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CHD7 (Chromo-Helicase-DNA binding protein 7) protein is an ATP-dependent
chromatin remodeler. Heterozygous mutation of the CHD7 gene causes a severe
congenital disease known as CHARGE syndrome. Most CHARGE syndrome patients
have brain structural anomalies, implicating an important role of CHD7 during brain
development. In this review, we summarize studies dissecting developmental functions
of CHD7 in the brain and discuss pathogenic mechanisms behind neurodevelopmental
defects caused by mutation of CHD7. As we discussed, CHD7 protein exhibits a
remarkably specific and dynamic expression pattern in the brain. Studies in human and
animal models have revealed that CHD7 is involved in multiple developmental lineages
and processes in the brain. Mechanistically, CHD7 is essential for neural differentiation
due to its transcriptional regulation in progenitor cells.
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HETEROZYGOUS MUTATION OF CHD7 LEADS TO BRAIN
DEVELOPMENTAL ANOMALIES

The human CHD7 (Chromo-Helicase-DNA binding protein 7) is a long gene spanning
approximately 189 kb at chromosome 8, containing 38 exons encoded for a large protein
(2997 aa, about 336 kD). CHD7 protein is a member of CHD family of ATP-dependent
chromatin remodelers. These enzymes utilize the energy from ATP hydrolysis to mobilize or
relocate nucleosomes, thereby control DNA accessibility of chromatin. Chromatin remodeling
is crucial for DNA-related biological processes such as transcription, chromosome segregation,
DNA replication, and DNA repair (Clapier and Cairns, 2009). Not surprisingly, most chromatin
remodelers are indispensable for normal development (Ho and Crabtree, 2010).

CHARGE syndrome (OMIM #214800), initially described in 1979 (Hall, 1979; Hittner et al.,
1979) and named in 1981 (Pagon et al., 1981), is a congenital disease with severe developmental
defects in multiple organ systems. Two decades later, de novo mutations in the CHD7 gene
were identified in CHARGE syndrome patients (Vissers et al., 2004), which turn out to be the
major cause of this disease. Over 90% of patients with clinically typical CHARGE syndrome have
heterozygous mutations in the CHD7 gene (Bergman et al., 2011). Moreover, mutations of CHD7
have also been identified in about 6% of Kallmann syndrome (OMIM #308700), a developmental
disease characterized with IHH (idiopathic hypogonadotropic hypogonadism) and anosmia (Kim
et al., 2008; Balasubramanian et al., 2014; Marcos et al., 2014). Up to now, 554 pathogenic CHD7
mutations have been identified in CHARGE syndrome patients.1 About 90% of these mutations

1www.chd7.org
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are nonsense, frame shift, and splice site mutations, which result
in truncated CHD7 protein (Basson and van Ravenswaaij-Arts,
2015). In contrast, more than 70% of CHD7 mutations in
Kallmann syndrome are missense mutations (Balasubramanian
et al., 2014; Marcos et al., 2014), which correlate with mild
phenotypes in these patients as compared to CHARGE syndrome.

Several earlier review articles have comprehensive
summarized the developmental roles of CHD7 in multiple
organs affected in CHARGE syndrome patients (Layman et al.,
2010; Zentner et al., 2010; Bergman et al., 2011). This review
focuses on the function of CHD7 during brain development.
Multiple structural defects in the brain of CHARGE syndrome
patients have been reported, such as hypoplasia of olfactory bulb
and cerebellum, agenesis of the corpus callosum, microcephaly
and atrophy of the cerebral cortex (Lin et al., 1990; Tellier et al.,
1998; Becker et al., 2001; Johansson et al., 2006; Sanlaville et al.,
2006; Legendre et al., 2012; Yu et al., 2013; Hale et al., 2016).
Among them, deficiency of olfactory bulb and sulci is the most
frequent brain defect in CHARGE syndrome patients, as shown
by Magnetic Resonance Imaging (MRI) (Chalouhi et al., 2005;
Pinto et al., 2005; Blustajn et al., 2008). Because only small
cohorts of patients were being examined in these studies and
the phenotype of CHARGE syndrome is very heterogeneous,
the overall percentage of patients having brain developmental
anomalies is still not known. Nevertheless, brain structural defect
has recently been proposed as minor criteria for the diagnosis of
CHARGE syndrome (Hale et al., 2016). Consistent with defects in
the brain, most CHARGE syndrome patients have certain degree
of intellectual deficiency (Bergman et al., 2011). In Kallmann
syndrome patients with CHD7 mutations, the common brain
phenotype is hypoplasia of olfactory bulb and reduced number
of GnRH (gonadotropin-releasing hormone) neurons in the
hypothalamus (Marcos et al., 2014). Together, these observations
clearly demonstrate that CHD7 is haploinsufficient for brain
development.

THE EXPRESSION OF CHD7 IN THE
BRAIN IS VERY SPECIFIC AND DYNAMIC

Consistent with specific brain defects caused by CHD7
mutations, the CHD7 gene exhibits a spatial- and temporal-
specific expression pattern during brain development. Expression
of CHD7 in the human brain has been observed throughout
development (Sanlaville et al., 2006). More detailed analysis
of the expression of Chd7 has been done in mouse brain.
Using in situ hybridization analysis, one study demonstrates
that Chd7 is expressed as early as E8.5 (Embryonic day 8.5)
in mouse brain regions including forebrain and midbrain
neural fold, neural tube, and neuroepithelial prominence (Jiang
et al., 2012). At E12.5 and E14.5, Chd7 is highly expressed in
frontal cortex, medial ganglionic eminence, ventricular zone
of medulla, and external granule zone of cerebellum (Bosman
et al., 2005). A similar expression pattern of Chd7 was observed
in Chd7Gt/+ (Gt: Gene-trap) embryo, where the expression of
β-galactosidase reporter closely mimics endogenous Chd7 (Hurd
et al., 2007). One common observation from these studies is

that the expression level of Chd7 is higher in the proliferating
ventricular zone compared to the differentiated areas of the
neuroepithelium (Figure 1A). In adult mouse brain, Chd7 shows
a very specific and dynamic expression pattern in the adult
neurogenic region subgranular zone (SGZ) in hippocampal
dentate gyrus (DG) (Figure 1B). With immunostaining analysis,
CHD7 is found to be expressed upon the activation of adult
neural stem cells (NSCs), and is upregulated in transit progenitor
cells and neuroblasts. In contrast, the expression of Chd7 is
completely switched off in granule neurons in DG (Feng et al.,
2013; Jones et al., 2015). This dynamic expression pattern of Chd7
in DG was confirmed in a recent single-cell RNA sequencing
study whereas transcriptomes of EdU pulse-labeled individual
neuronal cells were analyzed (Habib et al., 2016). Consistent with
in vivo data showing the upregulation of Chd7 upon activation
of adult NSCs, Chd7 is downregulated in cultured NSCs upon
BMP4-induced quiescence (Martynoga et al., 2013).

In cerebellum, immunostaining results show that CHD7
is highly expressed in cerebellar granule cells throughout
development and persists in adult cerebellum, in contrast to
almost no expression in Purkinje neurons and Bergmann glia
cells (Feng et al., 2017). In contrast to granule neurons in DG, the
expression level of Chd7 is even higher in differentiated cerebellar
granule neurons compared to granule neuron progenitors
(GNPs) (Feng et al., 2017) (Figure 1C). Besides neuronal cells
in the brain, while Chd7 is barely expressed in astrocytes,
Chd7 is broadly expressed in oligodendrocyte (OL) lineage (He
et al., 2016). Similar to cerebellar granule cells, the expression
level of Chd7 in differentiated oligodendrocytes is higher than
oligodendrocyte precursor cells (OPCs) (Figure 1C). With
such a specific and dynamic expression pattern in the brain,
the expression of Chd7 is expected to be tightly regulated.
Mechanism behind is currently not known, however.

LOSS-OF-FUNCTION STUDY IN MOUSE
MODEL REVEALS AN IMPORTANT ROLE
OF CHD7 DURING BRAIN
DEVELOPMENT

While xenopus (Bajpai et al., 2010), drosophila (Melicharek
et al., 2010), and zebrafish models (Patten et al., 2012) have
been established, mouse model is currently the predominant
animal model for functional study of CHD7 and CHARGE
syndrome. As shown in CHARGE syndrome patients, data
from mouse studies confirm that CHD7 is haploidinsufficient
for brain development (Table 1). Mice carrying germline loss-
of-function mutation of Chd7 have been generated with both
ethylnitrosourea (ENU)-induced mutations and the gene-trap
approaches. While homozygous loss-of-function mutation of
Chd7 is embryonic lethal at E10.5, heterozygous mutant mice
are viable but show phenotypes closely mimicking CHARGE
syndrome (Bosman et al., 2005; Hurd et al., 2007). Analysis
of E10.5 Chd7 homozygous gene-trap mutant embryo shows a
reduction of the thickness of neuroepithelium in telencephalon
and midbrain (Hurd et al., 2007), indicating that Chd7 is required
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FIGURE 1 | The dynamic expression pattern of CHD7 during neurogenesis and oligodendrogenesis. (A) A cartoon shows the expression level of Chd7 transcript
during embryonic neurogenesis, based on in situ hybridization data. (B) A cartoon shows the expression level of CHD7 protein in adult neurogenic lineage in
hippocampal dentate gyrus, based on immunostaining results. (C) A cartoon shows the increase of CHD7 expression upon differentiation of GNP and OPC, based
on immunostaining results. The degree of redness reflects the expression level of Chd7. Arrows show the direction of differentiation. VZ, ventricular zone; SVZ,
subventricular zone; IZ, intermediate zone; CP, cortical plate; qNSC, quiescent neural stem cell; aNSC, active NSC; TAP, transit amplifying progenitor; NB,
neuroblast; IN, immature neuron; MN, mature neuron; GNP, granule neuron progenitor; CGN, cerebellar granule neuron; OPC, oligodendrocyte precursor cell; OL,
oligodendrocyte.

TABLE 1 | Brain phenotype in Chd7 loss-of-function mutant mouse models.

Mouse lines Mouse brain phenotype Relevant CHARGE phenotype Reference

Chd7Gt(S20−7E1)/Gt(S20−7E1)

(Gene-trap reporter inserted in
exon 1)

E10.5 lethal, hypoplasia of the
neuroepithelium

Cognitive disability Hurd et al., 2007

Chd7Gt(S20−7E1)/+ Small olfactory bulb (OB) Hyposmia Layman et al., 2009

Chd7Whi/+ (p.W973X)
Chd7Gt(S20−7E1)/+

OB hypoplasia; decreased GnRH
neurons in the hypothalamus

Anosmia; Genital hypoplasia; Puberty
delay

Bergman et al., 2010; Layman et al.,
2011

Chd7COA1/+ (p.K719X) Hypoplasia of OB; Telencephalic midline
defects; Reduced cerebral cortex

Hyposmia; Cognitive disability Jiang et al., 2012

Nestin-CreERT2::Chd7 f/f

Ubc-CreERT2::Chd7 f/f

Glast-CreERT2::Chd7 f/f

Defects of adult neurogenesis Cognitive disability; Hyposmia Feng et al., 2013; Micucci et al., 2014;
Jones et al., 2015

Chd7Gt(XK403)/+ (Gene-trap
reporter inserted in intron 36)
Atoh1-Cre::Chd7f/f

Nestin-Cre::Chd7f/f

Vermis hypoplasia; Purkinje cell
heterotopia

Vermis hypoplasia; Purkinje cell
heterotopia

Yu et al., 2013; Feng et al., 2017;
Whittaker et al., 2017

Olig1-Cre::Chd7 f/f

Pdgfr-CreERT2::Chd7 f/f
Defect of myelination White matter defects He et al., 2016

for early brain development. Heterozygous Chd7 loss-of-function
mutant mice show defects in different brain regions. The most
frequent defect is the absence or hypoplasia of olfactory bulb
(Layman et al., 2009; Bergman et al., 2010; Jiang et al., 2012).
Other brain anomalies identified in these mice include reduced
number of GnRH neurons in the hypothalamus (Layman et al.,
2011), defects in the development of telencephalic midline and
reduction of the thickness of cerebral cortex (Jiang et al., 2012).

Ablation of Chd7 in germline is embryonic lethal at E10.5,
which prevents the study of its function in brain development
during later stage. In order to further dissect the function of Chd7
in brain development, several labs have applied Chd7 conditional
knockout (CKO) mouse lines (Chd7flox/flox) (Table 1). Two

Chd7flox/flox mouse lines have been used, with either exon
2 or 3 being floxed (Hurd et al., 2010; Feng et al., 2013).
Upon cre-mediated recombination, the CHD7 protein is ablated
in CKO mouse. Compared to mice carrying germline loss-
of-function mutation of Chd7, key advantage of Chd7 CKO
mouse line is that it allows researchers to dissect the function
of Chd7 in specific cell lineage during brain development in
a spatial- and temporal-specific manner. As discussed below,
crucial functions of Chd7 in adult neurogenesis, cerebellar
development, and CNS myelination have been revealed by the
CKO approach.

Adult neurogenesis occurs in restricted mouse brain regions
including SGZ of DG in hippocampus and subventricular
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zone (SVZ) of lateral ventricle (Gage, 2000). Given
neurogenic mechanism in adult is similar to embryonic
stage, adult neurogenesis provides an ideal system to study
neurodevelopment. Moreover, while germline homozygous
loss-of-function mutations of many neurodevelopmental genes
are embryonic lethal, adult neurogenesis, in the other hand,
allows the study of homozygous gene-silencing mutations
because majority of them do not affect animal survival.
Three independent studies demonstrated that loss of Chd7
in adult NSCs leads to a decline of adult neurogenesis (Feng
et al., 2013; Micucci et al., 2014; Jones et al., 2015). In Chd7
CKO brain, the number of newborn neurons reduces, and
mutant neurons show clear defects in dendritic development.
Strikingly, voluntary running, a positive stimulus of adult
neurogenesis in hippocampus, could rescue hippocampal
neurogenic defects, including both the amount and the
dendritic development of newborn neurons in Chd7 CKO
mice (Feng et al., 2013). Mutation of Chd7 in adult NSCs
was also shown to result in a loss of quiescent stem cells
in DG, thereby an exhaustion of NSC pool (Jones et al.,
2015). Dissecting mechanism behind the adult neurogenic
defect in Chd7 CKO mice reveals the function of CHD7 in
neurodevelopment, which may help us to understand the
cognitive deficiency that is frequently observed in CHARGE
syndrome patients.

Structural defects in cerebellum occur frequently in CHARGE
syndrome patients (Becker et al., 2001; Sanlaville et al., 2006;
Legendre et al., 2012; Yu et al., 2013). Recent mouse studies
have provided valuable insights into mechanism behind the
pathogenesis of cerebellar anomalies caused by loss-of-function
of Chd7. Heterozygous gene-trap mutation of Chd7 leads to
reduced expression of key signaling molecule Fgf8 (Fibroblast
growth factor 8) in isthmus organizer (IsO), an organizer region
that directs cerebellar development during early embryonic
stage (between E8 and E9). Importantly, heterozygous loss-of-
function mutations of both Chd7 and Fgf8 show a synergistic
effect in cerebellar development, resulting in severe vermis
aplasia (Yu et al., 2013). While this study provides evidence
showing the important role of Chd7 during early embryonic
development of cerebellum, recent studies have revealed that
Chd7 is also required for cerebellar development at later stages.
Using the Atoh1-Cre::Chd7 flox/flox mouse line to knockout Chd7
specifically in GNPs, two independent studies clearly reveal that
Chd7 mutant animals exhibit cerebellar hypoplasia and massive
Purkinje cell heterotopia (Feng et al., 2017; Whittaker et al.,
2017). Importantly, highly similar phenotypes were observed in
CHARGE syndrome pre-fetuses and patients (Legendre et al.,
2012; Yu et al., 2013). Ablation of Chd7 in Purkinje cell
progenitors in the Ptf1a-Cre::Chd7flox/flox mice does not result in
any obvious cerebellar developmental defect (Feng et al., 2017),
excluding an essential role of Chd7 in Purkinje cell lineage.
Together, these findings strongly implicate that dysfunction of
CHD7 in cerebellar granule cell lineage leads to cerebellar defects
in CHARGE patients.

Consistent with the specific expression of Chd7 in OL lineage,
CHD7 has been shown to play a crucial role in myelination
during brain development and remyelination after drug-induced

demyelination in adult mice (He et al., 2016). Further mechanistic
study show that Chd7 is required for differentiation and
maturation of OLs. The function of CHD7 in oligodendrogenesis
may help to explain the structural defects in white matter and
corpus callosum of CHARGE syndrome patients.

LOSS OF CHD7 IN THE MOUSE BRAIN
CAUSES COMMON CELLULAR
PHENOTYPE

As discussed above, CHD7 is involved in both neurogenesis
and oligodendrogenesis, highlighting its versatile roles during
brain development. On the other hand, loss of Chd7 in different
cell lineages in mouse brain causes similar cellular phenotype.
First, loss of Chd7 leads to defect in terminal differentiation
of mouse neural progenitor cells. Ablation of Chd7 in mouse
adult NSCs or cerebellar GNPs impairs terminal differentiation
of granule neurons in DG and cerebellum, respectively (Feng
et al., 2013, 2017). Similarly, ablation of Chd7 in mouse OPCs
leads to defects in the differentiation of OLs (He et al., 2016).
Second, Chd7 seems to be dispensable for both the generation
and the proliferation of neural progenitor cells. Actually, ablation
of Chd7 in adult NSCs in both Nestin-CreERT2::Chd7flox/flox and
Glast-CreERT2::Chd7flox/flox mice leads to a mild increase of cell
proliferation in the SGZ (Feng et al., 2013; Jones et al., 2015). The
specification and proliferation of cerebellar GNPs are not affected
in Atoh1-Cre::Chd7flox/flox mice (Feng et al., 2017). Knockout of
Chd7 in OL lineage in Olig1-Cre::Chd7flox/flox mice, does not
affect the generation and proliferation of OPCs (He et al., 2016).
Third, loss of Chd7 in neural progenitor cells leads to increased
cell death. Increased cell death was observed upon loss of Chd7
in both adult neurogenic regions and cerebellum in mouse (Feng
et al., 2013, 2017; Whittaker et al., 2017). Cultured Chd7 mutant
mouse GNPs are more prone to cell death upon differentiation
(Feng et al., 2017). Interestingly, loss of Chd7 was shown to
activate p53-dependent induction of apoptosis during embryonic
development, and inhibition of p53-dependent apoptosis could
partially rescue developmental defects in Chd7 knockout embryo
(Van Nostrand et al., 2014). Whether p53-dependent activation
of cell death occurs during adult neurogenesis and cerebellar
development need to be tested. In summary, CHD7 seems to
have a similar cellular function in different cell lineages during
brain development. CHD7 is essential for both neurogenesis
and oligodendrogenesis via controlling the differentiation of
neural progenitor cells. Loss of Chd7 in progenitor cells has
mild effect on cell proliferation, but leads to the increase of cell
death.

KEY TARGET GENES OF CHD7 DURING
BRAIN DEVELOPMENT

Consistent with the known function of chromatin remodelers
in transcriptional regulation, a common molecular function of
CHD7 in neural cells is controlling gene expression. Multiple
target genes of CHD7 during brain development have been
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TABLE 2 | Key target genes of CHD7 in mouse neural cells.

Target genes Neural cells Direct binding of CHD7 Rescue Reference

Jag1, Gli2, Gli3, MycN, Hes5 Neural stem cells (NSCs) Promoter and enhancer, ChIP-seq n.d. Engelen et al., 2011

Sox4, Sox11 Adult NSCs Promoter, ChIP-qPCR Yes Feng et al., 2013

Rarb, Rxrg, Neurod1 Subventricular zone (SVZ) NSCs Promoter, ChIP-qPCR Yes Micucci et al., 2014

Hes5 Subgranular zone (SGZ) NSCs; NSCs Promoter, ChIP-seq Yes Engelen et al., 2011; Jones et al., 2015

Osterix, Creb3l2 Oligodendrocytes Promoter and enhancer, ChIP-seq Yes He et al., 2016

Otx2, Gbx2 Cells in rhombomere 1 Enhancers, ChIP-qPCR n.d. Yu et al., 2013

Reelin Cerebellar GNPs Enhancers, ChIP-seq Yes Feng et al., 2017; Whittaker et al., 2017

identified (Table 2). Using shRNA-mediated gene knock down
approach in cultured mouse NSCs, Engelen et al. (2011) show
that CHD7 functions as a cofactor of the SoxB family of
transcription factor SOX2 to activate multiple developmental
disease-relevant genes like Jag1, Gli2, Gli3, and MycN. In adult
mouse NSCs, CHD7 is required for the activation of two
SoxC family of transcription factors SOX4 and SOX11, and
overexpression of SOX4 and SOX11 could largely rescue the
neuronal differentiation defect in Chd7 mutant NSCs (Feng et al.,
2013). Another study show that CHD7 activates the expression
RA (retinoic acid) signaling receptors Rarb and Rxrg, and RA
treatment could partially rescue neuronal differentiation defect
in neurosphere derived from the SVZ of Chd7 CKO mice
(Micucci et al., 2014). Also, CHD7 was shown to activate Notch
effector HES5 in quiescent adult mouse NSCs, which is known
to be required for the maintenance of NSC quiescence (Jones
et al., 2015). During early cerebellar development, CHD7 was
found to activate and repress the expression of Gbx2 and Otx2,
respectively, which results in the downregulation of Fgf8 in IsO
(Yu et al., 2013). During postnatal development of cerebellum,
two independent studies reported reelin, an essential gene for
neuron migration, as a key target gene of Chd7 (Feng et al.,
2017; Whittaker et al., 2017). Using the Nestin-Reln mouse
line, Whittaker et al. (2017) show that overexpression of reelin
during brain development partially rescues defects of Chd7
mutant cerebellum. Using RNA-seq and ChIP-seq (Chromatin
immunoprecipitation with high throughput sequencing) analysis
in differentiating OLs, CHD7 was found to regulate genes like
Osterx and Creb3l2, both of them are required for both OL
differentiation and bone formation (He et al., 2016). Except
the Otx2 gene, CHD7 functions as a transcriptional activators
for its target genes. Genome-wide analysis including RNA-
seq and ChIP-seq in GNPs and OLs support the notion
that CHD7 is required for the activation of gene expression
during neural differentiation (He et al., 2016; Feng et al.,
2017).

THE MOLECULAR FUNCTION OF CHD7
IN NEURAL CELLS

Data from several CHD7 ChIP-seq studies have shown that
CHD7 protein preferentially binds to distal regulatory elements
in different cells including ESCs (embryonic stem cells), NPCs,
and GNPs (Schnetz et al., 2009, 2010; Ram et al., 2011; Feng

et al., 2017). In particular, two studies have shown the association
of CHD7 to super-enhancers in human ESCs and mouse GNPs
(Hnisz et al., 2013; Feng et al., 2017). Given super-enhancers
are associated with genes establishing cell identity, these findings
implicate important role of CHD7 in cell fate determination. As
an example, two super-enhancers are present at the Chd7 gene in
mouse GNPs (Feng et al., 2017), consistent with the important
role of CHD7 in these cells. Using ATAC-seq (transposase-
Accessible Chromatin with high throughput sequencing), Feng
et al. (2017) show loss of Chd7 leads to specific alteration
of open chromatin structure in distal regulatory elements of
Chd7 target genes. How CHD7 is recruited to specific targets
is still an open question. Given CHD7 protein does not have
DNA binding specificity, it is believed that sequence-specific
transcription factors recruit CHD7 to its target genes. Along
with this line, several transcription factors have been reported
to interact with CHD7. In mouse NSCs, knock down of Sox2
impairs the binding of CHD7 to its target, indicating that Sox2
is involved in the recruitment of Chd7 (Engelen et al., 2011). In
differentiating OLs, CHD7 is shown to interact with a SoxE family
of transcription factor SOX10, and to colocalize with SOX10
genome-wide (He et al., 2016). The requirement of SOX10 for
the targeting of CHD7 in OLs has not been shown in this study,
however.

As expected, the chromatin remodeling activity is important
for the function of CHD7 during development. Most of
CHD7 mutations in CHARGE syndrome patients result in
truncated CHD7 protein that apparently lost its ATPase and
chromatin remodeling activities. Importantly, Bouazoune and
Kingston (2012) observed that several patients-derived missense
CHD7 mutations lead to reduction or loss of its ATPase
and remodeling activity in vitro. Intriguingly, CHD7 interacts
with other chromatin remodelers. Multiple evidences suggest
a possible functional interaction between CHD7 and the BAF
(Brg1/Brahma-associated factors) complex. First, in human
neural crest cells, CHD7 is associated with multiple subunits
of the PBAF (Polybromo- and Brg1/Brahma-associated factors)
complex (Bajpai et al., 2010). CHD7 and PBAF colocalize to distal
regulatory elements of key neural crest transcription factors,
and synergistically activate neural crest gene expression (Bajpai
et al., 2010). Consistently, in neural crest-derived melanocyte,
Brg1-CHD7-containing PBAF complex interacts with and
facilitates the function of the master transcription factor MITF
(Microphthalmia-associated transcription factor) (Laurette et al.,
2015). Second, in OLs, BRG1 was shown to activate the
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expression of Chd7 (He et al., 2016). Third, phenotypes of Brg1
CKO brain in adult neurogenesis and cerebellar development
(Ninkovic et al., 2013; Moreno et al., 2014) are similar to
Chd7 CKO brain. Moreover, yeast two-hybrid screening has
identified CHD8, another CHD family chromatin remodeler,
as an interacting partner of CHD7 (Batsukh et al., 2010). The
interaction between CHD7 with BRG1 and CHD8 was confirmed
in HEK293T cells using coimmunoprecipitation coupled to mass
spectrometry (Feng et al., 2017). How chromatin remodelers
function together is an open question. One stimulating study
show that three chromatin remodelers BRG1, CHD4, and SNF2H
colocalize to a substantial portion of sites on chromatin, and the
DNA accessibility of many regions requires a combined activity of
several remodelers (Morris et al., 2014). It is worthy to investigate
the potential cooperative or counteractive functions of CHD7
with BRG1 and CHD8 during brain development.

Another interesting molecular mechanism revealed from
a recent study is the cooperative function of CHD7 and
DNA topoisomerase TOP2B in transcriptional regulation (Feng
et al., 2017). Increasing evidences show the cooperative role of
chromatin remodelers and DNA topoisomerases. In mouse ESCs,
BAF complex was shown to regulate DNA decatenation during
mitosis by recruiting DNA topoisomerase TOP2A (Dykhuizen
et al., 2013). One recent study from the same lab demonstrates
that TOP2B synergizes with the BAF complex to resolve
facultative chromatin to accessible chromatin (Miller et al., 2017).
Another recent study shows that BRG1 is required for the
recruitment of Topoisomerase 1 in B-cell line (Husain et al.,
2016). Importantly, enzymatic activities of TOP1 and TOP2B are
absolutely required for the transcription of long genes (>100 kb
in gene length) in neurons (King et al., 2013). Many of expressed
long genes in neurons are essential neuronal genes, with their
dysfunction results in various human neurological disorders.
Feng et al. (2017) demonstrate that CHD7 recruits TOP2B to
facilitate the transcription of long genes in cerebellar granule
neurons, including the reelin gene. Consistently, ablation of
Top2b specifically in mouse forebrain results in a reelin-deficient
phenotype in cerebral cortex (Lyu and Wang, 2003).

FUTURE PERSPECTIVE

One of remaining questions concerning the function of CHD7
in the brain is whether CHD7 is required for the function of
mature neurons. As discussed before, the expression of Chd7 is
switched off in most types of mature neurons in the brain during
neurogenesis. However, CHD7 is highly expressed in cerebellar
granule neurons in adult mouse and human brain (Feng et al.,
2017), and some interneurons in the olfactory bulb of adult
mouse (Micucci et al., 2014). The selective expression of Chd7
indicates that it may be involved in the function of these mature
neurons. Studying the function of CHD7 in adult brain may
help us to understand neuronal behavior abnormality frequent
observed in CHARGE syndrome patients.

Several key questions regarding molecular function of CHD7
in the cell remains to be answered. First, what is pathogenic

mechanisms of CHD7 missense mutations? Study of missense
mutations could provide important insight into the molecular
and biochemical function of CHD7 protein. Recent development
of structure analysis of chromatin remodelers may provide
crucial mechanistic insight of missense mutations of CHD7.
For instance, the chromo domain of CHD1 has been shown to
be structurally required for the activity of its ATPase activity
(Sundaramoorthy et al., 2017). Given the chromo domains in
CHD family of chromatin remodelers are conserved, this finding
may provide a mechanistic answer for the apparent loss of
ATPase activity of one chromo domain mutation CHD7 S834F
(Bouazoune and Kingston, 2012). Second, what is the exact
function of CHD7 at enhancers? It is tempting to speculate
that the nucleosome remodeling activity of CHD7 facilitates
the transcription activity at enhancers. This hypothesis remains
to be experimentally tested. Third, does CHD7 functions
alone or within a complex? As examples, CHD1 functions
as a monomer (Tran et al., 2000; Lusser et al., 2005), in
contrast, CHD4 functions within the NuRD (Nucleosome
remodeling Deacetylase) complex (Zhang et al., 1998). Solid
biochemical assays need to be performed to answer this
question.

It is worthy to notice that recent unprecedented development
of technology in the field of human cell-based disease modeling.
It has already become a routine practice to derive human induced
pluripotent stem cells (iPSCs) from patients. The full reservoir
of differentiation capacity enables iPSCs as an excellent cell
model for disease modeling. Recent development of genome
editing tools such as CRISPR-Cas technology has in principle
enabled the genome editing at anywhere of the genome in
any cell. In particular, genome editing in human iPSCs has
enormous application in biomedical research (Hockemeyer and
Jaenisch, 2016). Moreover, the recent development of 3D-based
human brain organoid culture system has largely improved our
ability to model human brain development in tissue culture
dish (Lancaster et al., 2013). These state-of-art human cell-
based technologies have been applied to model human brain
development and neurological disorders. Study the function
of CHD7 using this approach is expected to advance our
understanding of role of CHD7 in brain development and
disease.
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