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Genes causally involved in human insensitivity to pain provide a unique molecular source

of studying the pathophysiology of pain and the development of novel analgesic drugs.

The increasing availability of “big data” enables novel research approaches to chronic

pain while also requiring novel techniques for data mining and knowledge discovery.

We used machine learning to combine the knowledge about n = 20 genes causally

involved in human hereditary insensitivity to pain with the knowledge about the functions

of thousands of genes. An integrated computational analysis proposed that among the

functions of this set of genes, the processes related to nervous system development and

to ceramide and sphingosine signaling pathways are particularly important. This is in line

with earlier suggestions to use these pathways as therapeutic target in pain. Following

identification of the biological processes characterizing hereditary insensitivity to pain, the

biological processes were used for a similarity analysis with the functions of n = 4,834

database-queried drugs. Using emergent self-organizing maps, a cluster of n= 22 drugs

was identified sharing important functional features with hereditary insensitivity to pain.

Several members of this cluster had been implicated in pain in preclinical experiments.

Thus, the present concept of machine-learned knowledge discovery for pain research

provides biologically plausible results and seems to be suitable for drug discovery by

identifying a narrow choice of repurposing candidates, demonstrating that contemporary

machine-learned methods offer innovative approaches to knowledge discovery from

available evidence.

Keywords: data science, computational biology, pain, humans, genetic variation, machine learning, perception,

big data

INTRODUCTION

Persistent pain is a major healthcare issue, as defined by WHO, affecting about a fifth of the
European population increasing to a third in the over 70-year old (Elliott et al., 1999; Breivik
et al., 2006). It has a highly complex pathophysiology (Julius and Basbaum, 2001; Schaible,
2007) and it is triggered by several different causes, such as cancer (Portenoy, 1992) and surgery
(Kehlet et al., 2006). Therefore, the search for novel analgesic strategies is an active research topic
receiving public funding (Kringel and Lötsch, 2015). In addition to the identification of novel drug
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targets from molecular research as the main line of research,
scanning the existing pharmacopeia for repurposing candidates
becomes increasingly successful (Ashburn and Thor, 2004). This
is facilitated by developments in computational data science
(President’s Information Technology Advisory Committee,
2005).

An accepted source of novel options for the pharmacological
treatment of (persistent) pain is the study of genes causally
involved in hereditary syndromes with insensitivity to pain
(Goldberg et al., 2012; Table 1). This set of genes has provided
the targets of novel analgesics (Table 2). However, this unique set
of genotypes also enables the study of key biological processes
of pain from the perspective of the functions of the involved

TABLE 1 | A set of n = 20 genes, in alphabetical order, that were reported to be causally associated with the hereditary human phenotype of insensitivity to pain.

Gene NCBI Gene product Syndrome Syndrome

code

OMIM References

ATL1 51062 Atlastin GTPase 1 Neuropathy, hereditary sensory, type ID HSN1D 613708 Guelly et al., 2011

ATL3 25923 Atlastin GTPase 3 Neuropathy, hereditary sensory, type IF HSN1F 609369 Kornak et al., 2014

CLTCL1 8218 Clathrin heavy chain like 1 Insensitivity to Pain with Preserved

Temperature sensation

601273 Nahorski et al., 2015

DNM1L 10059 Dynamin 1 like Encephalopathy, lethal, due to defective

mitochondrial peroxisomal fission 1

EMPF1 614388 Sheffer et al., 2016

EBF3 253738 Early B-cell factor 3 Hypotonia, ataxia, and delayed

development syndrome

HADDS 617330 Chao et al., 2017

FAM134B 54463 Family with sequence similarity 134,

member B

Neuropathy, hereditary sensory and

autonomic, type IIB

HSAN2B 613115 Kurth et al., 2009

IKBKAP 8518 Inhibitor of kappa light polypeptide gene

enhancer in B-cells, kinase

complex-associated protein

Dysautonomia, familial (Riley-Day

syndrome)

HSAN III 223900 Anderson et al., 2001;

Slaugenhaupt et al.,

2001

KIF1A 547 Kinesin family member 1A Hereditary sensory neuropathy type IIC HSN2C 614213 Riviere et al., 2011

LIFR 3977 Leukemia inhibitory factor receptor alpha Congenital pain insensitivity phenotype

with progressive vertebral destruction

Elsaid et al., 2016

MPV17 4358 MpV17 mitochondrial inner membrane

protein

Navajo neurohepatopathy NNH 256810 Karadimas et al., 2006

NGF 4803 Nerve growth factor (beta polypeptide) Neuropathy, hereditary sensory and

autonomic, type V

HSAN V 608654 Einarsdottir et al., 2004

NTRK1 4914 Neurotrophic tyrosine kinase, receptor,

type 1

Insensitivity to pain, congenital, with

anhidrosis

HSAN IV 256800 Indo et al., 1996

PRDM12 59335 PR/SET domain 12 Insensitivity to Pain with hypohidrosis HSAN VIII 616488 Chen et al., 2015

RAB7A 7879 RAB7A, member RAS oncogene family Charcot-Marie-Tooth type 2B neuropathy CMT2B 600882 Verhoeven et al., 2003;

Janssens et al., 2014

SCN11A 11280 Nav1.9 (sodium voltage-gated channel

alpha subunit 11)

Neuropathy, hereditary sensory and

autonomic, type VII

HSAN VII 615548 Leipold et al., 2013;

Woods et al., 2015

SCN9A 6335 Nav1.7 (sodium channel, voltage-gated,

type IX, alpha subunit 9)

Insensitivity to pain,

channelopathy-associated

243000 Cox et al., 2006

SPTLC1 10558 Serine palmitoyltransferase, long chain

base subunit 1

Neuropathy, hereditary sensory and

autonomic, type IA

HSAN1A 162400 Dawkins et al., 2001

SPTLC2 9517 Serine palmitoyltransferase, long chain

base subunit 2

Neuropathy, hereditary sensory and

autonomic, type IC

HSAN1C 613640 Rotthier et al., 2009

TTR 7276 Transthyretin Carpal tunnel syndrome, familial CTS1 115430 Swoboda et al., 1998

WNK1 65125 WNK lysine deficient protein kinase 1 Neuropathy, hereditary sensory and

autonomic, type II (Morvan disease)

HSAN2A 201300 Lafreniere et al., 2004

The genes were queried on March 13, 2017 from the “Online Mendelian Inheritance in Man” (OMIM) database at https://omim.org/ and the GeneCards database at

http://www.genecards.org (Rebhan et al., 1997).

HSAN, Hereditary sensory and autonomic neuropathy; HSN, Hereditary sensory neuropathy; OMIM, Online Mendelian Inheritance in Man database.

genes. As shown recently, similarities between the profiles of
biological processes in which the genes coding for the targets
of available drugs with the profile of the biological processes
in which a given set of genes is involved can be employed
for drug classification or repurposing (Lötsch and Ultsch,
2016a,b). Hence, picturing the genetic background of human
insensitivity to pain could be explored for drug repurposing
based on functional similarity in addition to the development
of novel substances targeting some of the respective gene
products (Table 2). The present analysis made extensive use of
computational biology, knowledge discovery methods, publicly
available databases and data mining tools (Table 3) to merge
results from pain, genetics and pharmacological research.
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TABLE 2 | Novel analgesic drugs developed with the purpose to antagonistically

target genes associated with human hereditary insensitivity to pain, i.e., to mimic

the pain-insensitivity phenotype observed in carriers of loss-of-function mutations

in these genes, being currently in a clinical phase of development according to

publicly available sources of information (Table 3).

Gene Pharmacological

target

Drug Action Company

NGF Nerve growth factor (beta

polypeptide)

Tanezumab Antibody Pfizer

MEDI-7352 Antibody AstraZeneca

Fasinumab Antibody Regeneron

CRB-0089 Antagonist Rottapharm Biotech

NTRK1 Neurotrophic tyrosine

kinase, receptor, type 1

ASP-7962 Blocker Astellas Pharma

VM-902A Blocker Purdue Pharma

ARRY-954 Blocker Array BioPharma

CRB-0089 Blocker Rottapharm Biotech

FX-007 Blocker Flexion Therapeutics

SCN9A Nav1.7 (sodium channel,

voltage-gated, type IX,

alpha subunit 9)

Funapide Blocker Xenon

Pharmaceuticals

CC-8464 Blocker Chromocell

DSP-2230 Blocker Sumitomo

Dainippon Pharma

GDC-0310 Blocker Genentech/Xenon

Pharmaceuticals

The information was queried on March 31, 2017 from the Thomson Reuters Integrity

database at https://integrity.thomson-pharma.com.

METHODS

Data were analyzed using the R software package (version 3.3.3
for Linux; http://CRAN.R-project.org/; R Development Core
Team, 2008). Following querying the relevant sets of genes by
mining publicly available databases, the analyses aimed at (i)
identifying the systems biology of hereditary insensitivity to pain
as conferred by the functions of the causally involved genes
and (ii) to explore whether this knowledge can be employed
for drug repurposing approaches aimed at identifying potential
candidates for the treatment of pain. The analytical steps are
summarized in Figure 1 and described in full detail in the
following paragraphs.

Data Mining
Genes involved in several different syndromes sharing the
common phenotype of insensitivity to pain were queried on
March 27, 2017 from the “OnlineMendelian Inheritance inMan”
(OMIM) database at (Online Mendelian Inheritance in Man,
OMIM R©, McKusick-Nathans Institute of Genetic Medicine,
Johns Hopkins University, Baltimore, MD, USA) at https://
omim.org/ and the GeneCards database at http://www.genecards.
org (Rebhan et al., 1997) for “insensitivity to pain.” In addition,
the medical literature was searched in the PubMed database
at https://www.ncbi.nlm.nih.gov/pubmed. This provided a set
of n = 20 genes (Table 1) that included genes causing human
hereditary sensory and autonomic neuropathies (HSAN) and
further genes for which published evidence is available for a

causal implication with the common phenotype of insensitivity
to pain.

To assess whether the known functions of the genes associated
with human hereditary insensitivity to pain could be used for
drug repurposing, genes coding for known molecular targets
of known drugs were taken from the DrugBank database
(version 5.0; http://www.drugbank.ca; Wishart et al., 2006, 2008).
Specifically, a query of theDrugBank database onMarch 13, 2017,
identified 4,834 drug entries, including 4,630 FDA-approved
small molecule drugs, interacting with 2,215 unique targets. This
provided the 4,834× 2,215 “drug vs. gene” matrix.

Assessment of the Functions of Genes
Associated with Insensitivity to Pain
The biological functions in which the products of genes
associated with insensitivity to pain are involved were queried
from the Gene Ontology knowledge base (GO; http://www.
geneontology.org/; Ashburner et al., 2000). In this database,
knowledge about the functions of genes is stored using a
controlled and clearly defined vocabulary of GO terms (Camon
et al., 2003) allocated to each gene (Camon et al., 2004). The GO
database is searchable for three major categories, consisting of
biological process, cellular component and molecular function.
As the best representation of processes affected in hereditary
insensitivity to pain as a potential source of therapeutic
approaches, the GO category biological process was selected.
According to the GO database, this category contains one
or more ordered collections of molecular functions involving
chemical or physical transformations such as cell growth and
maintenance or signal transduction (Ashburner et al., 2000).

To capture biological processes that are particularly relevant
to the present gene set, while eliminating data noise from
common processes, the set of pain insensitivity genes was
submitted to over-representation analysis (ORA) (Backes et al.,
2007). This compared the occurrence (as defined by its
annotation term) of the particular set of genes covered by a GO
term with the number of genes expected to be defined by this
term. The significance of the association of a GO term with the
expected list of genes was determined by means of a Fisher’s
exact test (Fisher, 1922). The ORA attributed p-values to the
resulting GO terms. A p-value threshold, tp, of 0.05 was applied
and corrected for multiple testing using the false discovery rate
(Benjamini and Hochberg, 1995).

The result was a representation of the complete knowledge
about the biological roles of genes associated with insensitivity to
pain in the form of a directed acyclic graph (DAG; Thulasiraman
and Swamy, 1992). This depicted the biological processes as a
higher level of organization of genes and signaling pathways
described in a polyhierarchical structure where the processes
are connected to each other by “is-a,” “part-of,” and “regulates”
relationships (Ashburner et al., 2000). This result was used
as the basis for a description of the functions of genes
associated with insensitivity to pain. However, the complete
DAG usually contained 136 GO terms that eluded intuitive
interpretation (Miller, 1956). Therefore, the obtained results were
transformed into a more intelligible form using the method
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TABLE 3 | Overview on data sources and computational tools used for the present data science approach to drug repurposing from knowledge about the functions of

genes related to insensitivity to pain in humans.

Site name URL References

Gene names and functions AmiGO (search utility for GO) http://amigo.geneontology.org/ Carbon et al., 2009

Gene Ontology (GO) http://www.geneontology.org/ Ashburner et al., 2000

HUGO Gene Nomenclature Committee http://www.genenames.org/ Seal et al., 2011

NCBI gene index database http://www.ncbi.nlm.nih.gov/gene/

GeneCards http://www.genecards.org Rebhan et al., 1997

Human diseases Online Mendelian Inheritance in Man (OMIM® ) database http://www.ncbi.nlm.nih.gov/omim

Drugs DrugBank database http://www.drugbank.ca Wishart et al., 2006, 2008

Thomson Reuters Integrity database https://integrity.thomson-pharma.com Nonfree

Software R software http://CRAN.R-project.org/ R Development Core Team, 2008

All recourses are publically available, most of them free of charge.

FIGURE 1 | Scheme of the data analysis workflow. The analyses had two major aims, i.e., (i) assessing the biological functions of genes reportedly associated with

insensitivity to pain (upper line) and (ii) using the biological processes in which these genes are involved to find repurposing candidates among DrugBank listed drugs

(lower line). To this end, genes were identified in databases and their biological functions were associated based on the annotations in the Gene Ontology database;

for the drug target coding genes (>4,000) with a filter for too many irrelevant terms implemented as an overrepresentation analysis. Such filter was not necessary for

the only 20 genes associated with insensitivity to pain. However, for the latter, overrepresentation analysis (ORA) followed by functional abstraction was performed to

obtain a comprehensible set of >10 biological functions which summarize the biological roles of these genes in an interpretable manner. The information obtained in

the ORA of the 20 pain insensitivity genes was used to generate a virtual “pain drug” that was introduced into the “drug vs. biological processes” matrix of all drugs.

Subsequently, unsupervised machine learning was used to find data structures among all drugs. Those drugs that, in the high dimensional vector space of

associations with GO terms (biological processes), laid near the virtual “PainInsensitivity drug” were the repurposing candidates.

of “functional abstraction” (Ultsch and Lötsch, 2014). This
aims to reduce the numbers of GO terms using a heuristic
search algorithm that identifies so-called “functional areas”
(Ultsch and Lötsch, 2014), which are GO terms that qualify
by their informational importance as headlines representing
specific aspects (taxonomies) of the complete DAGwith maximal
coverage, precision, informational value and conciseness (Ultsch
and Lötsch, 2014).

Assessment of Drug Repurposing Based
on Computational Analysis
Following analysis of the biological processes in which the
genes associated with human hereditary insensitivity to pain,
the possibility was explored whether the discovered knowledge
could be employed for a drug repurposing approach that uses
functional similarity between drugs and key functions of a trait-
relevant gene set (Lötsch and Ultsch, 2016a,b). This was based on

(i) the biological processes identified as characterizing the genes
associated with insensitivity to pain obtained in above analysis,
and required in addition (ii) associating drugs, via the genes
coding for their targets, with biological processes followed by (iii)
the identification of those drugs that are associated with similar
biological processes that characterize the genes associated with
insensitivity to pain phenotypes. These analytical steps will be
described in as follows.

As described previously (Lötsch and Ultsch, 2016a,b), the
association of drugs with biological processes was obtained by
combining drugs which are associated with molecular targets
available from the DrugBank database with genes associated
with biological processes as queried from the Gene Ontology
database (Table 3). Specifically, a set of n = 2,215 genes queried
as drug targets from the DrugBank database was submitted
to overrepresentation analysis to identify relevant biological
processes, expressed as GO terms, which can be addressed
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by the available drugs. ORA, performed as described above,
however, with the parameters tp = 1·10−15 and α correction
according to Bonferroni (1936), provided 830 GO terms that can
be considered as specifically describing the biological processes
in which 2,215 targets of the drugs known to the DrugBank
database are involved. This resulted in a 2,215 × 830 “gene
vs. biological process” matrix. Here, in contrast to its use for
functional interpretation of a gene set applied onto the pain
insensitivity genes as described above, the ORA served merely as
a filter for relevant GO terms, which was set at a conservative
p-value threshold to eliminate too many generic terms from the
matrix; as a functional interpretation of the biological roles of
all drug targets was not intended, functional abstraction was not
applied. From the matrix product of the “drug vs. genes” matrix
and the “genes vs. processes” matrix, a 4,834 × 830 “drug vs.
biological process” matrix was provided.

Subsequently, a virtual drug “PainInsensitivity” was added
to the “drug vs. biological process” matrix. This “drug” carried
a single vector composed of the numbers that indicate how
often particular biological processes have been associated with
a member of the n = 20 sized gene set causally involved in
hereditary insensitivity to pain. Using the biological processes
that were addressed by both, DrugBank queried drugs and the
“PainInsensitivity” drug, a 4,512 × 38 sized “drug vs. biological
process” matrix was obtained. Within this matrix, the Euclidian
distances of each of the 4,511 DrugBank annotated drugs to the
“PainInsensitivity” drug were calculated.

To eliminate drugs dissimilar to the “PainInsensitivity” drug,
the reciprocals of the Euclidian distances were submitted to
calculated ABC analysis (Ultsch and Lötsch, 2015). This is a
categorization technique for the selection of a most important
subset among a larger set of items. It divides a set of positive
data into three disjoint subsets “A,” “B,” and “C.” Subset “A”
comprises the profitable values, i.e., “the important few” (Pareto,
1909; Juran, 1975) and is found using the x-value where the slope
of an ABC curve (Gastwirth and Glauberman, 1976), i.e., a plot
of cumulative distribution of items sorted in decreasing order of
magnitude, takes a value of 1. These calculations were done using
our R package “ABCanalysis” (http://CRAN.R-project.org/web/
packages/ABCanalysis/index.html; Ultsch and Lötsch, 2015). To
exclude drugs at large distances from the “PainInsensitivity”
drug, ABC analysis was performed in a nested manner, i.e., ABC
set “A” of a first analysis was re-submitted to a second ABC
analysis. This provided a 414 × 38 sized “drug vs. biological
process” matrix.

In this 414 × 38 sized “drug vs. biological process”
matrix, data structures were analyzed to identify a cluster of
DrugBank annotated compounds located in the vicinity to the
“PainInsensitivity” drug. This was obtained using unsupervised
machine learning (Murphy, 2012). Specifically, each drug is
represented as a vector in a d = 38-dimensional feature space of
positive associations with biological processes. A projection and
visualization method was used that projects the d-dimensional
feature space onto a two-dimensional plane and depicts the
structures of the feature space in form of a landscape. A self-
organizing artificial neuronal network of Kohonen (1982) type
emergent SOM, (ESOM) (Ultsch and Sieman, 1990; Lötsch and

Ultsch, 2014) was used. The neural network consisted of a two-
dimensional toroid grid (Ultsch, 2003) of 50 × 80 neurons (n
= 4,000 units). Each neuron holds, in addition to the input
vector from the high-dimensional space of processes associated
to each drug, a further vector carrying “weights,” which were
initially randomly drawn from the range of the data variables and
subsequently adapted to the data during the learning phase that
used 50 epochs.

The trained emergent self-organizing map (ESOM) represents
the drugs on a two-dimensional toroid map as the localizations
of the “best matching units” (BMU). On top of this grid the
distance structures in the high-dimensional feature space of
biological processes is depicted in form of a so-called U-Matrix
(Ultsch and Sieman, 1990; Lötsch and Ultsch, 2014). The
machine learning was performed using the R library “UMatrix”
(M. Thrun et al., Marburg, Germany, publicly available at http://
www.uni-marburg.de/fb12/datenbionik/softwareweb/packages/
ABCanalysis/index.html. Only the cluster was further regarded
that included the “PainInsensitivity” drug. For the DrugBank
annotated members of this cluster, evidence was queried from
the literature supporting, or discouraging, a possible involvement
in pain.

RESULTS

Computational Analysis of the Genes
Involved in Hereditary Insensitivity to Pain
To identify the systems biology of hereditary insensitivity to pain,
a set of n = 20 unique genes (Table 1) for which published
evidence supported an association with the human phenotype
of inherited insensitivity to pain was queried form publicly
available databases (Table 3). The biological functions associated
with the expression of these genes and their respective products
were queried from the Gene Ontology knowledge base (GO;
http://www.geneontology.org/; Ashburner et al., 2000). Over-
representation analysis (ORA) against all human genes (n =

18,750 in the used GO version) and using an FDR corrected p-
value threshold of tp = 0.05 resulted in 136 significant GO terms
(Supplementary Figure 1).

Subsequent functional abstraction, which is a method
developed to reduce a large set of GO terms to a comprehensible
small subset of “headline terms” or “functional areas” that
represent specific aspects (taxonomies) of the complete
polyhierarchy with maximal coverage, precision, informational
value and conciseness (Ultsch and Lötsch, 2014), identified 8
GO terms qualifying as headlines to summarize the biological
functions that are particularly important addressed by the 20
genes associated with insensitivity to pain, among all human
genes (Table 4). A GO annotation with pain was found in
two particular taxonomies of the polyhierarchy, i.e., under
the headline “multicellular organismal response to stress”
(GO:0033555) that exclusively included response to pain
(GO:0048265) and its descendants, and again under the headline
“Neurological system process” (GO:0050877), which at the
chosen p-value threshold ended downstream with “sensory
perception of pain” (GO:0019233) and “neuronal action
potential” (GO:0019228).
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TABLE 4 | Functional areas representing the genetic background of hereditary

insensitivity to pain presented in a polyhierarchy of GO terms with a maximum of

certainty, information value, coverage and conciseness (Ultsch and Lötsch, 2014).

GO term ID Functional area (GO term of category

biological process)

No. of genes

GO:0033555 Multicellular organismal response to stress 2

GO:0070997 Neuron death 3

GO:0050877 Neurological system process 5

GO:0009991 Response to extracellular stimulus 5

GO:0007399 Nervous system development 6

GO:0071704 Organic substance metabolic process 11

GO:0016043 Cellular component organization 13

GO:0065007 Biological regulation 17

Specifically, significant gene ontology (GO) terms were obtained by means of over-

representation analysis (ORA) of the 20 genes against all human genes. The precise

definition of the GO terms can be obtained using the AmiGO search tool for GO at

http://amigo.geneontology.org/ (Carbon et al., 2009).

A second larger group of biological processes typically
annotated with the genes associated with insensitivity to
pain comprised developmental and structural aspects of
the nervous system, i.e., “nervous system development”
(GO:0007399) and “neuron death” (GO:0070997) including
“negative regulation of apoptotic process” (GO:0043524) as
a downstream terminal of the taxonomy, and also processes
of “cellular component organization” (GO:0016043). A third
larger group of biological processes typically annotated with
the genes associated with insensitivity to pain comprised
metabolic processes (“organic substance metabolic process,”
GO:0071704), which included biosynthetic processes related to
sphingolipids (“sphingosine biosynthetic process,” GO:0046512)
and ceramides (“ceramide biosynthetic process,” GO:0046513),
“nerve growth factor processing” (GO:0032455), “positive
regulation of lipophagy” (GO:1904504), and “positive
regulation of histone H3-K9 dimethylation” (GO:1900111).
The remaining processes could only be summarized in large sets
of more heterogeneous biological functions such as “biological
regulation.”

Candidate Drugs for Repurposing
To explore whether the results of the computational analysis
of genes associated with human insensitivity to pain could be
employed for drug repurposing, a virtual drug “PainInsensitivity”
was created that carried a single vector composed of the numbers
of how often particular biological processes have been associated
with amember of the n= 20 genes causally involved in hereditary
insensitivity to pain. Only the n = 38 biological processes were
included that were also associated with any drug queried from the
DrugBank database. Similarly, vectors coding for the associations
with biological processes were assigned to each drug. The data
space was reduced by eliminating drugs at large Euclidian
distances from the “PainInsensitivity” drug, using nested ABC
analysis.

Following projection of the resulting 414 × 38 sized “drug
vs. biological process” data space onto a toroid grid of 50 ×

80 neurons and training of a self-organizing map, a U-matrix
visualization was displayed on top of this SOM (Figure 2).
Large U-heights in this visualization indicated a large gap in
the data space whereas low U-heights indicated that the points
are close to each other in the data space. The distance-based
data structure indicated a cluster that comprised the virtual drug
“PainInsensitivity” (red dot in Figure 2) together with further
n = 22 DrugBank listed substances (Table 5). These substances
can be considered as repurposing candidates for pain, based on
their vicinity (yellow dots in Figure 2) in the high-dimensional
data space to the biological processes associated with the genes
causally involved in insensitivity to pain as represented on the
SOM by the “PainInsensitivity” drug.

DISCUSSION

The present analysis used empirical evidence for human
genes that when nonfunctional may cause the phenotype of
insensitivity to pain. The set of n = 20 genes included
those causally involved in hereditary sensory and autonomic
neuropathies and for long in the center of pain research, and in
addition further genes involved in several different neurological
syndromes or, such as SCN9A, genes that when nonfunctional
are mainly associated with insensitivity to pain. Indeed, the
only additional phenotype in subjects carrying loss-of-function
mutations in SCN9A was anosmia (Cox et al., 2010). In the
present analysis, the common phenotype of insensitivity to pain
associated with the complete gene set was used to address
the functional background of pain insensitivity and to explore
a computational attempt at using the information for drug
repurposing. The computational approach allowed using data on
the biological functions of genes acquired in any context, without
restriction to pain research (Lötsch et al., 2013).

The computational analysis of genes associated with human
insensitivity to pain included, in addition to basic functions
as neuronal signaling or the perception of pain, as major
components (i) nervous system development and structural
component assembly and (ii) lipid-mediator based signaling
including sphingosines and ceramides. Nervous system
development, while presently probably also associated with
the hereditary developmental disorders of the nervous system,
appear to be a consistent part of the genetic background of
pain since they also emerged as particularly prominent systemic
functions of larger sets of genes related to all aspects of pain
(Ultsch et al., 2016). As discussed there, as possible explanation
of the consistent appearance of nervous system development
among key biological processes exerted by pain-relevant sets of
genes involves the concept of chronic pain as a dysregulation
in biological processes that describe its systemic features of
learning and neuronal plasticity (Mansour et al., 2014). Thus,
the structural aspect of nervous system development would be
compatible with both, hereditary developmental neuropathies
and pain.

A role of lipid signaling is compatible with prior knowledge
of the pathophysiology of pain. Indeed, the ceramide-
to-sphingosine pathway has been proposed already as a
therapeutic target in pain (Salvemini et al., 2013). Similarly,
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FIGURE 2 | 3D-view of the U-matrix visualization of distance based structures of the 414 × 38 sized “drug vs. biological process” matrix, comprising the 413 drugs

annotated with one or more of the n = 38 biological processes assigned to both, the set of 20 genes causally implicated in insensitivity to pain and the drug targets

queried form the DrugBank database, which following ABC analysis based item selection were found in at closer Euclidian distances form the virtual “PainInsensitivity”

drug (red dot) that carried all of the n = 38 processes. The U-matrix has been obtained using a projection of the data points onto a toroid grid of 4,000 neurons where

opposite edges are connected. The U-Matrix was colored as a geographical map with brown (up to snow-covered) heights and green valleys with blue lakes. Valleys

indicate clusters and watersheds indicate borderlines between different clusters. The dots indicate the so-called “best matching units” (BMUs) of the self-organizing

map (SOM), which are those neurons whose weight vector is most similar to the input. A single neuron can be the BMU for more than one data point; hence, the

number of BMUs may not be equal to the number of drugs. In the vicinity of the red dot, i.e., the virtual “PainInsensitivity” drug, a mount ridge surrounded valley was

observed that represented a cluster of drugs (yellow dots) most similar to the virtual “PainInsensitivity” drug. However, the latter was located eccentrically in the cluster

indicating that the similarity to any of the DrugBank queried repurposing candidates for pain therapy is incomplete. The other drugs (gray dots) lay outside the cluster

of the “PainInsensitivity” drug and could therefore be rejected as repurposing candidates based on the present approach to search for drugs that with respect to the

addressed biological processes are most similar to the pattern of biological processes in which the genes associated with insensitivity to pain are involved. The figure

has been created using the R software package (version 3.3.3 for Linux; http://CRAN.R-project.org/; R Development Core Team, 2008) using our R library “Umatrix”

(M. Thrun, F. Lerch, Marburg, Germany, http://www.uni-marburg.de/fb12/datenbionik/software; file http://www.uni-marburg.de/fb12/datenbionik/umatrix.tar.gz).

sphingosine-1-phosphate induced nociceptor excitation and
ongoing pain behavior in mice and humans (Camprubi-Robles
et al., 2013) and therefore, sphingosine-1-phosphate receptors
have been proposed as novel targets for the treatment of pain
(Welch et al., 2012). While these findings have emerged from
basic research, the present prominent role of this pathway
highlights the suitability of the computational approach
analyzing available information about a particular subset of
pain-related genes. Again, the biological plausibility applies to
both, developmental neuropathies and pain.

The idea behind using the knowledge about the biological
processes characterizing insensitivity to pain for drug
repurposing is to use the similarity measure in the high-
dimensional vector space of the drug’s interactions with
biological processes for the identification of substances
qualifying for the treatment of traits defined on the basis of
biological processes (Lötsch and Ultsch, 2016b). A disease-
relevant gene set is functionally analyzed and compared with the
biological processes in which the targets of available drugs are
involved. This approach presently resulted in the selection of a
subset of n = 22 substances, which is the size of the cluster that

surrounded the functional information of the present trait of
interest in the high-dimensional data space (Figure 2). Results
obtained with the present computational approach require basic
research verification. However, the set included substances for
which such evidence could be found. For example, myristic
acid is contained at 18.64% in coconut oil, which when orally
administered to rats produced moderate anti-inflammatory and
anti-nociceptive effects (Intahphuak et al., 2010). Imatinib, a
tyrosine kinase inhibitor, had no antinociceptive effects in a
nerve injury model in rats when administered alone; however,
when combined with a previously ineffective dose of morphine,
complete pain relief was obtained (Donica et al., 2014), which
was attributed to its platelet-derived growth factor inhibiting
actions (Mcgary et al., 2004).

Similarly, flavopiridol or alvocidib, an inhibitor of cyclin-
dependent kinases, was shown to facilitate the recovery from
tactile allodynia when in a rat nerve injury model, which
was attributed to its Janus kinase pathway inhibiting actions
(Tsuda et al., 2011). Ellagic acid, a polyphenolic compound from
plants such as raspberries, eucalyptus, and nuts (Clifford and
Scalbert, 2000), showed antinociceptive effects and potentiated
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TABLE 5 | Candidate DrugBank listed substances that qualify for repurposing as

treatments of pain, according to the similarity between the biological processes

associated with the n = 20 genes causally involved in human insensitivity to pain

and captured in the virtual “PainInsensitivity” drug, and the biological processes in

which the 413 drugs queried from the DrugBank database (Wishart et al., 2006,

2008) are involved.

Drug name DrugBank ID Evidence supporting

involvement in pain

“PainInsensitivity” drug none Not applicable (virtual drug)

Acetylsalicylic acid 945 Approved analgesic

Myristic acid 8231 Antinociceptive effects

(Intahphuak et al., 2010)

Phosphonoserine 4522 –

Tamoxifen 675 –

Adenosine monophosphate 131 Its inhibition attenuated pain

(Liou et al., 2007)

Phosphonothreonine 2482 –

Imatinib 619 Restored morphine analgesic

potency (Donica et al., 2014)

Sorafenib 398 Might induce pain (Di Cesare

Mannelli et al., 2015)

Flavopiridol 3496 Recovery from tactile allodynia

(Tsuda et al., 2011)

Nintedanib 9079 –

Ellagic acid 8846 Antinociceptive effects

(Mansouri et al., 2014)

Dasatinib 1254 –

Sunitinib 1268 Hyperalgesic effects (Bullon

et al., 2016)

Staurosporine 2010 Counteracting capsaicin

sensitization (Anand et al.,

2015)

Lenvatinib 9078 –

Pazopanib 6589 –

MP470 5216 –

ABT-869 6080 –

XL999 5014 –

Yohimbine 1392 Antinociceptive effects

(Shannon and Lutz, 2000)

Ponatinib 8901 –

Caffeine 201 Analgesic effects shown and

discussed (Baratloo et al.,

2016)

The 22 drugs are the members of the cluster in the high dimensional space to which the

virtual “PainInsensitivity” drug belonged (Figure 2).

the effects of morphine in different rat models of pain (Mansouri
et al., 2014). Furthermore, staurosporine, an alkaloid initially
isolated from the bacterium Streptomyces staurosporeus (Omura
et al., 1977) and found to inhibit protein kinases, inhibited
Angiotensin II mediated sensitization of post mortem analyzed
human nerves (Anand et al., 2015), which is in line with the
targeting of angiotensin 2 type II receptors as a novel treatment
for neuropathic pain (Rice et al., 2014).

However, the list of candidate drugs for repurposing also
included the multitargeted receptor tyrosine kinase inhibitors
sorafenib and sunitinib, for which evidence suggests hyperalgesic
actions. This emphasizes that, as discussed previously (Lötsch
and Ultsch, 2016b), a limitation of the present implementation

of this computational approach to drug repurposing consist of
the unsigned inclusion of drug vs. target interactions, i.e., without
distinction of agonistic from antagonistic actions. Therefore,
topical experts’ knowledge is required to amend this limitation.
Of further note, the present computational approach at drug
repurposing based on computational analysis of gene functions
and similarity measures in the high-dimensional data space still
depends on the accuracy and completeness of the information
in the queried databases. This makes it vulnerable to research
bias and erroneous information in the databases, however, the
increasing trend toward “big data” supports the expectation of a
continuously broadening knowledge base.

The present computational analysis of the genes involved in
human hereditary insensitivity to pain in a drug repurposing
context extends previous applications of the recently proposed
concept of “process pharmacology” (Lötsch and Ultsch, 2016b)
by (i) the inclusion of a topically selected set of genes in addition
to a previously used set of genes derived from microarray
analysis, and (ii) the introduction of the concept of a “virtual
drug,” i.e., a vector of biological processes representing the
key functions of a gene set that can be entered as a further
drug into the drug vs. biological process matrix, thereby
facilitating the search for repurposing candidates by using
similarity measures in the high dimensional vector space. As
described previously (Lötsch and Ultsch, 2016a,b), in the present
approach diseases are regarded as resulting from the activity of
pathophysiological processes captured in the GO database via the
category “biological processes,” i.e., series of events or molecular
functions with a defined beginning and end (Ashburner et al.,
2000). Such a focus on disease relevant biological processes
(Lötsch and Ultsch, 2016b) has been shown to provide a robust
basis for drug classification agreeing with classical approaches
(Lötsch and Ultsch, 2016a) and may provide a phenotypic
approach to drug discovery and repurposing.

The present ORAs were performed with different p-value
thresholds. The conservative p-value threshold of tp = 1·10−15

used for the analysis of the drug targets was heuristically chosen
to accommodate the intention to only include highly relevant
terms and to obtain a set size of 500–1,000 terms that had proven
suitable in previous similar analyses (Lötsch andUltsch, 2016a,b).
By contrast, the p-value threshold of 0.05 chosen for the ORA of
the n= 20 genes associated with human insensitivity to pain was
chosen for practical reasons. That is, it was the strictest criterion
providing the generally accepted significance level of p = 0.05
and a correction for multiple testing, a stricter criterion or the
use of more conservative α-correction according to Bonferroni
(1936) led to a nearly empty ORA result for the present set
of n = 20 genes involved inhuman insensitivity to pain and
could therefore not applied. However, a systematic test of the
optimum p-value threshold for the present computational drug
repurposing approach remains an active research topic to be
addressed in future work.

By placing the modulation of biological processes into the
focus with molecular targets merely serving as intermediates,
the present concept may exceed the particular molecular
mechanism by which a drug acts making it particularly suitable
for drug repurposing by eliminating the restriction to a
specific molecular target. In this respect, the present concept
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complements non-redundantly alternative implementations of
computational science in drug research and development. For
example, the analysis of molecular interaction networks (e.g.,
protein-protein interaction networks or gene-gene co-expression
networks) may be employed to study the possible consequences
of target removals, considering a target as effective when its
removal modifies the network in an essential way (Penrod et al.,
2011). Other approaches proposed to use supervised machine
learning, i.e., support vector machines, to analyze druggable
protein-protein interaction on the basis of the number of
shared GO terms indicating similarities in biological function
between two interacting proteins (Sugaya et al., 2007; Sugaya
and Ikeda, 2009). Further approaches include pathway based
analysis where pathway annotations, such as provided by the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database are “translated into a two-dimensional statistical test
problem that involves Wilcoxon’s signed rank sum test in order
to compute a Z-score for each pathway that quantifies the
degree of alteration across the different experimental conditions”
(Herwig and Lehrach, 2006). These approaches have also shown
to provide clinically useful approaches to drug development
such as the identification of anticancer drug combinations
(Azmi et al., 2010), which complements a similar success of the
present method (Lötsch and Ultsch, 2016b). This emphasizes the
increasing utility of a variety of computational approaches to
gene functions in drug research, for which the present analysis
adds further support.

Most contemporary machine learning techniques for the
analysis of genomic data are of the supervised learning type (for
a recent review, see Libbrecht and Noble, 2015). These methods
aim at the diagnosis (classification) of cases. By contrast, in the
present work unsupervised methods were used, which mainly
aim at structure detection in high dimensional (genetic) data.
Typical methods for structure detection in high dimensional
data are (i) nonlinear projections such as multidimensional
scaling (MDS) (Tzeng et al., 2008), t-SNE (van der Maaten and
Hinton, 2008; Bushati et al., 2011) or curvilinear component
analysis (Alanis-Lobato et al., 2015) and (ii) clustering methods
summarized in (Pirim et al., 2012). The ESOM/Umatrix method
used here can be regarded as a combination of a disentangling
and neighborhood preserving projection method combined with
a clustering algorithm. This method has been demonstrated
to be superior to other approaches in the sense, that complex
and intertwined clusters can be identified, however, no spurious
structures are artificially introduced by the clustering method
itself (Ultsch and Lötsch, 2017) for which a superiority to
many other projection methods has been shown (Tasdemir and
Merényi, 2012).

CONCLUSIONS

Genes causally involved in human insensitivity to pain provide
a unique source of studying the pathophysiology of pain
and the development of novel analgesic drugs. In keeping
with the contemporary trend toward “big data” analysis in
biomedical research, an integrated computational analysis was
performed to study the set of genes for emergent, principal

pathophysiological processes that characterize insensitivity to
pain. As a result, a particular importance for pain perception
was observed for processes related to structural changes in
the nervous system and to ceramide and sphingosine signaling
pathways, which is compatible with suggestions of using these
pathways as therapeutic target in pain. Using the biological
processes characterizing hereditary insensitivity to pain for drug
repurposing, a clear cluster of n = 22 substances emerged
that comprised several drugs for which implications in pain
have been shown occasionally in preclinical experiments. Thus,
the present concept provides biologically plausible results
and seems to be suitable for drug discovery by identifying
a narrow choice of repurposing candidates, demonstrating
that contemporary machine-learned methods offer innovative
approaches to knowledge discovery from previous evidence.
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Supplementary Figure 1 | This figure shows the top-down representation of the

GO terms representing the biological processes in which the set of n = 20 genes

causally involved in hereditary absence of pain perception (Table 1) is involved (for

an enlarged version, see the Supplementary Figure). The graphical representation

follows the standard of the GO knowledgebase, where GO terms are related to

each other by “is-a,” “part-of,” and “regulates” relationships forming a

polyhierarchy organized in a directed acyclic graph (DAG, Thulasiraman and

Swamy, 1992). The figure represents the results of an over-representation analysis

with parameters for the p-value threshold, tp = 0.05 and FDR α-correction. (Top)

Significant terms are shown as colored circles with the number of member genes,

the number of expected genes by chance and the significance of the deviation in

the observed from the expected number of genes indicated (yellow = headline,

red = significant term located in the polyhierarchy below a functional area). Blue

vertices or blue labels, are the most specific terms (leaves of the DAG) at the end

of a taxonomy in the polyhierarchy. The biological processes in which these genes

are involved can be summarized by seven primary “functional areas” representing

the most remarkable nodes with respect to their localization in the polyhierarchy.

(Bottom) Zoomed parts of particular functional areas, recreated in a slightly

different arrangement to enhance visibility.
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