Vesicle Associated Protein B
(VAP B), which have been found mutated in small number of ALS
cases, play a role in the clearance of misfolded proteins through
the ER (ER associated degradation; ERAD) as well as proteasomal
sorting of ubiquitinated proteins (Kuijpers et al., 2013; Meyer and
Weihl, 2014; Moustaqim-Barrette et al., 2014).

Thus, we now understand that protein maintenance is
perturbed at multiple levels in ALS and most likely this
manifests at a functional level in dysfunction of a myriad
of cellular processes, including mitochondrial dysfunction,
ROS production, axonal transport deficits, activation of the
inflammatory pathway as well as the apoptotic pathway, not only
in motor neurons but also in non-neuronal cells.

THE RELEVANCE OF THE HEAT SHOCK
RESPONSE TO NORMAL PROTEIN
HOMEOSTASIS

Since aggregation of proteins and RNA species is a characteristic
feature of ALS, the development of therapies that aim to reduce
protein aggregation has been investigated widely as it likely
to have a significant impact in this disease. The HSR is a
naturally occurring, endogenous cytoprotective pathway that
exists in all cells, which acts to maintain protein homeostasis.
A large, specialized family of proteins called Hsps exist to execute
the HSR by chaperoning and folding client protein substrates
and to monitor and ensure protein quality control. Naturally,
chaperone systems are required under normal conditions for
the maintenance of intracellular protein systems, and play a
role in all aspects of the proteostasis network, including (i)
protein synthesis, when chaperones are responsible for keeping
polypeptide chains in a folding competent state; (ii) in the
transport of synthesized proteins to their appropriate cellular
destination; and (iii) in the correct folding of transported
proteins upon arrival at their destinations. Ultimately chaperones
ensure that functionally active enzymes and proteins are in
their correct location at the right time and in the correct
conformation to undertake their cellular function. Each crucial
cellular compartment, the cytosol, ER and mitochondria, all have
a specialized set of Hsps.

Hsps are a large family of chaperone proteins that are classified
according to their molecular weight (small Hsps, Hsp40, Hsp60,
Hsp70, Hsp90, and Hsp104) and in the latest nomenclature they
are named after the gene that encodes for them (Kalmar and
Greensmith, 2008; Radons, 2016). One of the most researched
Hsp for regulatory and chaperone activity is the 70 kDa Hsp70,
which is coded by 17 genes in the mammalian genome and has
isoforms in the cytosol (HspA1 or Hsp70), the ER (HspA5, also
called BiP), and in mitochondria (HspA9, also called mortalin

or mt Hsp70). In the cytosol this Hsp has constitutive (Hsp72
or HspA8) and inducible isoforms (Hsp73 or HspA1). The
Hsp70 protein has a large number of interacting partners, so
called co-chaperones that aid its function. Co-chaperones of
Hsp70 affect either effect substrate specificity of the complex
or the kinetics of the folding cycle- this latter is regulated by
nucleotide exchange factor co-chaperones (Young, 2010; Bracher
and Verghese, 2015). Together, these chaperone proteins make
up 10% of the total protein pool in the cytosol, indicating their
importance in keeping functional protein systems in place (Finka
and Goloubinoff, 2013).

Under normal conditions, cytosolic Hsp70, HspA1 (inducible)
and HspA8 (constitutive), regulates the rate of translation at the
ribosome, through folding of nascent proteins during synthesis
(Horton et al., 2001; Zimmer et al., 2001). The other large Hsp
family are members of the Hsp90 family, which form protein
complexes with Hsp70. These larger molecular weight ATPase
Hsp90 chaperones also have a specialized role in self-regulating
cellular chaperones levels by binding to the master regulator
of Hsp expression, the transcription factor HSF-1. Upon stress,
when Hsp90 is recruited to chaperone large globular proteins,
HSF-1 is released and is able to trimerize, enter the nucleus and
initiate the transcription of heat shock responsive genes (Kalmar
and Greensmith, 2008). Hsp90 has a crucial role recognizing large
and intrinsically instable proteins, aiding their folding (Taipale
et al., 2010). These client proteins are usually large receptor
and enzyme complexes, among others steroid receptors, protein
kinases and the assembly of small ribonucleoproteins as well as
RNA polimerases (Buchner and Li, 2013).

The cytosolic chaperone system also functions as a major
protein quality control surveillance apparatus, coordinated
by cytosolic Hsp70. Upon detection of exposed beta sheets
in proteins, Hsp70 and Hsp90 form complex with ATPase
activity facilitator co-chaperones such as members of the
Hsp40 family and the Hsp90 co-chaperone p23. This large
multiprotein complex then transiently binds to misfolded
proteins (Figure 2A), and through its ATPase activity it renders
misfolded proteins into their functionally active confirmation
(Mayer and Bukau, 2005). There are studies that suggest that
in case protein refolding fails Hsp70 initiates and alternative
pathway (Shiber and Ravid, 2014). Thus, in this case Hsp70
recruits a different set of co-chaperones, mainly the E3 ubiquitin
ligase CHIP to form the E3 ligase complex that attaches
poly ubiquitin chains onto proteins marked for degradation
(Figure 2C), and also escorts these protein candidates to the
proteasome for degradation (Bercovich et al., 1997; Mayer and
Bukau, 2005; Kriegenburg et al., 2012; Shiber and Ravid, 2014).
The process of physical guidance to the proteasome is aided by
an interaction between Hsp70 and another co-chaperone, HSJ1
(DNAJB) a member of the Hsp40 family, whilst docking onto
the proteasome requires interaction of Hsp70 with a further
co-chaperone, Bcl-2 associated athanogen, BAG-1 and BAG-2
(Lüders et al., 2000; Westhoff et al., 2005).

Larger protein complexes on the other hand, are directed to
the autophagy-lysosomal system by Hsp70 complexes associated
with the small Hsp, Hsp22 (HspB8) and a co-chaperone,
BAG-3 (Crippa et al., 2010; Behl, 2016). A specialized
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FIGURE 2 | Heat shock proteins and co-chaperones in cellular proteostasis. The Figure schematically summarizes the main roles of members of the Hsp superfamily
in distinct steps of protein maintenance. (A) Upon mild protein misfolding, Hsp70, in complex with Hsp90 and Hsp40 co-chaperones, facilitate protein refolding
through their ATPase activity. (B) Protein misfolding is sensed by the ER and initiates the Unfolded Protein Response (UPR), which results in the activation of ER
stress proteins including the ER resident Hsps, BIP and PDI. Environmental stresses and disease causing mutations cause the formation of stress granules, which is
regulated by Hsp70, Hsp22 and Bag-3. (C) Hsp70 and its co-chaperones direct misfolded intracellular proteins to protein degradation pathways. (D) Protein
misfolding in mitochondria leads to activation of the Mitochondrial Unfolded Response, mediated by specialized mitochondrial Hsps, which together with PINK,
monitor mitochondrial integrity and under conditions of mitochondrial dysfunction, initiate the degradation of mitochondria through mitophagy.

pathway, chaperone mediated autophagy (CMA), involves the
recognition of a specific amino acid sequence on client proteins
(LysPheGluArgGln) by Hsp70, which directs them to Lamp2A on
autophagosomes (Kon and Cuervo, 2010).

The normal maintenance of mitochondria is also dependant
of specific subset of Hsps. Mitochondria mostly rely on the
import of proteins synthesized in the cytosol and transported
to the outer mitochondrial membrane by Hsp70 (Kang et al.,
2011). The final folding phase of these proteins involves
a specialized mitochondrial chaperone system, consisting of
Hsp60 associated with Hsp10, as well as the mitochondrial
Hsp70 (mtHsp70) and the mitochondrial Hsp90 analog TRAP1
(Chacinska et al., 2009). Hsp27 (HspB1) is also important in
the maintenance of mitochondria and is necessary for normal
oxidative phosphorylation and mitophagy (Kang et al., 2011).
We have also shown recently that mutations of Hsp27 (HspB1)
cause mitochondrial axonal transport deficits and increased
ROS production by mitochondria, an effect that is mediated by
decreased complex 1 activity (Kalmar et al., 2017).

THE ROLE OF HEAT SHOCK PROTEINS
IN THE CELLULAR STRESS RESPONSE
TO INCREASE STRESS RESISTANCE

Besides their normal function in cell maintenance, Hsps and
the HSR also play a role in protecting calls against harmful
environmental stresses (Brown, 1995). The HSR consists of a
cascade of events executed by the inducible isoforms of major

Hsps as well as co-chaperones, in order to preserve cellular
integrity, to mitigate the effects of various environmental stresses
and to promote cell survival (Mathew and Morimoto, 1998;
Morimoto, 2008). There are various elements of the HSR which
protect intracellular compartments in a versatile and stress
dependent manner.

Stress Granule Formation and
Disassembly
One early hallmark of stress is the formation of stress granules
containing mRNA and proteins that are sequestered into stress
granules in order to preserve them and to enable the cell
to resume protein synthesis promptly once the cellular stress
condition has resolved. Under stress, Hsp70, in complex with
other co-chaperones, such as Hsp22 (HspB8) and BAG-3,
contributes to stress granule formation (Figure 2E) by halting
translation. Once the stress has abated, Hsp70 is also necessary
for stress granule disassembly (Walters and Parker, 2015; Ganassi
et al., 2016).

Heat Shock Proteins in ER Stress and
the Unfolded Protein Response
Another early event in protein misfolding following cell
stress is the activation of the ER resident protective UPR
pathway. The ER, as a platform for protein synthesis and early
modification, is the first intracellular location where proteostasis
abnormalities manifest; the UPR is therefore an early stress
response mechanism. The UPR is initiated by another Hsp70
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family member, BIP (HspA5), which is an ER resident chaperone
ATPase (Figure 2B). As the amount of misfolded proteins
increases, BIP is recruited to chaperone these proteins, which in
turn reduces the availability of free BIP that is normally dimerized
to ER stress sensors PERK, ATF-6 and IRE1, located in the ER
membrane. This enables PERK and IRE1 to activate (through
phorphorylation) and initiate the UPR, which then leads to a
translational block of other proteins, activation of transcription
factors such as XBp1 and NFkappaB, as well as upregulation
of UPR target genes, such as the molecular chaperone BIP and
the ER chaperone, Protein Disulphate Isomerase (PDI) (Ron
et al., 2000; Walters and Parker, 2015; Ruegsegger and Saxena,
2016; Perri et al., 2016). ATF6, after dissociation from BIP,
translocates to the Golgi where it is cleaved, resulting in its
transcriptionally activated form (Kanekura et al., 2009). Both
ATF6 and XBp1 induce expression of ER chaperones such as BIP
and the mitochondrial Hsp90 analog GRP94 (Kanekura et al.,
2009).

The increased expression of ER chaperones caused by the UPR
reduces the load of misfolded proteins and under conditions
of moderate stress, resolves the proteostatic stress. However, if
ER stress persists, this response is insufficient and persistent
activation of PERK leads to the activation of self-destructive
apoptotic pathways (Perri et al., 2016; Ruegsegger and Saxena,
2016).

Mitochondrial Unfolded Protein
Response (mtUPR)
Mitochondria also have a protein quality control machinery that
senses protein misfolding and other stress conditions within
the mitochondrial matrix that damage mitochondria, such as
oxidative stress. Under these conditions, mitochondria undergo
a mitochondrial unfolded protein response (mtUPR), which
also results in the upregulation of mitochondrial Hsps, such as
Hsp60, and mitochondrial Hsp70 (HspA9) (Haynes and Ron,
2010) while it also leads to a transcriptional repression of
a number of nuclear genes, in order to reduce the load of
protein misfolding (Münch and Harper, 2016). It also appears
that mitochondria themselves are protective against protein
aggregation by actively sequestering non-mitochondrial related,
disease causing, aggregation prone proteins, including ALS-
causing mutant SOD1 (Liu et al., 2004; Ruan et al., 2017). The
import of aggregated proteins into mitochondria is thought to
be a compensatory mechanism for a defective protein chaperone
system, as reducing cytosolic Hsp70 levels has been shown to
increase the uptake of misfolded proteins to mitochondria (Ruan
et al., 2017).

Interestingly, the ALS-related proteins FUS and TDP-43,
mutations in which are causative for ALS-FTD, have recently
been found to interact with chaperones, including mtHsps, and
this interaction contributes to mitochondrial dysfunction in a
model of ALS (Deng et al., 2015). It has been proposed that
mislocalisation of these proteins to mitochondria causes the
sequestering of Hsps and impairment of the chaperone system
(Bozzo et al., 2016). The mtUPR is coordinated by TRAP1
a mitochondrial Hsp90 analog. Pharmacological inhibition of

TRAP1, just like in the case of Hsp90 inhibitors in the cytosol,
leads to the initiation of s specific HSR mtUPR, localized
to mitochondria (Münch and Harper, 2016). The activation
of the mtUPR largely limits cytosolic RNA translation whilst
upregulating mitochondrial chaperone expression (Münch and
Harper, 2016). TRAP1 is also a target of PINK1, an important
regulator of mitochondrial quality control, regulating mitophagy
(Figure 2D). PINK1 has been shown to associate with TRAP1
and upon oxidative stress, reduces cytochrome release from
mitochondria, thereby limiting apoptosis. This effect is abolished
in the absence of TRAP1, indicating that TRAP1 is essential
for the protective response of mitochondria under conditions of
oxidative stress (Pridgeon et al., 2007).

Thus, cellular stress caused by disease-causing mutated
proteins or environmental agents, leads to a coordinated HSR
that ultimately controls the protein maintenance apparatus: Hsps
regulate ER stress, thereby halting protein synthesis, and direct
mRNA and proteins to stress granules, whilst also activating
the synthesis of cytoprotective chaperones. Hsps, in particular
Hsp70, also direct misfolded proteins to either the proteasome
or the autophagy apparatus for degradation, or enhance the
expression of mitochondrial Hsps to protect against oxidative
stress, ultimately aiding cells to return to normal cellular function
and to overcome the stress conditions.

CHAPERONE SYSTEMS AS
THERAPEUTIC TARGETS IN ALS AND
OTHER PROTEIN MISFOLDING
DISEASES

Since Hsps undertake such crucial roles in the normal cellular
maintenance of proteins, from translation to degradation, as
well as the cellular response to stress, they pose an attractive,
albeit difficult therapeutic target for protein misfolding disorders
such as ALS. It is clear from studies on patient samples and
animal models that an age-dependant deficit in cellular Hsp levels
is likely to contribute to these largely age-related neurological
disorders (Watanabe et al., 2001), while Hsp levels might be
elevated outside the CNS in blood (Miyazaki et al., 2016). Indeed,
the manifestation of neurodegenerative diseases, including ALS,
is largely age-related and correlates with the decline in cellular
chaperone systems (Morimoto, 2008; Perez et al., 2012). Neurons
are embedded in a network of glial cells, where they metabolically
supported. Some types of neurons, like motor neurons, express
protective Hsps at a surprisingly low level throughout life
and are inherently unable to initiate a rapid HSR in response
to stress (Batulan et al., 2003). Thus, instead of engaging a
metabolically very active neuronal protein synthetic machinery,
there is increasing evidence that surrounding astroglia can supply
neurons with vital Hsp proteins which are taken up from the
extracellular space (Robinson et al., 2005; Gifondorwa et al.,
2007; Taylor et al., 2007; Kalmar and Greensmith, 2009). In
ALS, glial cells themselves are known to contribute to disease
pathology, and almost all normal glial functions by which they
support neurons are impaired (Boillée et al., 2006). Therefore, any
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Hsp-based therapy will have to engage both neuronal and glial
populations.

Several experimental approaches to upregulate Hsp expression
in ALS have been undertaken. For example, genetic manipulation
that results in overexpression of specific, individual Hsps has been
tested in cellular and mouse models of ALS, but with limited
success (Bruening et al., 1999; Patel et al., 2005; Krishnan et al.,
2008; Sharp et al., 2008). However, considering the complexity
of chaperone networks and how the major chaperones (Hsp70
and Hsp90) are dependent on specific co-chaperone systems
to exert their diverse intracellular functions, it is perhaps not
surprising that manipulation of one single Hsp does not lead to
drastic change in disease pathology. Pharmacological approaches
to target the upstream transcription factor of the majority of
Hsps, HSF-1 have been more successful, as targeting HSF-1
ensures the coordinated synthesis of multiple Hsps, appropriate
for the specific type of cell stress. Furthermore, this approach
allows for the normal intracellular stoichiometry of Hsps and
co-chaperones to be maintained, whilst shifting the level of
expression of Hsps overall, within the cell. Such pharmacological
approaches include inhibitors of Hsp90, that induces activation
of HSF-1, such as GGA (Katsuno et al., 2005) and 17-GAA,
a geldanamycin analog (Bonvini et al., 2004; Batulan et al.,
2006; Neef et al., 2010), both drugs originally developed for
cancer therapy. The Chinese herb Celastrol has also been shown
to induce Hsp expression and to be effective at protecting
degenerating neurons (Westerheide et al., 2004; Kiaei et al.,
2005). However, just upregulating Hsp expression will not
always be indicative of cytoprotection, and can simply reflect a
harmful activation of the HSR. For example, there is evidence
that Celastrol has significant neuronal toxicity and can result
inhibition of the proteasome, despite increasing Hsp expression
(Kalmar and Greensmith, 2009; Walcott and Heikkila, 2010).
A group of hydroxylamine derivatives that act on the stress-
sensing of cells and which prolong the activation of HSF-1,
have been developed and shown to have significant effects on
the survival of neurons in a number of models of neuronal
degeneration. For example, Arimoclomol and its derivatives
have been shown to have neuroprotective effects in various
cellular and in vivo models of neurodegeneration, including
motor neuron diseases such as ALS and Kennedy’s Disease,
injury-induced acute motor and sensory nerve degeneration
as well as in retinal (Kalmar et al., 2003, 2008; Kieran et al.,
2004; Kalmar and Greensmith, 2009; Malik et al., 2013; Parfitt

et al., 2014). The benefits of Arimoclomol are not limited
to neurons, as it also restore muscle function and reduce
protein aggregation in muscle cells in a model of the muscle
disorder Inclusion Body Myositis (Kalmar et al., 2012; Ahmed
et al., 2016), another protein-misfolding disorder. Furthermore,
a clinical Phase II trial of Arimoclomol in SOD1-ALS patients
has recently been completed, and presentation of the results at
the 2016 International Symposium on ALS/MND indicated that
“the drug was safe and showed ‘trends’ of a beneficial effect.
Some people did better on the drug; living longer and with a
slower disease progression and decline in respiratory function.”1

Other hydroxylamine analogs, such as BGP-15 have also shown
particularly potent effects in preserving muscle function in a
model of severe muscular dystrophy (Gehrig et al., 2012), and has
protective effects on damaged heart muscle (Gehrig et al., 2012;
Sapra et al., 2014).

These results using small molecule compounds, such as
BGP-15 and Arimoclomol are therefore encouraging as they
provide evidence that it is possible to target the cell’s own
defense system to fight disease. However, drug candidates
such as Arimoclomol are unlikely to provide a cure for the
neurodegenerative conditions, as most of these diseases, by the
time diagnosed, are at such an advanced stage, that most of
the neurons have already died and are beyond rescue. Thus,
early diagnosis will make the therapeutic potential of proteostasis
drugs, such as Arimoclomol greater, particularly if applied in a
cocktail of other therapeutics targeted at the consequences of
protein misfolding, such as antioxidative, antiapoptotic and anti
excitotoxic therapies.
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