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Cell-to-cell communication is essential for the organization, coordination, and

development of cellular networks and multi-cellular systems. Intercellular communication

is mediated by soluble factors (including growth factors, neurotransmitters, and

cytokines/chemokines), gap junctions, exosomes and recently described tunneling

nanotubes (TNTs). It is unknown whether a combination of these communication

mechanisms such as TNTs and gap junctions may be important, but further research

is required. TNTs are long cytoplasmic bridges that enable long-range, directed

communication between connected cells. The proposed functions of TNTs are diverse

and not well understood but have been shown to include the cell-to-cell transfer of

vesicles, organelles, electrical stimuli and small molecules. However, the exact role of
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TNTs and gap junctions for intercellular communication and their impact on disease is

still uncertain and thus, the subject of much debate. The combined data from numerous

laboratories indicate that some TNT mediate a long-range gap junctional communication

to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic,

cancer, and age-related diseases. This review aims to describe the current knowledge,

challenges and future perspectives to characterize and explore this new intercellular

communication system and to design TNT-based therapeutic strategies.

Keywords: Alzheimer, inflammation, cancer, gap junctions, reactivation

INTRODUCTION

Cell-to-cell communication is essential to all biological processes.
Tunneling nanotubes (TNTs), also named cytonemes and tumor
microtubes, are a recently discovered form of the long-distance
communication system between cells (Onfelt et al., 2004;
Rustom et al., 2004; Gerdes et al., 2007). Consisting of long
cytoplasmic, open-ended or connexin-containing protrusions
that can connect cells, the proposed functions of these structures
are diverse and have been shown to include the long-
range exchange of organelles, vesicles, and small molecules
between connected cells (Gerdes et al., 2007). Data from in
vitro and ex vivo studies indicate that TNTs are minimally
observed in uninfected cells (Eugenin et al., 2009a; Gerdes
et al., 2013). In contrast, in vitro TNT formation and TNT-
mediated intercellular communication are significantly higher in
several pathologic forms of disease, including, virus infection,
cancer, synucleinopathies (Parkinson’s disease, Lewy bodies, and
multiple system atrophy) as well as tauopathies, and prion-
associated diseases (Gerdes and Carvalho, 2008; Eugenin et al.,
2009a; Gousset et al., 2009; Abounit and Zurzolo, 2012; Wang
and Gerdes, 2012; Gerdes et al., 2013; Austefjord et al., 2014;
Abounit et al., 2015, 2016a,b; Desir et al., 2016; Tardivel et al.,
2016). Several laboratories observed the presence of connexin
and gap junction channels in TNTs, but the role of gap junctions
(GJ) in these processes and these diseases is still under active
investigation. These observations open the possibility of a long-
range gap junctional communication mediated by the TNT
processes.

In pathological conditions, TNT numbers can increase and
facilitate the intercellular spread of infectious and toxic agents. To
date, TNT formation has been observed in tissue culture in many
different mammalian cell types (from epithelial to endothelial,
mesenchymal and stem cells), immune cells (including B, T, NK
cells, neutrophils, monocyte/macrophages and dendritic cells),
neurons, glial cells and cancer cells, suggesting that their presence
is more ubiquitous than initially thought (see review by Gerdes
et al., 2007). In vivo, TNT-like protrusions called cytonemes have
been observed in the imaginal disc development of Drosophila
(Kornberg, 1999; Hsiung et al., 2005) and prior to fertilization
of Plasmodium gametes in the midgut of the Anopheles malaria
vector (Rupp et al., 2011). Malaria parasites form filamentous
cell-to-cell connections during reproduction in the mosquito
midgut (Rupp et al., 2011). Furthermore, TNT-like structures
have been commonly observed between immune cells in lymph

nodes (see review by Onfelt et al., 2004; Gerdes et al., 2007;
Zaccard et al., 2016) and between dendritic cells in mouse cornea
(Chinnery et al., 2008). Other examples of TNT-like structures
observed in tissues have been reported in malignant tumors
resected from human cancer patients (Pasquier et al., 2013;
Ady et al., 2014; Antanaviciute et al., 2014; Thayanithy et al.,
2014b), in leukemic cells obtained from bone marrow aspirates
of pediatric patients (Polak et al., 2015) and in cardiac myocytes
and non-myocyte cells in heart damage (Quinn et al., 2016).
Moreover, an impressive in vivo demonstration of TNT-like
structures (named tumor microtubes, TMs) has been reported
in malignant gliomas, providing further support for a potentially
important role for direct intercellular communication by TNT
and GJ in tumor development and progression (Osswald et al.,
2016). Interestingly, Dr. Gerdes’s laboratory demonstrate that
TNT between different cell types are electrically coupled by a
mechanism involving gap junctions (Wang et al., 2010, 2012;
Wang and Gerdes, 2012; Gerdes et al., 2013; Austefjord et al.,
2014).

On September 22-23, 2016, academic leaders in the TNT
field (see authors list) met in Collegeville, Pennsylvania, USA
to discuss “Tunneling nanotubes (TNTs): Cell to Cell Social
Networking in Disease.” In addition to the basic biology experts
from Europe, Asia, and the United States, the meeting had
extensive interest and attendance from researchers from the
pharmaceutical industry, and the U.S. National Institutes of
Health (NIH); this unique combination of basic and translational
research expertise produced vigorous discussion and debate
on several important aspects of this new field of the biology
of intercellular communication including TNT and the role
of GJ in health and disease. The focus was to clarify what
defines TNT structures, what signals trigger their formation and
accountability for their differential permeability and selectivity.
Lastly, the potential use of TNTs to rescue cells from cell death
or metabolic distress and as novel therapeutic approaches were
considered. The conclusions drawn from the discussions are
summarized in this review.

TNT Identity
In the last 10 years, there have been many descriptions and
observations of cellular protrusions connecting cells, which
appear quite different from TNTs. Hence, it is critical to be
able to distinguish TNTs from other types of cell projections.
The similarity between TNT and GJ channels were highlighted
(Rustom et al., 2004; Watkins and Salter, 2005). Some TNTs
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have been shown to possess GJ components (Wang et al.,
2010; Wang and Gerdes, 2012). Data from Drs. Osswald
and Eugenin showed that connexin-43 (Cx43) is present
in the TNT-like structures under various contexts (between
astrocytoma cells or between macrophages) and that inhibition
of GJ channels does not prevent their formation but does
interfere with normal communication between TNT connected
cells. These data suggest that the two communication systems
evolved to complement each other in coordinating cell-to-cell
communication.

A related issue is whether all TNTs are open-ended and what
is the mechanism of their formation. Some reports described
the intercellular exchange of Ca2+ signals between distant cells
are mediated via TNTs (Watkins and Salter, 2005; Hase et al.,
2009; Wang et al., 2010, 2012; He et al., 2011; Smith et al., 2011;
Wittig et al., 2012; Al Heialy et al., 2015; Osswald et al., 2015)
suggesting some form of membrane/cytosolic continuity along
these structures or active GJ channels are present at the end of the
process (Wang et al., 2010, 2012; Wang and Gerdes, 2012; Gerdes
et al., 2013; Austefjord et al., 2014). The mechanisms involved in
this process of intercellular Ca2+ wave propagation are not well
understood, but GJ are thought to be intimately involved (Wang
et al., 2010, 2012; Wittig et al., 2012; Lock et al., 2016). Further,
the observation in lymphocytes that TNTs are not permeable
to Ca2+ highlight the diverse phenotype in their physiological
properties (Davis and Sowinski, 2008; Sowinski et al., 2008).
Characterization of TNTs in untreated cells in culture indicates
that TNTs are uniformly F-actin positive and have low expression
of tubulin (Onfelt et al., 2006; Rupp et al., 2011; Gousset et al.,
2013; Thayanithy et al., 2014a; Astanina et al., 2015; Polak et al.,
2015) suggesting that actin regulators and actin-driven motors
might be implicated in the formation and/or function of TNTs.
In PC12 cells, the immunocytochemical analysis demonstrates
that synaptophysin, a marker of synaptic vesicles, as well as
Myosin-X (Myo10) and Va (MyoVa), both actin-based motor
proteins, were present inside TNTs (Rustom et al., 2004). These
data were confirmed in other cell types (Gousset et al., 2013;
Schiller et al., 2013; Reichert et al., 2016; Tardivel et al., 2016),
andM-Sec through Ral-mediated actin remodeling was shown to
be involved in TNT formation as reported by Dr. Kimura (Hase
et al., 2009; Ohno et al., 2010). Furthermore, recent data indicated
that TNT mediates a long-range transmission of IP3 by a gap
junction-dependent mechanism (Lock et al., 2016). Nonetheless,
it is still entirely unknown which proteins are involved in the
formation, stability, and transport associated with TNTs and
is very likely that different mechanisms will participate in the
formation of these structures and are prevalent in different cell
types.

Filamentous Actin (F-Actin), M-Sec, myosin Va, and X,
as well as Cx43, are well-known components of TNTs, and
the blocking any of these components reduces or prevents
communication. Preliminary data from Dr. Den Boer showed
that various types of actin inhibitors, but not tubulin inhibitors,
will reduce the level of TNT signaling in leukemia. Novel
data from Dr. Zurzolo showed that TNTs and filopodial
extensions (which look very similar in confocal microscopy)
have different requirements and rely on different actin regulators

(Abounit et al., 2015). This is consistent with the previous
observation made from the same group (Gousset et al.,
2013).

Several groups have demonstrated that HIV-infected cells
(e.g., those containing proteins or infected with HIV) can send
TNTs to neighboring uninfected or healthy cells, resulting in the
spread of infection or aggregation of toxic viral proteins. Dr.
Gousset indicated that the transfer of the HIV-1 Nef accessory
protein is mediated via TNTs between a macrophage cell line
and T cells. Using this Nef model system, it was shown that
Nef transfer occurred through a Myo10-dependent mechanism.
Similarly, diseased cells lacking functional lysosomes have also
been shown to induce TNT formation from nearby healthy
cells to facilitate lysosome delivery into diseases cells (Abounit
et al., 2015, 2016a). Interestingly, lysosomal dysfunction occurs in
neurodegenerative disease. Dr. Zurzolo’s group recently showed
that lysosomes could be transferred through TNTs to mediate
the intercellular spreading of misfolded alpha-synuclein in a
neuronal cell model of Parkinson’s disease (Abounit et al.,
2015, 2016b). Lysosomal cross-correction via TNTs was also
shown in the context of a lysosomal storage disorder after
hematopoietic stem cell transplantation resulting in long-term
tissue preservation (Yasuda et al., 2011; Astanina et al., 2015;
Naphade et al., 2015; Abounit et al., 2016a). Similar TNT transfer
mechanisms have been observed for mitochondria in different
diseases (Han et al., 2016; Jackson et al., 2016; Jiang et al., 2016;
Reichert et al., 2016; Sinclair et al., 2016; Wang et al., 2016; Zhang
et al., 2016).

The intracellular and extracellular signals involved in the
formation, permeability, and directionality of these TNTs are
unknown. Interestingly, experiments using different tumor cell
lines, primary astrocytes, acute leukemia cells, T cells, and
macrophages demonstrate that the formation, communication,
transfer of metabolites and the collapse of the TNTs are
extremely fast (30–60 s) and can reach distances up to 300µm.
To further understand the properties of TNTs and GJ either
the identification of novel proteins and lipids capable of
supporting these mechanisms or identification of new TNT-
related functions of existing proteins are required. The main
conclusion was that several types of TNTs are present in multiple
cell types and tissues. Further research is required to identify
potential biomarkers of TNT formation for different cell types
is therefore warranted. Moreover, an agreed definition of a TNT
has been the subject of much debate and consensus amongst
TNT scientists is a tubular membrane connection between
non-adjacent cells that allow direct intercellular communication,
not necessarily gap junction-mediated. They contain F-actin,
are open-ended and have a variable diameter from 50 to
800 nm. Although different types of tubular, membranous
connections have been observed to form between distant cells,
the term “TNT-like structure” can be ascribed to these cellular
structures, provided that they fulfill the essential requirement of
allowing intercellular exchanges of any material, (e.g., vesicular,
particulate, ionic, molecular, organismic) between the connected
cells (see Figure 1). To identify TNT-associated structures, there
is a need for new or improved super-resolution and electron
microscopy methods that can structurally characterize this new
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FIGURE 1 | Schematic of TNT formation and the potential role of gap junction channels during long rage communication. As described in the text, TNT have at least 3

different stages, including formation, stabilization, and the transport of the cargo. The last one is associated with several different roles in disease including viral

spreading, chemoresistance, and disease dissemination as well as an energy associated survival, genetic disease rescue and stress survival. TNT formation is

triggered by inflammation, infection, toxicity, in several disease, and embryogenesis/morphogenesis. Some of the proteins involved in the formation of TNT are actin,

Myosin Va and X, synaptophysin, Cx43, and M-sec. Following the formation of the TNT process, there are at least 2 different types of tubes, a synaptic and

open-ended process. The formation of these long rage TNT enable the connected cells to share multiple proteins and lipids.

intercellular communication system in more detail. It will also be
important to describe TNTs in different cell types and situations,
where expression of one TNT type may predominate. Also,
more data using live imaging systems are needed to describe the
mechanism of transfer.

TNTs in the Healthy vs. Diseased State
Another important question under consideration is the timing
and location of TNT formation. Several reports indicated
that viruses, such as herpes (La Boissiere et al., 2004; Sherer
et al., 2007), influenza (Kumar et al., 2017), and pseudorabies
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viruses (Favoreel et al., 2005), can be transmitted through long
extensions without contact with the extracellular environment,
suggesting that viruses may have evolved to use TNTs to
spread efficiently between connected cells (Figure 1). The signals
that guide the formation of TNTs are not entirely known.
However, a re-examination of older reports through the prism
of the current knowledge of TNTs indicates that there were
published descriptions of increased formation of TNT-like
structures in inflammatory conditions. In particular, TNT-like
structures have been observed under the following pathological
conditions in vitro: cell infected with Listeria monocytogenes and
Mycobacterium Bovis (Dramsi and Cossart, 1998; Wehland and
Carl, 1998; Onfelt et al., 2006), in astrocytes treated with H2O2

(Zhu et al., 2005), microglia activated with PMA and calcium
ionophore (Martinez et al., 2002), monocyte/macrophages
treated with LPS plus IFN-γ (Eugenin et al., 2003), lymphocytes
and human macrophages infected with HIV (Sowinski et al.,
2008; Eugenin et al., 2009b), mouse neuronal CAD cells and
primary neurons and astrocytes infected with exogenous PrP
(Gousset et al., 2009, 2013), and more recently neurons treated
with pathogenic amyloid aggregates (Costanzo et al., 2013;
Abounit et al., 2016a,b). It is therefore not surprising that TNT-
like structures have also been identified in normal hematopoietic
(CD34+) progenitor cells and lymphoid leukemia cells and that
interference with TNT signaling in the hematopoietic context
results in altered secretion of cytokines (Polak et al., 2015).
Interestingly, most of these treatments are also associated with
the formation and functional gap junctional communication,
especially in immune cells.

Dr. Zurzolo’s group proposed that diseases associated with
the spread of the misfolded aggregated proteins within the CNS
(like a prion, Alzheimer, Parkinson, and Huntington disease)
might involve TNT-mediated spreading (Abounit and Zurzolo,
2012; Delage and Zurzolo, 2013; Abounit et al., 2015, 2016a,b;
Delage et al., 2016). They demonstrated that prion protein, PolyQ
Huntingtin, fibrillar tau and alpha-synuclein transfer between
neurons in culture using TNTs as the predominant mechanism
of dissemination (Abounit et al., 2016a,b). Together with the
postulated role of TNTs in HIV spreading within the central
nervous system (Eugenin et al., 2009a,b; Abounit et al., 2016a),
this suggests that multiple diseases can use TNTs to spread
toxicity and infection, identifying TNTs as an exciting new
potential therapeutic target. Indeed, inhibition of TNTs may
block or reduce the amplification of several diseases including
HIV, Parkinson’s disease, Lewy bodies, and multiple system
atrophy as well as tauopathies (Gousset et al., 2009, 2013; Abounit
and Zurzolo, 2012; Costanzo et al., 2013; Abounit et al., 2016a,b).
Dr. Zurzolo presented data showing that misfolded aggregated
tau leads to an increase in TNT formation in culture, but the
role of gap junction channels in these tubes was not examined
(Abounit et al., 2016b). In agreement with Dr. Zurzolo’s findings,
several groups have identified TNT like structures in tau related
pathologies and their potential role in disease by facilitating
electrical coupling and calcium signaling between distant cells
(Gerdes et al., 2007; Wang et al., 2012; Wittig et al., 2012; Tardivel
et al., 2016), supporting further a potential role of gap junction
channels in TNT biology.

Another important role of TNTs in disease may be linked to
modulation of the tumor microenvironment. Data from Dr. Den
Boer showed that TNTs are actively formed between leukemic
cells and bone marrow-derived mesenchymal stromal cells. This
interaction is beneficial to the viability of leukemic cells and
induces chemo-resistance, which can be abrogated by disrupting
the TNTs (Polak et al., 2015). Only recently, Drs. Winkler and
Osswald demonstrated that TNT-like structures are essential
in the pathogenesis of astrocytomas including the participation
of connexin containing channels (Osswald et al., 2015, 2016;
Winkler, 2016; Jung et al., 2017; Weil et al., 2017).

As indicated above, the exact role of TNTs and GJ channels
is unclear. However, there is evidence that a specific type
of TNT-like structures (called cytonemes) have been observed
during developmental stages of several organisms likeDrosophila
and have been postulated to play a role in embryonic
development, differentiation, and morphogenesis (Ramirez-
Weber and Kornberg, 1999; Roy et al., 2011, 2014; Rojas-
Rios et al., 2012; Bilioni et al., 2013; Bischoff et al., 2013;
Kornberg, 2014; Kornberg and Roy, 2014; Huang and Kornberg,
2016; Karlikow et al., 2016). Further, TNT-like structures were
found in the unicellular malaria parasites during gametogenesis,
which takes place in the midgut of the Anopheles mosquito
and proposed to be important for the initial contact between
mating partners (Rupp et al., 2011). Although the role of TNTs
in normal cells was not specifically addressed, there is a large
body of data supporting the presence and the need of TNT-like
communication during development and immune cell activation
(Kornberg, 1999; Ramirez-Weber and Kornberg, 1999; Roy et al.,
2011, 2014; Bilioni et al., 2013; Bischoff et al., 2013; Briscoe and
Vincent, 2013; Polak et al., 2015; Huang and Kornberg, 2016;
Karlikow et al., 2016). A recent report from the Mailliard group
describes the induction and regulation of TNTs in dendritic cells
as a normal component of their function as mediators of adaptive
immunity (Zaccard et al., 2015). In this study, dendritic cells
matured under type-1 pro-inflammatory conditions acquired
a unique program to rapidly form intercellular networks of
tunneling nanotube-like structures upon subsequent antigen-
driven interaction with CD4+ T-helper (TH) cells. This immune
process, which they termed dendritic cell “reticulation,” is
induced by the TH cell-derived factor CD40L, and serves to
facilitate the functional intercellular transfer of antigens and
endosomal vesicles (Zaccard et al., 2015). Interestingly, this
process is differentially regulated by the opposing activity of the
respective TH1- and TH2-associated cytokines IFN-γ and IL-4.
Importantly, they also describe how the induction and regulation
of TNT networks in dendritic cells can be exploited by pathogens
such as HIV to facilitate cell-to-cell spread (Mailliard et al., 2013;
Zaccard et al., 2015). Similar results of antigen sharing has been
described in the context of GJ communication (Neijssen et al.,
2005; Matsue et al., 2006; Corvalan et al., 2007; Handel et al.,
2007; Mendoza-Naranjo et al., 2007; Pang et al., 2009). Thus, it
may be that a similar mechanism of amplification of the immune
response can be mediated either by TNT’s or by gap junctions.

Under inflammatory or pathological conditions in the context
of a genetic lysosomal storage disorder, cystinosis, TNTs also
serve as a delivery system to transfer “healthy” lysosomes.
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Indeed, following the systemic transplantation of wild-type
hematopoietic stem and progenitor cells (HSPCs) in the mouse
model of cystinosis, Ctns−/− mice, HSPCs differentiate into
macrophages and generate TNTs that transfer cystinosis-bearing
lysosomes to the adjacent disease cells, leading to long-term
kidney preservation (Naphade et al., 2015). A similar mechanism
accounts for the conservation of the cornea and thyroid in
the Ctns−/− mice (Rocca et al., 2015; Gaide Chevronnay
et al., 2016). An understanding of the role of this new
communication system in quiescent cells, during the immune
response and in pathological conditions may open new potential
therapeutic opportunities to target these diseases with none-
to-minimal side effects as the current scientific data suggests
that TNTs are only minimally expressed under homeostatic
conditions.

TNT’s in Transport
Another important question in the TNT field concerns the types
of cargos being transported within the TNTs. Several reports
support the idea that different types of TNTs, as categorized
by size, content, and permeability, exist in different cells and
under different conditions as well as presence or absence of
gap junction channels. TNTs have been shown to mediate long-
range transmission of Ca2+ signals between cells (Watkins and
Salter, 2005; Hase et al., 2009; Wang et al., 2010, 2012; He et al.,
2011; Smith et al., 2011; Wittig et al., 2012; Al Heialy et al.,
2015; Osswald et al., 2015), a novel mechanism that adds to the
known repertoire by which Ca2+ ions communicate information
between cells. The mechanism through which this occurs is not
well understood, but gap junctions are thought to play a role
in mediating intercellular transmission of Ca2+ waves (Wang
et al., 2010, 2012; Wittig et al., 2012; Lock et al., 2016). In other
instances, TNT has been shown not to be permeable to Ca2+.
TNTs in other systems allow transport of mitochondria and
vesicles, suggesting that the internal pore size is large enough for
the trafficking of these organelles (see review by Gerdes et al.,
2007; Sherer et al., 2007). The observation that mitochondria
can be exchanged between TNT-connected cells is extremely
important because it could be one of the first demonstrations
of cell to cell transfer of genetic material between non-dividing
mammalian cells, suggesting that at least mitochondrial DNA
(and potentially siRNA) is not cell type specific and can be shared
between different types of cells connected by TNT-like structures
(Li et al., 2014; Jackson et al., 2016; Jiang et al., 2016; Sinclair et al.,
2016). It is still unclear whether multiple types of TNTs exist or
whether the observed differences represent different maturation
stages of the same processes. Also, the timing of gap junction
formation in relation to the formation of TNT’s is no known.

There are two hypotheses that describe how pathogens are
sorted in TNTs in infected cells: First, that type of TNT
determines the function of the tubular process and type of
cargo transported and second, whether TNTs have the capability
to sort the cargo at the initiating and terminating regions
of the TNT. Both possibilities are feasible based on several
scientific papers demonstrating differential TNT selectivity and
transport properties (see Figure 1). For example, Drs. Osswald
and Eugenin showed that gap junction channels are present in
TNTs/TNT-like structures, suggesting that at least this type of

TNTmay have a cutoff of 1.2 kDa, such that only small molecules
can be transferred between TNT connected cells expressing this
kind of channel. Dr. Zurzolo showed that PrPSc (the pathogenic
form of the prion protein) and other protein aggregates, as well
as organelles and lysosomes, can be transmitted between the
connected cells. Recent data from Drs. Lou, Pasquier, Osswald
and Den Boer demonstrated that TNTs or TNT-like structures
might also play a critical role in tumor growth, metastasis,
and chemo-resistance, suggesting that TNT communication in
tumors can exchange molecules which accelerate the spreading
of disease and induce therapy resistance.

In conclusion, TNT’s can transport a variety of products
from second messengers (e.g., mRNA to large organelles), but
the mechanism of selectivity, transport, and delivery are still
unknown. Although myosin motors have been found inside
TNTs and therefore likely to be involved in the movement
of the different cargoes on the actin cables running inside
TNTs, there are still many open questions relating to the
identities of the specific motors; whether there is diffusion
allowed, and regulation/determination of the different uni- or
bi-directional transport mechanisms at play. To answer these
questions, fundamental research is required (and should be
actively encouraged) to better understand the biology of the
structure and composition of TNTs and associated GJ channels,
and their potential role in human disease.

TNT Existence in Vivo
Evidence of TNTs in vivo is the central requirement to further
progression of research in this area. Literature evidence for the
existence of these cellular protrusions has been limited to date,
mainly because there are no known specific biomarkers of TNTs.
However, a review of the literature revealed several examples of
TNT-like structures that have been observed in vivo or ex vivo.
These include the cytonemes found in Drosophila (Kornberg,
1999; Hsiung et al., 2005). TNT like structures between immune
cells in lymph nodes (see review by Onfelt et al., 2004; Gerdes
et al., 2007), and between MHC class II+ cells in the mouse
cornea (Chinnery et al., 2008), as well as the bridges TNT-
like structures observed in several models of malignant tumors
(cancer) such as mesothelioma, lung cancer, ovarian cancer, and
laryngeal cancer (Ady et al., 2014; Antanaviciute et al., 2014, 2015;
Thayanithy et al., 2014b; Desir et al., 2016) or capable of crossing
the dense tubular basement membrane in the kidney of the
cystinosis mouse model (Naphade et al., 2015) or in their cornea
and thyroid (Rocca et al., 2015; Gaide Chevronnay et al., 2016).
One major issue in performing these in vivo and ex vivo studies is
the difficulties in identifying the precise nature of the structures
and clearly determining their role in the transfer. Nonetheless,
several reports have provided in vivo evidence to support the
role of TNTs in pathophysiology and several forms of the disease.
Data from Drs. Osswald, Goodman, Lou, Eugenin and Den Boer
reported evidence of TNT-like structures in brain tumors, and
in ex vivo hematopoietic stem cells, lung, and ovarian cancers.
Also, TNT-like structures were found in human macrophages
present in lymph nodes obtained from HIV-infected individuals
with HIV reactivation.

Interestingly, viruses, such as African Swine Fever, Ebola,
Herpes Simplex, Marburg filoviruses, and Poxvirus Vaccinia,
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TABLE 1 | Open questions in the area of TNT and gap junctions.

Theme Specific questions Workshop output

Pathophysiological

function of TNTs

Why are TNTs induced in disease? • Hijacking development and/or an evolutionary response

• Stress induction

• Specificity in cargo delivery—energy conservation

• Exchange of genetic material to support disease or rescue damage cells from cell

death

Translational relevance of

TNTs in disease

TNTs are thought to play a role in

disease—which disease(s)?

• Diseases include cancer, neurodegenerative disorders, tau related diseases, HIV,

lysosomal disorders, inflammation, parasitic infections (Malaria)

What role do TNTs play is disease? • Promoting the disease (e.g., spread of virus, protein aggregates), mitochondria

between cancer cells (chemo-resistance)

• Rescuing the cell function (e.g., lysosomal and mitochondrial transfer to defective

cells)

Elucidating Normal Physiologic functions of

TNTs

• Facilitating cell contact during development (e.g., cytonemes)

• Promoting cell communication (e.g., Signaling) between distant cells

• Immune response and organelle exchange mechanisms

• Function in stem cell biology and tissue repair

• Diverse heterogeneity of TNTs (phenotype/functions/disease/health)

• Proven importance/roles of TNTs for immune response

• Multi-functional cargo (“FedEx”-like)

What are the key learnings • Cell structure is important for spread/progression of the disease by transferring,

e.g., infectious agents between cells and for cell-to-cell communication, e.g., during

development, tissue regeneration

• Potential therapeutic target to block disease progression

• TNT formation during development (e.g., CNS), pathological events (pathogens,

tumor cells, misfolded/aggregated/stress protein), during regeneration process

(stroke), in inflammation/immune response and drug delivery

• Importance of identifying mechanism of actin/motors that drive TNTs

• Elevating research beyond in vitro, in vivo and 3D studies

• Importance of examining heterotypic TNT interactions, e.g., cancer-to-stem cells,

cancer/stroma

• To examine the immense heterogeneity of definition of TNTs

Cellular mechanisms of

TNTs

What is known about TNT cell biology? • Strong evidence of TNT formation in vitro (e.g., infectious disease, oncology,

neurology, development)

• Intercellular communication /signaling/cargo/dyes

• Inducible (infection/inflammation)

• A Large variety of cells capable of TNT formation

• Some evidence of TNT formation in vivo (oncology)

• Evidence that M-sec, myosins, F-actin, and calcium transfer are involved

• Shaking/physical disruption blocks TNT formation

• Gap junctions may play a role in TNT connecting to receiving cells (Focus if this

review)

What is the overlap, and what are the potential

differences, of TNT biology in normal cells vs. in

disease, and between different diseases?

• Differences—induction of TNT seems to be associated with “diseased” cells

• The direction of cargo communication

• Cell types/microenvironment (tumor/inflammation)

• In diseased cells, F-actin polymerization is increased.

How does a donor cell “decide” what

organelles, molecules or signals transfer

through TNTs?

• Key factors include:

◦ Variety of TNTs

◦ Different triggering factors (pathogen, metabolic stress, e.g., reactive oxygen

species)

◦ Selectivity of organelles and direction of travel

◦ Uni-/bi-directional depends on cell type &/or cargo

• Stress response

• Preferential transfer of mitochondria

• Virus hijack TNTs

TNT research has advanced over the last 10

years—what are the key focus areas to

advance this science?

• Mechanism of TNT formation—trigger, direction, cargo/content, structure, response

• Better characterization—different types of TNTs, types of cells able to make TNTs

• In vivo evidence of TNT—in development, in disease model, regeneration

mechanism (stem cells)

(Continued)
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TABLE 1 | Continued

Theme Specific questions Workshop output

• Develop/test TNT blockade strategies and TNT induction mechanism

• Delineate relationship between TNTs and inflammation/immune response stromal

• The following items are needed:

◦ Chemical tools

◦ Common mechanism of transfer

◦ Selectivity

◦ A TNT biomarker

◦ In vivo evidence

• Cargo identification

• Regulation and induction/suppression

• Accept TNT heterogeneity (no simple narrow definition to make this science grow)

• Technology hurdles:

• Need higher resolution microscopy (e.g., EM, cryoEM, organelle level resolution,

identifying cellular structure “signatures”)

• Collaboration with medicinal chemists to synthesize inhibitors of key TNT-drivers

(e.g., M-sec)

• Proteomics to identify TNTs and their contents

• Targeted drug delivery via TNTs (e.g., siRNA)

• “How does the TNT know where to go?” cell sensing mechanisms?

• Translational relevance: identify strategic approaches that are disease specific

• Standardization of terminology

• Broader definition, including subtype descriptors

• In vivo data, especially patient data

• Better, specific markers →enable 3D culture experiments, in vivo, etc

• TNT biochemistry—reconstitute in a cell-free system

encode viral factors or alter cell activation to induce the
formation of filopodia structures that allow viral trafficking
between the extracellular matrix and environment into cells
(Cudmore et al., 1995; Favoreel et al., 2005; Hartlieb and
Weissenhorn, 2006; Jouvenet et al., 2006; Kolesnikova et al.,
2007; Gill et al., 2008). These observations suggest that viruses
have adapted to use TNT-like structures and GJ to promote
viral spread. In conclusion, for TNTs to be considered a viable
and functional mechanism for intercellular communications,
generating compelling in vivo data that demonstrate a clear
difference between healthy and disease states is critically
important.

TNT and Therapy
TNTs are considered to have two potential roles, as a
mechanism for spreading disease-forming cargos (from prion
to viruses) and/or as a means of spread chemotherapeutic
agents, beneficial organelles or cellular molecules during stress
and pathological conditions. In diseased cells, TNT levels
are significantly elevated which may make it possible to
specifically block TNT-like related pathways that are induced
only in disease. Data from Drs. Lou, Pasquier and Den Boer
proposed several models by which TNT formation and function
between cancerous cells may be altered or modulated following
response to chemotherapeutic drugs, the following exposure to
clinically relevant tumor conditions such as hypoxia, micro-
environmental-induced changes and/or following intercellular
transfer of cellular organelles, such as mitochondria, microRNAs,
and endosomal vesicles or even exosomes. Moreover, under
normal conditions, disease states that promote inflammation
(especially in cancer) could induce TNT formation in response

to metabolic stress (Rustom et al., 2004; Abounit et al.,
2016a,b).

TNT formation and induction has also been observed
following injury, trauma or chronic tissue stresses. Here, they are
thought to play a role in the exchange of energetic components
and mitochondria (Wang et al., 2011; Zhang, 2011; Pasquier
et al., 2013; Las and Shirihai, 2014; Li et al., 2014; Thayanithy
et al., 2014b) to help compromised cells to survive stress. This
possibility opens new potential therapeutic opportunities. For
example, during the stroke, ischemia and reperfusion conditions
regulating the formation of TNTs may provide a means of
cell rescue. Furthermore, TNTs offer a novel delivery route for
stem-cell based therapies against genetic conditions resulting in
organelle dysfunction (Bruzauskaite et al., 2016; Antanavičiūtė
et al., 2017) and for chemotherapeutic drugs that disrupt DNA
replication, such as nucleoside analogs (Bruzauskaite et al., 2016;
Antanavičiūtė et al., 2017). A study by Lou demonstrated that
TNTs could facilitate the intercellular spread of therapeutic
oncolytic viral vectors; furthermore, TNTs also mediated the
bystander effect by facilitating distribution of therapeutic drugs
(nucleoside analogs) activated by viral thymidine kinase. The
study establishes TNTs as an alternate route, beyond gap
junctions, for cells to amplify the effects of potential disease-
targeting drugs, opening a new door to harnessing TNTs as
potential cellular conduits for drug delivery (Bruzauskaite et al.,
2016; Antanavičiūtė et al., 2017). Conversely, where infectious
agents ‘hijack’ TNTs to spread their pathology, blocking TNTs
by targeting specific TNT components could represent another
therapeutic strategy in disease. Thus, further research in this area
is required to help the scientific field to understand this dual
nature of TNTs better.
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CONCLUSIONS: PROSPECTS FOR TNT
BIOLOGY, GAP JUNCTIONS, AND
TRANSLATIONAL RESEARCH

There is a growing body of evidence that supports the
critical role of TNT-like structures and gap junctions in
development, immune response, and disease. The increased
TNT formation in several pathogenic conditions provides
a unique opportunity to pharmacologically modulate these
processes to block or increase their formation to control the
spread of pathogenic and healthy components communicated
through TNTs.

An overview of recent scientific literature indicates that TNT-
gap junctional research is in its early stage of research and
there are still a number of outstanding questions relating to
the mechanisms and signals driving the formation of TNTs,
their morphology and detailed structural organization, their
components (e.g., proteins and lipids), mechanisms determining
their permeability and cargo, how TNTs collapse, biomarkers of
TNT formation, and, most importantly, how all of these factors
are associated with particular cellular functions (Figure 1).
However, it is clear that the main function of TNTs during
adulthood is to participate in the immune response and during
several pathological conditions. To address these key TNT-
related questions, a collaboration between leading TNT scientists
is vital, and several aspects and questions of this emerging field
are summarized in Table 1. Also, GJ not only communicate
to neighboring cells but also potentially through TNTs over a
long-range.

Thus, by blocking TNTs and/or gap junctional
communication at long distances in infected cells and
disrupting the transmission of infectious material to
neighboring cells, this approach represents a unique
therapeutic strategy for some hard-to-treat diseases
which includes some retroviral and microbial infections,
neurodegenerative disorders and metastasis in certain
cancers.
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