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Synucleinopathies, neurodegenerative disorders with alpha-synuclein (α-syn)
accumulation, are the second leading cause of neurodegeneration in the elderly,
however no effective disease-modifying alternatives exist for these diseases. Multiple
system atrophy (MSA) is a fatal synucleinopathy characterized by the accumulation
of toxic aggregates of α-syn within oligodendroglial cells, leading to demyelination
and neurodegeneration, and the reduction of this accumulation might halt the fast
progression of MSA. In this sense, the involvement of microRNAs (miRNAs) in
synucleinopathies is yet poorly understood, and the potential of manipulating miRNA
levels as a therapeutic tool is underexplored. In this study, we analyzed the levels
of miRNAs that regulate the expression of autophagy genes in MSA cases, and
investigated the mechanistic correlates of miRNA dysregulation in in vitro models of
synucleinopathy. We found that microRNA-101 (miR-101) was significantly increased in
the striatum of MSA patients, together with a reduction in the expression of its predicted
target gene RAB5A. Overexpression of miR-101 in oligodendroglial cell cultures
resulted in a significant increase in α-syn accumulation, along with autophagy deficits.
Opposite results were observed upon expression of an antisense construct targeting
miR-101. Stereotaxic delivery of a lentiviral construct expressing anti-miR-101 into the
striatum of the MBP-α-syn transgenic (tg) mouse model of MSA resulted in reduced
oligodendroglial α-syn accumulation and improved autophagy. These results suggest
that miRNA dysregulation contributes to MSA pathology, with miR-101 alterations
potentially mediating autophagy impairments. Therefore, therapies targeting miR-101
may represent promising approaches for MSA and related neuropathologies with
autophagy dysfunction.
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INTRODUCTION

Synucleinopathies are a group of neurodegenerative disorders
characterized by the pathological accumulation of the synaptic
protein alpha-synuclein (α-syn). Synucleinopathies include
Parkinson’s disease (PD), PD dementia, dementia with Lewy
bodies (DLB) and multiple system atrophy (MSA) and currently
affect 1.5 million people in the United States alone, and to
date there are not disease-modifying therapies available for
these disorders. α-syn accumulates within neurons and glial
cells in synucleinopathies, leading to neurodegeneration and
neuroinflammation, and in some cases loss of trophic support
(Spencer et al., 2016). Moreover, α-syn can propagate from cell to
cell in a prion-like fashion thus spreading the pathology through
the brain (Desplats et al., 2009; Lee et al., 2010; Olanow and
Brundin, 2013; Masuda-Suzukake et al., 2014; Prusiner et al.,
2015).

Considerable effort is being devoted to understanding the
pathogenesis of PD, however less is known about less frequent
synucleinopathies such as multiple system atrophy (MSA).
MSA is a rapidly progressive and fatal neurodegenerative
disease characterized by parkinsonism, dysautonomia (Dickson
et al., 1999a; Wenning et al., 2001), and α-syn accumulation
within oligodendroglial and neuronal cells (Lantos and Papp,
1994; Jellinger, 2012). This abnormal protein accumulation is
accompanied by neuroinflammation (Stefanova et al., 2007;
Valera et al., 2014), demyelination (Matsuo et al., 1998; Wenning
et al., 2008) and neurodegeneration (Jellinger, 2003; Ubhi
et al., 2011). While 80% of MSA patients present prominent
parkinsonian features reflecting striato-nigral neurodegeneration
(MSA-P subtype), the other 20% present cerebellar ataxia as a
consequence of olivo-pontocerebellar atrophy (MSA-C subtype;
Gilman et al., 2008). In both cases the rapid progression, lack
of response to levodopa (Wenning et al., 1994), and extensive
accumulation of α-syn within oligodendrocytes differentiate
clinically and pathologically MSA from other synucleinopathies
(Dickson et al., 1999b).

Importantly, the source of oligodendroglial α-syn in MSA
is still unclear, and the molecular mechanisms favoring a
greater accumulation of α-syn in oligodendrocytes than in
neurons have not been identified. Given the high levels and
widespread distribution of α-syn aggregates in MSA, it is
possible that both propagation from other cell types (Kisos
et al., 2012; Reyes et al., 2014; Valera et al., 2014) and
oligodendroglial α-syn expression (Asi et al., 2014) might be
occurring simultaneously. Regardless of the origin of α-syn,
recent evidence supports the notion that failure of intracellular
protein clearance mechanisms (e.g., autophagy, unfolded protein
response, proteolysis) might play a role in the process of α-syn
aggregation (Klucken et al., 2012; Lee et al., 2013), release to the
extracellular environment (Lee et al., 2013), and accumulation
in both donor and acceptor cells. Supporting this hypothesis,
impairments in clearance mechanisms such as autophagy have
already been described in MSA and other synucleinopathies
(Lynch-Day et al., 2012; Schwarz et al., 2012). Autophagy is
the main clearance mechanism for abnormal protein aggregates
and organelles in the central nervous system (CNS; Wong and

Cuervo, 2010), and it is affected in most diseases that show
toxic accumulation of proteins, such as Alzheimer’s disease
(AD; Pickford et al., 2008), PD (Cuervo et al., 2004; Crews
et al., 2010) and DLB (Crews et al., 2010). It is not clear if
autophagy dysfunction is the cause or a consequence of α-syn
accumulation within those cells (Winslow and Rubinsztein,
2011). However, activation of autophagy has been shown to
reduce α-syn accumulation and to improve behavioral deficits in
animal models of the disease (Spencer et al., 2009; Crews et al.,
2010).

The autophagy machinery can be regulated by transcriptional
and epigenetic mechanisms, as well as post-transcriptional
modifications such as phosphorylation and acetylation
(Fullgrabe et al., 2014). In this context, microRNAs (miRNAs)
have been identified as essential for a variety of cellular events
including autophagy (Frankel and Lund, 2012; Fu et al., 2012).
Autophagy-regulating miRNAs have been identified in cancer
models, and they include miR-101, miR-30a, miR-34c and
miR-183, among others (Zhu et al., 2009; Frankel et al., 2011;
Frankel and Lund, 2012; Fu et al., 2012). Some of the predicted
targets for miRNA regulation of autophagy are ULK1, mTOR,
Beclin 1, LC3 and Atg proteins (Frankel and Lund, 2012; Fu
et al., 2012). In PD, it has been proposed that the expression
of LAMP-2A and Hsc70 (chaperone-mediated autophagy) is
regulated by a subset of eight miRNAs (hsa-miR-21∗, hsa-miR-
379, hsa-miR-373∗, hsa-miR-320a, hsa-miR-224, hsa-miR-301b,
hsa-miR-26b and hsa-miR-106a; Alvarez-Erviti et al., 2013),
however the mechanistic link between the dysregulation of
miRNAs in synucleinopathies, autophagy deficits and α-syn
propagation and accumulation in oligodendrocytes has not been
studied.

Alterations in miRNA regulation have been implicated in
the pathogenesis of neurodegenerative disorders. For example,
up-regulation of specific miRNAs has been found in AD
(Banzhaf-Strathmann et al., 2014; Tan et al., 2014), PD (Khoo
et al., 2012; Vallelunga et al., 2014), frontotemporal dementia
(Gascon and Gao, 2014), and MSA (Ubhi et al., 2014; Vallelunga
et al., 2014), among others. Here we propose an additional
mechanism regulating autophagy in MSA, involving miRNA-
induced gene silencing. In this scenario, the dysregulation
of miRNAs such as miR-101 that inhibit the expression of
autophagy proteins would further inhibit the proper clearance
of α-syn in oligodendrocytes. We found that miR-101 levels
were significantly elevated in the striatum of MSA patients, and
that miR-101 manipulation in vitro and in vivo was sufficient
to effectively regulate autophagy and α-syn accumulation in
oligodendrocytes. We conclude that therapeutic interventions
targeting miR-101 and/or other autophagy-regulating miRNAs
might be of use for the treatment of MSA and related disorders
with autophagy dysfunction.

MATERIALS AND METHODS

Human Brain Samples
Brain tissue samples were obtained from three institutions:
University of California, San Diego Shiley-Marcos AD Research
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Center (UCSD-ADRC; n = 6); JohnsHopkinsMedical Institution
Brain Resource Center (n = 10); and Banner Sun Health
Research Institute (n = 8; Birdsill et al., 2011; Beach et al.,
2015). Samples included frozen tissue from the striatum, frontal
cortex and cerebellum of controls (n = 7) and MSA patients
(n = 17). The materials were collected and utilized with the
written consent of the subjects, and the study conformed to The
Code of Ethics of the World Medical Association (Declaration
of Helsinki), printed in the British Medical Journal (Rickham,
1964). The parent study was reviewed and approved by the
University of California, San Diego Human Research Protections
Program and the corresponding Institutional Review Boards
that oversee research at the collaborating brain banks. Animals
were handled in strict accordance with the NIH guide for the
care and use of laboratory animals (NIH publications no. 8023,
revised 1978), and all procedures were completed under the
specifications set forth by the UCSD Institutional Animal Care
and Use Committee. Case selection for this study was based on
neuropathological examination and determination of diagnosis
of MSA-P (Gilman et al., 2008), which is the most common
MSA variant in the Western hemisphere (Jellinger, 2014). Group
demographics are presented in Supplementary Table S1.

Lentiviral Vectors Expressing miR-101 and
antimiR-101
Lentiviral vectors expressing rodent miR-101a or antimiR-101a,
and their corresponding control vectors, were obtained from
Genecopoeia. The vectors include a fluorescent reporter to
monitor construct expression. Lentiviruses (LV) expressing
miR-101 (rno-miR-101a-3p, mmu-miR-101a-3p, sequence
UACAGUACUGUGAUAACUGAA), antimiR-101 (antisense
sequence against miR-101a-3p), or their appropriate vector
controls (miR-control or antimiR-control) were prepared by
transient transfection in 293T cells (Tiscornia et al., 2006).

Cell Culture
CG-4 is a bipotential cell line capable of differentiating
into either oligodendrocytes or type 2-astrocytes, which in
its undifferentiated state expresses oligodendroglial precursor
markers such as A2B5, PDGFRα and Olig2 (Louis et al.,
1992, and unpublished data). CG-4 cells were cultured as
previously described (Louis et al., 1992). Briefly, cells were
grown in serum free culture medium consisting in 70%
DMEM containing 10% N1 supplement (Sigma) and 10 ng/ml
biotin (Sigma), and 30% conditioned DMEM media from
B104 cells (Schubert et al., 1974). Cells were grown in plates
precoated with 0.1 mg/ml poly-L-ornithine. CG-4 cells were
co-infected with LV expressing human α-syn (LV-α-syn) or
LV control, and miR-101a-3p (LV-miR-101) or control vector
(LV-miR-control; Bar-On et al., 2008) using a MOI ratio
of 50, and were analyzed after 3 days of expression. For
immunocytochemistry experiments, cells were plated onto poly-
L-ornithine-coated glass coverslips at a cell density of 2.8 × 104

cells per cm2 and fixed in 4% paraformaldehyde. For RNA
extraction, protein extraction and immunoblotting, cells were
plated onto 12-well plates at a cell density of 1.15 × 105 cells
per cm2.

Animal Model and Stereotaxic Injections
Mice expressing human α-syn under the control of the myelin
basic protein (MBP) promoter (MBP-α-syn) was generated as
previously described (Shults et al., 2005). For the miRNA analysis
of non-tg and MBP-α-syn tg mice, Line 29 (n = 5 per group),
brains were sub-dissected into striatum, frontal cortex and
cerebellum, snap-frozen in liquid nitrogen, and stored at −80◦C
for subsequent protein and RNA analysis.

For stereotaxic injections we used the MBP-α-syn Line 1, as
they express an intermediate level of α-syn expression compared
to Line 29, are more viable, less aggressive and tolerate surgery
(Shults et al., 2005). Mice were injected bilaterally with 2 µl
per injection site of LV-antimiR-101a or LV-antimiR-control
(2.5× 107 TU) into the striatum (n = 6 each non-tg and MBP-α-
syn tg). Briefly, as previously described (Ubhi et al., 2009), mice
were placed under anesthesia on a Koft stereotaxic apparatus
and coordinates (AP = +1 mm; L = ±1.5 mm, DV = −3.0 mm)
were determined as per the Franklin and Paxinos Atlas. The
lentiviral preparations were delivered using a Hamilton syringe
connected to a Nano-injector system to inject the solution at a
rate of 0.5 µl/min. To allow diffusion of the solution into the
brain tissue, the needle was left on for an additional 5 min after
the completion of the injection. Mice were 5 months at the time
of the injections, andwere sacrificed 6 weeks after injection under
anesthesia, followingNIH guide for the care and use of laboratory
animals (NIH publications no. 8023, revised 1978). Brains were
fixed by immersion in 4% paraformaldehyde in PBS pH 7.4 and
sagittally sectioned at 40 µmwith a Vibratome apparatus (Leica)
for subsequent immunohistochemical analysis.

Immunohistochemistry,
Immunocytochemistry and Electron
Microscopy
Vibratome sections or coverslips were immunolabeled overnight
with an antibody against α-syn (recognizing both human and
murine α-syn; Millipore, 1:200), followed by incubation with
species-appropriate secondary antibody (Vector Laboratories).
Sections or coverslips were reacted with 3,3′-diaminobenzidine
(Vector Laboratories) and imaged on an Olympus BX41 bright
field digital microscope. A minimum of 100 cells were counted
per condition, and cell counts are expressed as the average
number of positive cells per field (230 µm× 184 µm).

For autophagy analysis, sections were immunolabeled
overnight with an antibody against LC3 (MBL International,
1:2500), followed by incubation with the species-appropriate
secondary antibody and detection with the Tyramide Signal
AmplificationTM-Direct (Red) system (1:100; Perkin Elmer).
Sections were transferred to SuperFrost slides (Fisher Scientific)
and mounted under glass coverslips with anti-fading media
(Invitrogen) before analysis with a MRC1024 laser scanning
confocal microscope (BioRad). Quantification of LC3 staining
was performed by obtaining optical density measurements using
the Image Quant 1.43 program (NIH) and corrected against
background signal levels.

For electron microscopy, vibratome sections were post-fixed
in 1% glutaraldehyde, treated with osmium tetraoxide, embedded
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in epon araldite and sectioned with the ultramicrotome (Leica).
Grids were analyzed with a Zeiss OM 10 electron microscope as
previously described (Masliah et al., 2011). Cells were randomly
acquired from three grids, and electron micrographs were
obtained at a magnification of 25,000×.

Immunoblotting
Protein homogenates were prepared from frozen tissue samples
and from cells grown in 12-wells plates. Briefly, whole protein
samples were sonicated in homogenization buffer (HEPES 1mM,
benzamidine 5 mM, 2-mercaptoethanol 2 mM, EDTA 3 mM,
MgSO4 0.5 mM, NaN3 0.05%, protease inhibitor cocktail set
III 1:100, phosphatase inhibitor cocktail set II 1:100). Twenty
microgram of protein were loaded onto 4%–12% Bis-Tris
SDS-PAGE gels (Invitrogen), transferred onto Immobilon
membranes. After overnight incubation with antibodies against
α-syn (recognizing both human and murine α-syn; Millipore,
1:200), Beclin 1 (Novus Biologicals), LC3 (MBL International), or
p62 (Cell Signaling), membranes were incubated in HRP-linked
secondary antibody (American Qualex), reacted with ECL
Western blotting substrate (Perkin Elmer) and developed in
a VersaDoc gel-imaging machine (BioRad). Immunoblotting
images were analyzed using Quantity One software (BioRad).

Real Time PCR
Total RNA was extracted from the mouse anterior hemibrain
using a Qiagen miRNeasy kit and following the instructions of
the manufacturer. For quantitative real time PCR (qPCR), 0.5 µg
of total RNA per sample were used for reverse transcription
to cDNA using a High capacity cDNA reverse transcription
kit (Applied Biosystems). cDNA was diluted 1:10 in ultrapure
water and 4 µl of this dilution were used per reaction. qPCR
was performed using TaqMan Fast Advanced Master Mix
and species-specific TaqMan primers. The expression of the
gene ACTB (beta actin) was used as internal control (Desplats
et al., 2012). For miRNA qPCR, 10 ng of total RNA per
sample were used for reverse transcription to cDNA using
TaqMan MicroRNA Reverse Transcription Kit and miRNA-
specific primers (Applied Biosystems), and 3 µl of cDNA
were used per reaction. MicroRNA qPCR was performed using
TaqMan Universal Master Mix II, no UNG and species-
specific TaqMan miRNA primers, using U6 as internal control
(Peltier and Latham, 2008). qPCR reactions were run in an
StepOnePlus Real-Time PCR system (Applied Biosystems) and
∆∆Ct calculations were made using StepOne software (Applied
Biosystems).

Statistical Analysis
Differences between groups (n = 5–7) were tested using Student’s
t-test, or one-way analysis of variance (ANOVA) with Tukey’s
post hoc test. Linear correlation between two variables was
measured using the Pearson correlation coefficient (Pearson’s r).
For in vitro assays, all conditions were assayed in duplicate and
repeated in at least three separated experiments. All results are
expressed as average± SEM.

RESULTS

Levels of miRNAs that Reportedly
Modulate the Expression of Autophagy
Genes Are Dysregulated in the MSA Brain
Themain goal of this study was to investigate the role of miRNAs
in biological processes associated to the MSA disease pathology,
such as autophagy. Therefore, we selected a group of miRNAs
that reportedly modulate the expression of autophagy genes,
including the miRNAs let-7b (Dubinsky et al., 2014; Ham et al.,
2015), miR-101 (Frankel et al., 2011; Lin et al., 2014), miR-183
(Huangfu et al., 2016), miR-30a (Zhu et al., 2009; Yu et al.,
2012), miR-34c (Yang et al., 2013) and miR-96 (Lin et al., 2010;
Sandri, 2012; Ma et al., 2014; Figure 1A). We analyzed the
relative expression levels of these autophagy-regulating miRNAs
in the striatum (caudate nucleus and putamen) of MSA-P cases
obtained from three different institutions across the United
States (UCSD-ADRC, Johns Hopkins Medical Institution, and
Banner Sun Health Research Institute; Supplementary Table S1).
Striatum was selected as it is a region severely affected by
neurodegeneration in theMSA-P pathology (Gilman et al., 2008).
By qPCR analysis, we observed a significant increase in let-7b
and miR-101, a reduction in miR-34c, and a trend for higher

FIGURE 1 | Levels of microRNAs (miRNAs) regulating the expression of
autophagy proteins in the striatum of multiple system atrophy (MSA) cases.
(A) Summary of the miRNAs analyzed by quantitative PCR (qPCR) in MSA
brains, together with their reported autophagy targets. (B) qPCR analysis of
the relative levels of let-7b, miR-101, miR-183, miR-30a, miR-34c and miR-96
in striatum of healthy controls and MSA patients. Results are expressed as
averages ± SEM. Statistical analysis was performed by Student’s t-test.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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levels of miR-183, miR-30a and miR-96 in the striatum of MSA
patients (Figure 1B). Interestingly, changes in miRNA levels
were specifically localized in the striatum, and no significant
miRNA changes were observed in frontal cortex or cerebellum,
with the exception of a reduction of miR-30a in frontal cortex
(Supplementary Figure S1).

For a more in-depth study of the mechanistic relationship
between miRNA changes and deficits in protein clearance in
the MSA brain, we decided to focus in miR-101, as alterations
in this miRNA have been strongly associated with autophagy
impairments in human cancer models (Frankel et al., 2011;
Xu et al., 2013). These reports also identified RAB5A as one
of the most relevant targets for miR-101 in humans (miRNA
support vector regression (mirSVR) score = −3.47; Betel et al.,
2010). The protein Rab5a is involved in the sorting of endocytic
vesicles towards autophagy degradation, and inhibition of its
expression might lead to protein clearance impairments (Wu
et al., 2015). Other miR-101 autophagy targets include MTOR
(mirSVR = −0.82; Lin et al., 2014), and the lower affinity
targets ATG4D (mirSVR = −0.73) and STMN1 (Xu et al., 2013).
The mRNA levels of RAB5A and MTOR were significantly
down-regulated in the striatum of MSA patients (Figure 2),
consistent with the significant increase in miR-101 detected in
this region. However, the expression of miR-101 target genes
ATG4D and STMN1 was increased in striatum (Figure 2),

FIGURE 2 | Expression of miR-101-regulated genes in the striatum of MSA
cases. qPCR analysis of the relative mRNA levels of RAB5A, MTOR, ATG4D
and STMN1 in the striatum of healthy controls and MSA patients. Results are
expressed as averages ± SEM. Statistical analysis was performed by
Student’s t-test. ∗∗p < 0.01, ∗∗∗p < 0.001.

suggesting that other mechanisms may be involved in the
regulation of their expression. Finally, the relative mRNA levels
of the α-syn gene (SNCA) were significantly increased in
striatum (Supplementary Figure S2), and we observed a positive
correlation between miR-101 levels and SNCA expression in
this brain region (Pearson’s r = 0.6684, p < 0.01), suggesting a
potential mechanistic relationship between α-syn pathology and
miR-101 levels.

Autophagy Is Inhibited in the Striatum of
MSA Patients
Deficits in autophagy clearance have been reported in MSA and
in other neurodegenerative diseases such as PD, DLB and AD
(Cuervo et al., 2004; Pickford et al., 2008; Crews et al., 2010).
In order to validate those reported autophagy deficits in our
brain samples, we analyzed the levels of the autophagy proteins
Beclin 1, LC3 and p62 in striatum samples of control and MSA
patients by immunoblot (Figures 3A,B). We observed a decrease
in the levels of the autophagy proteins Beclin 1 and LC3, and
p62 appeared elevated, suggestive of autophagy impairments
(Figures 3A,B). Consistent with previous reports showing low
levels of LC3-II in protein homogenates from human brain tissue
(Klionsky et al., 2016), we observed a weak LC3-II signal in
our samples (Supplementary Figure S3). Confocal microscopy
analysis confirmed the immunoblot results (Figure 3C), and
showed that p62 co-localized with α-syn accumulation in the
striatum ofMSA patients (Figure 3D). Moreover, visualization of
autophagosomes by electron microscopy revealed that, while in
brain cells from healthy patients autophagosomes are small and
contain electrodense material, in MSA brains they are bigger in
size, and present higher number of electrodense inclusions and
lipidic granules (Figure 3E). These results confirm the presence
of autophagy deficits in the striatum of MSA patients.

Lentiviral Delivery of miR-101 Leads to
Autophagy Inhibition in the
Oligodendroglial Cell Line CG-4
To evaluate whether alterations in miR-101 levels lead to
autophagy deficits and α-syn accumulation in oligodendrocytes,
we performed in vitro experiments using the oligodendroglial
cell line CG-4 (Louis et al., 1992). Transduction of CG-4
cells with a lentiviral construct expressing rat miR-101
(LV-miR-101) effectively increased miR-101 levels in
comparison to cells expressing a control vector (LV-miR-control;
Figure 4A). Importantly, transcription of two predicted targets
of miR-101, Rab5a (mirSVR =−1.1) andMtor (mirSVR =−0.2),
was significantly reduced in LV-miR-101-infected CG-4 cells
(Figure 4B), suggesting that this epigenetic mechanism is active
in oligodendrocytes.

We next co-infected CG-4 cells with a LV expressing human
α-syn (LV-α-syn) or its control vector (LV-control); with a LV-
miR-101 or LV-miR-control; and with LV-LC3-GFP to monitor
autophagy status. Co-infection with LV-α-syn and LV-miR-
101 induced a significant reduction in the LC3 signal, but
not a significant increase in α-syn accumulation as measured
by immunocytochemistry (Figure 4C). The effect of miR-101
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FIGURE 3 | Autophagy impairments in the striatum of MSA cases. (A) Representative immunoblot results of alpha-synuclein (α-syn), Beclin 1, LC3 and p62 in
protein homogenates from the striatum of healthy controls and MSA patients. (B) Densitometric quantification of immunopositive Beclin 1, LC3 and p62 bands in
protein homogenates from the striatum of healthy controls and MSA patients. Statistical analysis was performed by Student’s t-test. ∗p < 0.05. (C) Representative
images of immunohistochemical staining for α-syn, Beclin 1, LC3 and p62 in the striatum of healthy controls and MSA patients. Arrowheads highlight immunopositive
cells. Scale bar, 10 µm. (D) Representative immunofluorescence images of an oligodendroglial cell showing p62 (green) and α-syn (red) co-localization in the striatum
of MSA patient. Scale bar, 5 µm. (E) Representative electron microscopy images of oligodendroglial cells showing altered morphology of autophagosomes in the
striatum of a healthy control and a MSA patient. Scale bar, 250 nm.

overexpression on autophagy was confirmed by immunoblot
analysis of the autophagy proteins Beclin 1, LC3 and p62 in
cell extracts from CG-4 cells co-expressing α-syn and miR-101
(Figures 4D,E). Co-infection with α-syn and miR-101 induced
a significant decrease in Beclin 1 and LC3 protein levels, and
a significant increase in p62 in CG-4 cells when compared to
the control condition (Figures 4D,E), worsening the effects of
α-syn alone. Taken together, our results indicate that miR-101
has a modulatory effect on autophagy in oligodendroglial cells,
however we cannot rule out the possibility of this miRNA also
inhibiting other protein clearance mechanisms.

Lentiviral Delivery of an antimiR-101
Construct Reduces α-syn-Induced
Autophagy Deficits in the Oligodendroglial
Cell Line CG-4
To confirm the mechanistic involvement of miR-101 in
oligodendroglial autophagy, CG-4 were infected with a lentiviral

construct expressing an antisense sequence against miR-101
(LV-antimiR-101; Figure 5). Three days after infection, we
observed a significant reduction in miR-101 levels when
compared to antimiR-control (LV-antimiR-c; Figure 5A).
Interestingly, transcription of either Rab5a or Mtor was
not significantly altered by antimiR-101 overexpression (not
shown), which may be an indication that further reducing
already low levels of endogenous miR-101 is not sufficient to
significantly alter the expression of these genes. CG-4 cells
were then co-infected with LV-α-syn and LV-antimiR-101 (or
controls), and with LV-LC3-GFP to monitor autophagy by
immunocytochemistry (Figure 5B). Co-infection with LV-α-syn
and LV-antimiR-101 induced an increase in the LC3 signal,
and a significant decrease in the intracellular accumulation
of α-syn in CG-4 cells, suggesting that the repression of
miR-101 may effectively induce α-syn clearance in vitro
(Figure 5B). The miR-101 target genes directly involved in
the autophagy enhancing effects of antimiR-101 remain to be
investigated.
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FIGURE 4 | Overexpression of miR-101 inhibits autophagy and induces α-syn
accumulation in the oligodendroglial cell line CG-4. (A) qPCR analysis of the
levels of miR-101 following infection with a lentivirus (LV) control (LV-miR-c) or
a LV expressing miR-101a (LV-miR-101) in CG-4 cells. (B) qPCR analysis of
the levels of Rab5a and Mtor mRNAs following infection with LV-miR-c or
LV-miR-101 in CG-4 cells. Results are expressed as averages ± SEM.
Statistical analysis was performed by Student’s t-test. ∗p < 0.05.
(C) Immunocytochemical analysis of CG-4 cells co-infected with LV-control or
LV-α-syn, and with LV-miR-c or LV-miR-101. miR-101 expression was
monitored using the fluorescent reporter GFP (not shown). A LV expressing
LC3-GFP was used to assess intracellular LC3 levels, and quantification is
presented as the average number of LC3 positive granules per cell.
Immunostaining with an anti-α-syn antibody was used to determine α-syn
immunoreactivity, and quantification results are presented as optical density
units. Results are expressed as averages ± SEM. Statistical analysis was
performed by one-way analysis of variance (ANOVA) with Tukey’s post hoc
test. ∗p < 0.05 when compared to the double control condition.
(D) Densitometry quantification of immunoblots for Beclin 1, LC3 and p62 in
homogenates of CG-4 cells co-infected with LV-control or LV-α-syn, and
LV-miR-c or LV-miR-101. (E) Representative immunoblot results of α-syn,
Beclin 1, LC3 and p62 in cell homogenates of CG-4 cells co-infected with
LV-control or LV-α-syn, and LV-miR-c or LV-miR-101. Results are expressed
as averages ± SEM. Statistical analysis was performed by one-way ANOVA
with Tukey’s post hoc test. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 when
compared to the double control condition.

Lentiviral Delivery of an antimiR-101
Construct Reduces α-syn-Induced
Autophagy Deficits in the MBP-α-syn
Transgenic Mouse Model of MSA
We next investigated the role of miR-101 in the brains of
MBP-α-syn transgenic (tg) mice, a mouse model of MSA.
MBP-α-syn mice express human α-syn under the control
of the oligodendroglial MBP promoter, and show α-syn
accumulation in striatum and other brain areas, accompanied
by neuroinflammation and motor deficits (Shults et al., 2005;
Valera et al., 2014). We observed a significant increase in the
levels of miR-101 in the striatum of MBP-α-syn tg mice (Line
29, high α-syn expresser) when compared to non-tg controls
(Figure 6A). We also observed a significant increase in the
levels of miR-183 and miR-96 (Supplementary Figure S4). These
results confirm not only the potential involvement of miR-101
in the oligodendroglial pathology of the striatum in MSA-tg
mice (as these animals overexpress human α-syn exclusively in
oligodendrocytes), but they also suggest that increased levels of
miR-183 and miR-96 in the same brain region might cooperate
to further inhibit autophagy in this mouse model. In agreement
with these results, autophagy proteins Beclin 1 and LC3 were
significantly decreased, while p62 levels were increased in MBP-
α-syn tg brains when compared to non-tg mice (Figures 6B,C).
As observed by immunofluorescence, the autophagy proteins
Beclin 1, LC3 and p62 co-localized with α-syn and with the
oligodendroglial marker Olig2 in the striatum of MBP-α-syn tg
mice (Supplementary Figure S5). However, mRNA levels of the
miR-101 predicted targets Rab5a (mirSVR = −1.12) and Mtor
(mirSVR = −0.38) showed no significant changes in striatum
(not shown). This may be due to the low predicted affinity of
miR-101 for these targets.

To confirm that miR-101 is contributing to autophagy
dysregulation in vivo, a proof-of-concept experiment was
performed in which we delivered LV expressing antimiR-101
by bilateral stereotaxic injection into the striatum of non-tg
and MBP-α-syn tg mice, and compared to animals injected
with LV-antimiR-control (Figures 6D,E). For this experiment,
we used the Line 1, a milder α-syn expresser, as the severe
pathology exhibited by Line 29 animals limit interventions. Six
weeks after LV injections, non-tg and MBP-α-syn brains were
sectioned and analyzed by immunohistochemistry (Figure 6D).
LC3 levels were diminished in the striatum of MBP-α-syn tg
mice, consistent with the reported impairment in autophagy, and
antimiR-101 expression significantly increased LC3 levels in both
non-tg and tg animals (Figure 6E). Moreover, the number of cells
accumulating α-syn in striatum was reduced after antimiR-101
delivery (Figure 6E), suggesting a potential disease-modifying
effect of the antimiR-101 therapy. Additionally, Beclin 1 levels
were increased by antimiR-101 delivery in both non-tg and tg
animals, while p62 levels were significantly decreased in MBP-α-
syn tg brains following antimiR-101 treatment (Figures 6D,E).
These results serve as a proof of concept that warrants further
evaluation of alternative interventions targeting miR-101 for the
potential treatment of MSA or related disorders with autophagy
impairment.
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FIGURE 5 | Overexpression of antimiR-101 induces autophagy and reduces α-syn accumulation in the oligodendroglial cell line CG-4. (A) qPCR analysis of the
levels of miR-101 following infection with a LV control (LV-antimiR-c) or a LV expressing antimiR-101a (LV-antimiR-101) in CG-4 cells. Results are expressed as
averages ± SEM. Statistical analysis was performed by Student’s t-test. ∗p < 0.05. (B) Immunocytochemical analysis of CG-4 cells co-infected with LV-control or
LV-α-syn, and with LV-antimiR-c or LV-antimiR-101. AntimiR-101 expression was monitored using the fluorescent reporter mCherry (not shown). A LV expressing
LC3-GFP was used to assess intracellular LC3 levels, and quantification is presented as the average number of LC3 positive granules per cell. Immunostaining with
an anti-α-syn antibody was used to determine α-syn immunoreactivity, and quantification results are presented as optical density units. Results are expressed as
averages ± SEM. Statistical analysis was performed one-way ANOVA with Tukey’s post hoc test. ∗p < 0.05 when compared to the double control condition.

DISCUSSION

In this report, we present evidence supporting the involvement
of miR-101 in the alteration of autophagy observed in
MSA brains, that contributes to α-syn accumulation. We
observed that overexpression of miR-101 inhibited autophagy in
oligodendrocytes, while expression of an antimiR-101 construct
alleviated some of these autophagy deficits in vitro and in vivo
in a mouse model of MSA. Our results suggest that miR-
101, alone or together with other miRNAs, might represent
an additional inhibitory mechanism of the protein clearance
machinery contributing to pathological α-syn accumulation.
Consequently, therapies targeting autophagy-regulatingmiRNAs
such as miR-101 might have beneficial effects on MSA
patients.

Changes in the miRNA expression profile have been observed
in numerous neurodegenerative disorders (Lee et al., 2011; Cardo
et al., 2014; Qiu et al., 2014; Vallelunga et al., 2014; Denk
et al., 2015; Femminella et al., 2015; Tan et al., 2015; Hoss
et al., 2016), and those changes were initially explored as a
potential biomarker alternative for their differential or early
diagnosis. However, evidence has recently mounted suggesting
that miRNA changes might also be mechanistically linked to
the molecular origin and progression of the disease. This is the
case of miR-30a and miR-124, which have been associated with
the pathological changes observed in AD, PD and Huntington’s
disease (Mellios et al., 2008; Fang et al., 2012; Lang et al.,
2012; Sun et al., 2015). In a previous study, we identified
specific miRNAs that are upregulated in MSA using microarray
profiling in postmortem brain samples (Ubhi et al., 2014).
Interestingly, 95% of dysregulated miRNAs were up-regulated in

MSA cases, while only 5% were down-regulated when compared
to non-diseased controls, suggesting that miRNA-mediated gene
silencing might be a prominent feature in MSA. Furthermore,
the miRNA maturation machinery was preserved in both MSA
patients and animal models (Ubhi et al., 2014), indicating that
miRNA changes are probably due to deregulated expression
and/or to degeneration of selected cell populations. In this
study, we have performed a more in-depth analysis taking
into consideration biological processes that have been reported
as altered in MSA brains, such as autophagy (Schwarz et al.,
2012). We found that miRNAs that reportedly modulate the
expression of autophagy genes are up-regulated in MSA brains
and MSA models, suggesting that pathological miRNA changes
could constitute an additional mechanism inhibiting autophagy
in MSA.

Our results show that there is an important regional
component regarding miRNA changes in MSA. We observed
specific increase of five out of six selected miRNAs in
the striatum of MSA brains, and these changes were not
evident in frontal cortex or cerebellum samples. Interestingly,
miR-34c was significantly reduced in striatum, in line with
recent studies showing that miR-34 mitigates neurodegeneration
(Liu et al., 2012), and inhibition of miR-34c enhances α-
synuclein expression in PD (Kabaria et al., 2015). We found
a significant increase in let-7b, and a trend for higher levels
of miR-183, miR-30a and miR-96 in MSA striatum. miR-183
regulates autophagy and apoptosis in colorectal cancer through
targeting of the ultraviolet radiation resistance-associated gene
(UVRAG), a well-known regulator of autophagy that promotes
autophagosome formation and maturation (Huangfu et al.,
2016). While it has been reported that let-7 coordinately
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FIGURE 6 | Expression of antimiR-101 induces autophagy and reduces α-syn accumulation in myelin basic protein (MBP)-α-syn transgenic (tg) mouse brains.
(A) qPCR analysis of the relative levels of miR-101 in the striatum of non-tg and MBP-α-syn tg mice. (B) Representative immunoblot results of α-syn, Beclin 1,
LC3 and p62 in brain homogenates of non-tg and MBP-α-syn tg mouse brains. (C) Densitometric quantification of immunopositive Beclin 1, LC3 and p62 bands in
brain homogenates of non-tg and MBP-α-syn tg mice. Results are expressed as averages ± SEM. Statistical analysis was performed by Student’s t-test. ∗p < 0.05.
(D) Lentiviral constructs expressing control vector (LV-antimiR-c) or antimiR-101 (LV-antimiR-101) were injected bilaterally in the striatum of MBP-α-syn tg, and effects
analyzed 6 weeks later by immunohistochemistry. Representative images of immunohistochemical staining for LC3, α-syn, Beclin 1 and p62 in the striatum of non-tg
and MBP-α-syn tg mice injected with LV-antimiR-c or LV-antimiR-101. Scale, 50 µm for α-syn, 5 µm for LC3 and antimiR-101 reporter (mCherry). (E) Optical density
quantification of LC3, Beclin 1 and p62 immunostaining and cell counts per field of α-syn positive cells in the striatum of non-tg and MBP-α-syn tg mice injected with
LV-antimiR-c or LV-antimiR-101. AntimiR-101 expression was monitored using a fluorescent reporter. Results are expressed as averages ± SEM. Statistical analysis
was performed by one-way ANOVA with Tukey’s post hoc test. ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05 when compared to non-tg animals injected with LV-antimiR-c.
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suppresses components of the amino acid sensing pathway
to repress mTORC1 and induce autophagy (Dubinsky et al.,
2014), it has also been shown that let-7b suppresses apoptosis
and autophagy in human mesenchymal stem cells (Ham et al.,
2015). miR-30a acts as post-transcriptional inhibitor of BDNF
in prefrontal cortex (Mellios et al., 2008), suggesting that the
consequences of pathological miRNA up-regulation in MSA
may not be limited to autophagy, and rather contributing with
other neurodegenerative pathways. Finally, miR-96 has been
reported to target ATG7 or MTOR for inhibition depending
on its expression levels, resulting in a bi-phasic effect that can
either inhibit or promote autophagy (Ma et al., 2014). It can be
concluded that the miRNA regulation of physiological cellular
processes is a complex epigenetic mechanism, and that the
balance between opposing signals (activation vs. repression), and
potentially the cross-talk with other regulatory pathways, may
be critical to determine the outcome of the observed miRNA
changes.

We focused our study on miR-101 due to its reported
potent inhibitory effect on autophagy (Frankel et al., 2011), and
because it showed consistent and significant increased levels
in MSA striatum samples. However, we cannot rule out the
possibility of other miRNAs, or more likely a combination
of miRNAs, contributing to the autophagy dysfunction in
MSA brains. Results linking miR-101 to autophagy inhibition
were first reported in breast cancer cells (Frankel et al.,
2011), and later reproduced in hepatocellular carcinoma cells
(Xu et al., 2013) and cardiomyocytes (Wu et al., 2015).
Three of the autophagy targets of miR-101 (RAB5A, ATG4D
and STMN1) have been validated in human cancer models
(Frankel et al., 2011; Jing et al., 2015). Another reported
miR-101 target in the autophagy pathway is MTOR (Xu et al.,
2013; Lin et al., 2014), an autophagy inhibitor suggesting
that miR101 is regulating both autophagy inhibitors and
activators with an overall balance toward blocking autophagy.
In agreement with these studies, we provide evidence of
similar regulation in the brain where we observed a decrease
in RAB5A and MTOR expression along with decreased
BECLIN1 and LC3 autophagy markers in association with
an increase in miR-101 in striatum. These results further
substantiate our rationale for exploring the involvement of
altered levels of miR-101 in the autophagy deficits observed
in neurodegenerative disorders such as MSA. However, the
expression of the lower mirSVR score targets ATG4D and
STMN1 was increased in striatum, suggesting that other non-
miR-101 factors are at play in the regulation of autophagy
in MSA in the striatum. In this sense, it is important to
note that some reports have shown that the autophagy-
lysosomal pathway is activated in the pons of MSA patients
(Makioka et al., 2012; Schwarz et al., 2012), suggesting an
additional layer of complexity to region-specific regulatory
mechanism(s). Interestingly, miR-101 is also a negative regulator
of amyloid precursor protein expression and modulates the
accumulation of amyloid beta in hippocampal neurons (Vilardo
et al., 2010; Barbato et al., 2014), highlighting a potential role
for miR-101 in other neuropathological conditions through
additional mechanisms.

Our results suggest that striatum is affected by changes in
miRNAs that regulate autophagy genes in MSA. Importantly,
neurodegeneration is severe in the striatum (caudate/putamen)
and substantia nigra of MSA-P patients (Jellinger, 2014).
Moreover, the extent and spatial distribution of functional and
morphological changes in the striatum enables the differentiation
of MSA-P from PD (Ghaemi et al., 2002). A positive association
has been reported between striatal dopamine loss and α-syn
accumulation in the striatum of MSA patients, but not in
substantia nigra (Tong et al., 2010). These reports highlight the
importance of striatal changes in MSA pathology, and together
with our results suggest that this brain region could be the most
sensitive area to miRNA-targeted therapeutics for MSA.

Our proof-of-concept experiment using brain region-specific
overexpression of an antimiR-101 construct suggests that
miRNA-targeted approaches may be an option for the treatment
of MSA and related disorders. As mentioned, for this experiment
we decided to use a milder α-syn expresser line (Line 1), as
the Line 29 animals exhibit severe pathology that drastically
limits survivability to invasive interventions. Despite the fact
that Line 1 animals do not show significant changes in striatal
miR-101 levels, they can be used as a model for testing early
disease interventions. Interestingly, the expression levels of the
miR-101 predicted targets Rab5a andMtor showed no significant
changes in the striatum of MBP-α-syn tg mice, despite the
significant increase in miR-101 levels. To interpret these results,
it is important to consider that MBP-α-syn tg mice overexpress
α-syn exclusively in oligodendrocytes, while mRNA changes
were measured in whole brain, thus potentially attenuating cell
type-specific effects of miRNA changes on the expression of
autophagy genes.

Additional research will be required to address the question
of how anti-miRNA therapies ameliorate oligodendroglial vs.
neuronal α-syn accumulation in MSA models. Recently, a new
hypothesis has gained momentum suggesting that MSA neurons
release toxic aggregates of α-syn to the extracellular medium,
and this extracellular, propagating α-syn is incorporated and
accumulated by oligodendrocytes, a cell type that arguably
expresses lower levels of endogenous α-syn (Asi et al., 2014).
In this sense, α-syn would behave as a prion-like molecule
(Prusiner et al., 2015), and its spreading behavior might be
due to the inability of the acceptor cells to efficiently clear α-
syn by intrinsic mechanisms such as autophagy. Although we
have observed that miR-101 may play a role in oligodendroglial
autophagic dysfunction, miR-101 dysregulation might also be
altering the pattern of neuronal α-syn accumulation and its
release to the extracellular environment. Experiments assessing
the effect of antimiR-101 on α-syn propagation will be needed
to further evaluate its potential as a MSA therapeutic. Finally,
autophagy is a highly-regulated process and its inhibition
is most likely due to a combination of factors and not
only to a miRNA imbalance. This is specifically relevant in
the case of neurodegenerative diseases, in which numerous
genetic and environmental factors combine with natural
aging processes to result in neurodegeneration. Therefore, the
success of anti-miRNA approaches against miRNAs regulating
autophagy will depend on the balance of miRNA regulation
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with other autophagy inhibiting and pro-neurodegenerative
processes. In this sense, we hypothesize that combining an
antimiR-101 approach with additional α-syn anti-aggregation
therapies may lead to significant beneficial effects for MSA
patients.

In conclusion, our results suggest that miRNA dysregulation
contributes toMSA pathology, with miR-101 alterations partially
mediating autophagy impairment. Therefore, therapies targeting
miR-101 may represent potential approaches for MSA and
related neuropathologies with autophagy dysfunction.
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