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Targeted Genetic Screen in
Amyotrophic Lateral Sclerosis
Reveals Novel Genetic Variants with
Synergistic Effect on Clinical
Phenotype
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Paul R. Heath, Adrian Higginbottom, Theresa Walsh, Mbombe Kazoka,

Project MinE ALS Sequencing Consortium?, Paul G. Ince, Guillaume M. Hautbergue,
Christopher J. McDermott, Janine Kirby and Pamela J. Shaw*

Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom

Amyotrophic lateral sclerosis (ALS) is underpinned by an oligogenic rare variant
architecture. Identified genetic variants of ALS include RNA-binding proteins containing
prion-like domains (PrLDs). We hypothesized that screening genes encoding additional
similar proteins will yield novel genetic causes of ALS. The most common genetic
variant of ALS patients is a G4C2-repeat expansion within C9ORF72. We have shown
that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of
this is that loss-of-function mutations in G4C2-binding partners might contribute to
ALS pathogenesis independently of and/or synergistically with COORF72 expansions.
Targeted sequencing of genomic DNA encoding either RNA-binding proteins or
known ALS genes (n = 274 genes) was performed in ALS patients to identify rare
deleterious genetic variants and explore genotype-phenotype relationships. Genomic
DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61
young-onset (average age of onset 41 years) sporadic ALS patients; patients were
chosen to maximize the probability of identifying genetic causes of ALS. Thirteen
patients carried a G4C2-repeat expansion of COORF72. We identified 42 patients
with rare deleterious variants; 6 patients carried more than one variant. Twelve
mutations were discovered in known ALS genes which served as a validation of
our strategy. Rare deleterious variants in RNA-binding proteins were significantly
enriched in ALS patients compared to control frequencies (p = 5.31E-18). Nineteen
patients featured at least one variant in a RNA-binding protein containing a PrLD.
The number of variants per patient correlated with rate of disease progression (t-test,
p = 0.033). We identified eighteen patients with a single variant in a G4C2-repeat
binding protein. Patients with a G4C2-binding protein variant in combination with
a C90ORF72 expansion had a significantly faster disease course (t-test, p = 0.025).
Our data are consistent with an oligogenic model of ALS. We provide evidence
for a number of entirely novel genetic variants of ALS caused by mutations in
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RNA-binding proteins. Moreover we show that these mutations act synergistically with
each other and with C9ORF72 expansions to modify the clinical phenotype of ALS. A
key finding is that this synergy is present only between functionally interacting variants.
This work has significant implications for ALS therapy development.

Keywords: amyotrophic lateral sclerosis, RNA binding proteins, oligogenic inheritance, C9ORF72, DNA

sequencing

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is an age-related
neurodegenerative disorder. The lifetime risk of ALS is ~1
in 400. The ALS phenotype is markedly variable but ~80% of
patients die from respiratory failure within 2-5 years (Cooper-
Knock et al., 2013). The majority of ALS is apparently sporadic,
but 5-10% of patients show autosomal dominant inheritance.
It is recognized that ALS is likely to be an oligogenic disorder
even when it is apparently sporadic (van Blitterswijk et al., 2012).
A mixed-model association analysis in 12,577 ALS cases and
23,475 controls was consistent with an oligogenic rare variant
architecture (van Rheenen et al., 2016).

Identified ALS loci highlight a small number of pathways,
most prominent of which is RNA metabolism. Pathogenic
mutations have been discovered in multiple RNA-recognition
motif (RRM) containing proteins including EWSRI1, FUS,
HNRNPA1, HNRNPA2BI1, TAF15, and TDP-43 (Cooper-
Knock et al, 2012). All of these proteins contain prion-
like domains (PrLDs) (Harrison and Shorter, 2017). A PrLD
consists of low complexity sequence with an “infectious”
conformation that allows these proteins to undergo liquid-
phase transition. Physiologically, such transitions allow the
formation of membrane-less organelles such as stress granules,
but pathologically they are thought to lead to irreversible protein
aggregation. Often membrane-less organelles contain RNA; in
addition to PrLD interaction it has been shown that RRM
interaction with RNA is essential for integrity of so-called
RNA granules (Molliex et al, 2015). The infectious aspect of
PrLDs refers to the ability of aggregated protein to induce an
aggregation-conformation in unaggregated protein, which is a
proposed mechanism for ALS disease spread through the CNS
(Ravits, 2014).

Thirty-one of the 213 identified RRM-containing proteins in
the human proteome rank in the top 250 most prion-like (Alberti
et al., 2009; Couthouis et al., 2011); this includes EWSR1, FUS,
TAF15, and TDP-43 which are known to be mutated in ALS cases.
We screened 147 additional genes encoding RRM-containing
proteins with prion-like domains for mutations in ALS cases.

In the most common genetic variant of ALS, patients
carry a G4C2-repeat expansion within intron 1 of C9ORF72
(DeJesus-Hernandez et al., 2011; Renton et al., 2011). C9ORF72-
ALS patients represent the full spectrum of sporadic ALS
both clinically and pathologically (Cooper-Knock et al., 2012).
The mechanism of pathogenesis in these cases is unknown.
Three mechanisms have been proposed and to some extent
demonstrated: (1) Haploinsufficiency related to disrupted
expression of the COORF72 protein. (2) Gain-of-function toxicity

of G4C2-repeat RNA molecules transcribed from the mutated
sequence. (3) Toxicity of dipeptide-repeat proteins translated
from the repetitive RNA (Cooper-Knock et al., 2015b). It is
hypothesized that G4C2-repeat RNA sequesters RNA-binding
proteins away from their normal location causing a functional
haploinsufficiency (Cooper-Knock et al., 2014). Notably the
antisense transcript consisting of C4G2-repeat RNA binds a
similar set of RNA-binding proteins (Cooper-Knock et al.,
2015a). A logical consequence of this hypothesis is that loss-of-
function mutations in G4C2-binding partners might contribute
to ALS pathogenesis independently of and/or act synergistically
with C9ORF72 expansions. Evidence in myotonic dystrophy
supports this hypothesis: mutations in muscleblind-like proteins
modify the phenotype caused by sequestration of the same
proteins by CUG-repeat RNA (e.g., Choi et al., 2016). Similarly
mice lacking muscleblind-like 1 exhibit some of the features of
myotonic dystrophy despite the absence of CUG-repeat RNA
(Dixon et al., 2015).

We tested whether mutations in RNA-binding proteins,
including both RRM-containing proteins with a PrLD and G4C2-
binding partners, are a cause of ALS and/or whether they
modify the clinical phenotype. Our patient cohort (Table 1,
Supplementary Table 2) was comprised of either familial ALS
cases caused by a COORF72 expansion (n = 13) or FALS without
a known genetic cause identified (n = 42) or young patients
with sporadic ALS (n = 61) who are more likely to carry
a pathogenic mutation than older patients with sporadic ALS
(Cooper-Knock et al.,, 2013). Our filtering strategy aimed to
identify rare deleterious variants rather than common low-risk
variants. We also screened for variants in known ALS genes to
augment the analysis and validate our strategy.

We identified a number of apparently toxic variants in
RNA-binding proteins in ALS patients at a significantly higher
frequency than is observed in normal controls. Moreover we
showed that these variants act synergistically with each other
and with known ALS-causing mutations to determine the clinical
severity of ALS. This has important implications for future ALS-
therapy development.

MATERIALS AND METHODS

Design of the Targeted Genetic Screen

The complete list of sequenced genes is provided in
Supplementary Table 1. Genes were either known ALS genes
or genes encoding RNA-binding proteins. The RNA-binding
proteins were in two groups—RRM-containing proteins with
a PrLD (Couthouis et al., 2011) or those identified binding
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TABLE 1 | Summary of targeted DNA sequencing screen.

Group Number of Number with a newly Number with >1 newly Average age of onset Male:Female Ratio
patients identified variant identified variant (standard deviation) (years)

Familial ALS 42 16 1 60 (8.6) 1.5:1

Young sporadic ALS 61 26 5 41 (15.8) 1.9:1

Total 103 42 6 49 (15.2) 1.8:1

partners of the G4C2-repeat expansion (Cooper-Knock et al, RESULTS

2014).

Selection of Patients for Screening

ALS patients were selected to increase the probability of
discovering novel genetic variants—they either had a positive
family history, or they were relatively young (<50 years old) at
presentation or they carried an expansion of COORF72. Genomic
DNA was extracted from 103 ALS patients from the North of
England. The cohort included 34 familial ALS patients in whom
a genetic cause had not been identified despite screening for ALS
associated mutations in SODI, C9ORF72, TARDBP, and FUS;
61 young-onset sporadic ALS patients; and thirteen C9ORF72-
ALS patients (Table 1). A patient with an identified mutation in
FUS was included as a positive control. G4C2-repeat expansions
of CI9ORF72 expansions were identified by repeat-primed PCR
as described previously (Cooper-Knock et al., 2012); all patients
were screened for COORF72 expansion prior to selection for the
screen. The study was approved by the South Sheflield Research
Ethics Committee and informed consent was obtained for all
samples.

DNA Sequencing

Genomic DNA was enriched for selected RNA-binding proteins
and known ALS genes using a custom designed Agilent
SureSelect in solution kit. Sequencing was performed using
an Illumina HiScan platform according to manufacturers
instructions.

Rare deleterious mutations were defined by frequency within
the Exome Aggregation Consortium data set of <1/10,000
control alleles (Lek et al., 2016), and a Phred-scaled Combined
Annotation Dependent Depletion (CADD) score >10 (Kircher
et al., 2014). Comparison of various pathogenicity prediction
tools recently supported the sensitivity and specificity of CADD
(Salgado et al., 2016). Given that we were focused on exonic
changes with an effect on protein function, synonymous
changes were excluded. We excluded any changes with a
read depth <10 and validated by Sanger sequencing any
changes with read depth 10-15 or a novel allele frequency less
than one third the reference allele frequency (Supplementary
Figure 1).

ExAC defines constrained genes based on an observed
frequency of loss of function mutations which is much less than
predicted by sequence specific mutation probabilities (Lek et al.,
2016). A threshold for “constrained” is set as probability of a gene
being loss of function intolerant (PLi) > 0.95.

Our aim was to identify genetic changes which may cause or
contribute to ALS pathogenesis. Consistent with an oligogenic
rare variant architecture of ALS (van Rheenen et al., 2016)
we proposed that such changes are unlikely to be common in
the background population, but may be present. We filtered
sequencing data for rare deleterious variants defined as frequency
within the ExAC data set of <1/10,000 control alleles (Lek et al.,
2016), and a Phred-scaled CADD score >10 (change is within
10% most deleterious reference variants) (Kircher et al., 2014). All
genetic changes with a low read depth were validated by Sanger
sequencing (Supplementary Figure 1).

In 42 (of 103 screened) patients we identified a rare deleterious
variant; six patients carried more than one variant. Thirteen
CY90ORF72-ALS patients were included in the screen; in eight we
identified an additional rare deleterious variant (i.e., in addition
to a G4C2-repeat expansion of C9ORF72) and in two patients
we identified more than one additional variant. Average disease
duration for patients in the screen was 66 months; average disease
duration in patients with an identified variant was 61 months
compared to 73 months in patients in whom no variant was
identified, although this difference was not statistically significant
(t-test, p = 0.14). In both patients with and without an identified
variant average age of onset was 49 years.

Identified Mutations in Known ALS Genes
We identified 12 patients with mutations in nine known ALS
genes (Table 2, Supplementary Table 2). This is expected based
on reported frequencies of these mutations and served as
a validation of our strategy. One patient with a previously
identified FUS mutation was included as a positive control. Rare
deleterious variants were newly identified in ALS2, DCTNI (two
different variants), ELP3, EWSRI, SETX (two different variants),
SODI (two different variants), UNC13A, C9ORF72, and VCP.

Several of the mutations we identified in ALS genes affect
previously reported amino acids or protein domains. For
example, both mutations in DCTNI were within the dynein
associated protein domain, which is consistent with previously
reported mutations (Miinch et al., 2004); the mutation identified
in EWSRI occurs in the same amino acid as previously reported
(Couthouis et al., 2011); one of the SETX mutations we identified
lies within a helicase domain which contains several previously
reported mutations (Hirano et al., 2011); both SODI mutations
have been previously described in familial ALS (Orrell et al,
1999); and a mutation in the same amino acid of VCP has been
previously identified in another ALS patient (Johnson et al,
2010).
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TABLE 2 | Identified rare deleterious variants in known ALS genes.

Gene Mutation Amino acid change Mutated protein domain Sporadic/Familial CADD
C90ORF72  A1239G 1413M Alpha domain Sporadic 13.9
DCTN1 G1326A/G1668A/G1617A/G1707A/G1728A  M4421/M5561/M5391/M5691/M576I Dynein associated protein domain ~ Sporadic 17.2
DCTN1 G1193C/G1535C/G1484C/G1574C/G1595C  R398P/R512P/R495P/R525P/R532P  Dynein associated protein domain  Sporadic 24.6
ELP3 TE54A/T795A/T735A/T9B9A/T1101A Y218X/Y265X/Y245X/Y323X/Y337X  Affects all functional domains Familial 37
EWSR1 G1366A/G1531A/G1534A/G1549A G456R/G511R/G512R/G517R Within R/G/P-rich domain Familial 18.3
SETX AB172C K2058Q Helicase domain Familial 12.8
SETX C1750G L584V Outside described domains Familial 13.4
UNC13A  G3091A G1031R Calcium dependent secretion Familial 11
activator domain
SOD1 G217A G728 Cu/Zn binding domain Sporadic 36
SOD1 T341C 1113T Cu/Zn binding domain Sporadic 19.5
ALS2 G1681A V5611 Regulator of chromatin Sporadic 14.5
condensation domain
VCP G278A R93H Aspartate decarboxylase-like Sporadic 21.8

domain

Other variants we identified in known ALS genes are
more novel. ELP3 has been previously associated with ALS
by GWAS (Simpson et al, 2009), but pathogenic variants
have not been identified. The patient identified in this screen
demonstrated a nonsense mutation in exon 10 which disrupts all
described functional domains of the protein. Similarly variation
in UNCI3A has been identified as a risk factor for sporadic ALS
(van Es et al,, 2009) and as a modifier of the clinical phenotype,
but pathogenic variants have not been identified. Our patient
with a variant in UNCI3A has a family history of ALS and no
other identified mutation in an ALS gene (or any other gene in
our screen). One sporadic ALS patient has a variant in ALS2;
given that mutations in ALS2 are usually autosomal recessive and
associated with a slowly progressive juvenile onset form of the
disease, then this variant is of unknown significance. However, no
study has reported this exact change previously (Al-Chalabi et al.,
2003; Luigetti et al., 2013). Similarly a rare deleterious variant
was identified in C9ORF72 in a patient who also carried a G4C2-
repeat expansion; no pathogenic variants have been confirmed
in C9ORF?72 except the G4C2-repeat expansion in intron 1 and
therefore this variant is also of unknown significance.

Identified Rare Deleterious Variants in
RRM-Containing Proteins with Prion-Like

Domains

We identified 19 patients with a rare deleterious variant in a
RNA-binding protein with a PrLD of whom three had more than
one variant (Table 3, Supplementary Table 2). Fourteen of the
patients had died, four patients were still alive and in these cases
disease duration was censored to the present date. One patient
with a variant in MTHFSD also had a mutation in SODI. SODI
mutations are associated with a distinct clinical phenotype and
pathology compared to characterized mutations in RNA-binding
proteins (Cooper-Knock et al., 2013) and therefore this patient
was excluded from further analysis. Of the 21 identified variants

remaining, 16 (76%) occurred in either the RRM domain or a
low complexity sequence (Table 3). The number of variants per
patient correlated with rate of disease progression (Figure 1A,
t-test, p = 0.033) but not age of onset. Including C9ORF72
expansions in this analysis did not appear to be synergistic.

The Project MinE browser (http://databrowser.projectmine.
com/) was utilized to search for additional evidence of similar
variants in these proteins. The Project MinE Consortium has
to date reported whole genome sequencing of 1169 ALS cases
and 608 controls from the Netherlands. For RBM4B, RBM45,
RBMS2, RAVERI, PPARGCIB, and TRNAUIAP the project
Project MinE data identified additional variant(s) within the
same exon which were present either exclusively in ALS patients
or were more frequent in ALS patients than controls. RBM12,
RBM1I12B, RBM15, RBM15B, and RBM45 are single exon genes,
but Project MinE identified ALS cases with disease-associated
variant(s) within <25 amino acids in each of these genes. This
clustering of cases for each of these genes supports the functional
significance of the rare variants we have discovered.

The ALS Variant Server, Worcester, MA (http://als.umassmed.
edu/) reports whole exome sequencing from 1,022 familial ALS
patients. Within this cohort we identified an additional example
of an ALS patient carrying an A622G variant in RBM12 and four
ALS patients carrying p.S550G/p.S525G/p.S589G (single case) or
p-E395K/p.E370K/p.E434K (3 cases) variants in PPARGCIB.

It is noteworthy that a small number of genes found to contain
rare deleterious variants but classified as known ALS genes or
G4C2-repeat binding partners are also RRM-containing proteins
with a PrLD. This includes EWSRI1, HNRNPA3, HNRNPU, and
HNRNPULI. Except for being previously identified as a known
ALS gene, EWSRI is not distinct from the other RRM-containing
proteins with a PrLD under consideration; therefore EWSRI is
included in the analysis of synergy detailed above. In contrast
HNRNPA3, HNRNPU, and HNRNPULI were selected on the
basis of an independent hypothesis: that loss of function in
the proteins encoded by these genes might mimic sequestration
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TABLE 3 | Identified rare deleterious variants in RNA-binding proteins with prion-like domains.

Gene Variant Amino acid change Mutated RRM/Low Sporadic/ Exac constrained CADD phred  Additional

complexity domain Familial (PLi > 0.95) score variant
NOL8 T2597G/T2393G L866R/L798R E-rich domain Sporadic No 23.8 RBM4B
RBM4B C701T A234V A-rich domain Sporadic No 15.2 NOL8
EIF3B C943T R315C No Familial Yes 17.2 None
RBMA41 G760A A254T No Sporadic No 1.3 None
RBM12 AB22G 1208V P-rich domain Familial No 12.4 RBM15
RBM15 G1787A R596H R-rich domain Familial Yes 20.6 RBM12
HNRBNPM G544A/GO04A/GT787A G182S/G3025/G263S No Sporadic Yes 22.7 None
PPARGC1B  C1037A/C962A/C1154A P346H/P321H/P385H No Sporadic No 12.1 None
PPARGC1B  A1648G/A1573G/A1765G  S550G/S525G/S589G No Sporadic No 15.4 None
PPARGC1B  G1183A/G1108A/G1300A  E395K/E370K/E434K E-rich domain Sporadic No 11.1 None
MTHFSD G472C/G469C/G412C A158P/A157P/A138P No Sporadic No 22 None
SPEN G1649A R550H RRM Sporadic Yes 34 None
PABPCTL G808A V270M RRM Sporadic Yes 11.8 RBMXL3
RBMXL3 C362T P121L No Sporadic No 16.1 PABPC1L
RAVER1 T194G L65R RRM Sporadic Yes 28.3 None
RBM12B ABS2T M218L RRM Sporadic No 17.9 None
RBM158B G1385C S462T RRM Sporadic Yes 19.2 None
RBM45 G338A R113Q RRM Sporadic No 22.3 None
RBMS2 G354T K118N RRM Familial No 16.8 None
RBMXL2 G995T R332L R/E/P-rich domain Sporadic No 171 None
TRNAUTAP  G124T G42w RRM Sporadic No 29.6 None
EWSR1 G1366A/G1531A/ G456R/G511R/ Within R/G/P-rich Familial Yes 18.3 None

G1534A/G1549A G512R/G517R domain

by G4C2-repeat-RNA derived from a C9ORF72 expansion. The
majority of variants identified in RRM-containing proteins with
a PrLD are located in either the RRM-domain or the PrLD
but, consistent with an alternate mechanism, variants identified
in HNRNPA3, HNRNPU, and HNRNPULI are located distinct
functional domains (Table 4). To avoid potentially confounding
discrepancy between mechanisms of pathogenicity HNRNPA3,
HNRNPU, and HNRNPULI were not included in analysis of
other variants identified within RRM-containing proteins with a
PrLD.

Identified Rare Deleterious Variants in
G4C2-Repeat Binding Proteins

We identified 18 patients with a rare deleterious variant in a
G4C2-repeat binding protein (Table 4, Supplementary Table 2).
No patients had more than one variant in a G4C2-repeat binding
protein. Five of the patients carried a G4C2-repeat expansion in
CI90ORF72. Fourteen of the patients had died, six patients were
still alive and in these cases disease duration was censored to
the present date. Patients with a G4C2-binding protein variant in
combination with a COORF72 expansion had a significantly faster
disease course (Figure 1B, t-test, p = 0.025) but age of onset was
not significantly different. For one patient with a variant in ILF3,
no clinical information was available. In two specific examples
the same gene is mutated in patents with and without a COORF72
expansion—SLCIA3 and EEFIG. In both cases there is a 50%
reduction in disease duration (SLCIA3: 52 months to 27 months;

EEF1G: 79 months censored to 22 months) in the patient carrying
the C9ORF72 expansion and the mutation.

Sequestration of RNA-binding proteins by G4C2-repeat RNA
associated with C9ORF72-ALS would be expected to prevent
those proteins performing their normal function. Consequently
a mutation which exacerbates this toxicity would be expected to
cause loss-of-function. Of the 18 G4C2-repeat binding proteins
in which we identified a rare deleterious variant, 67% are encoded
by genes which are defined by ExAC as extremely loss-of-
function intolerant (ExAC refer to this property as “constrained”)
(Lek et al., 2016). This is enriched compared to the total list of
G4C2-repeat binding proteins screened (Supplementary Table 1)
of which 42% are ExAC constrained (41 constrained from 98
total). This observation supports our proposed mechanism. In
comparison, for RRM-containing proteins with a PrLD, the
proportion of variants discovered in EXAC constrained genes is
only 32%.

The Project MinE browser (http://databrowser.projectmine.
com/) was utilized to search for additional evidence of similar
variants in these proteins. For SLCIA3, EEFIG, hnRNPU,
hnRNPULI, EZR, and GRSFI Project MinE identified additional
variant(s) within the same exon which were present either
exclusively in ALS patients or were more frequent in ALS
patients than controls. The ALS Variant Server, Worcester,
MA (http://als.umassmed.edu/) reports whole exome sequencing
from 1,022 familial ALS patients. Within this cohort we identified
an additional example of an ALS patient carrying a p.D403E

Frontiers in Molecular Neuroscience | www.frontiersin.org

November 2017 | Volume 10 | Article 370


http://databrowser.projectmine.com/
http://databrowser.projectmine.com/
http://als.umassmed.edu/
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles

Cooper-Knock et al.

Targeted Genetic Screen in ALS

A p=0.033
80+ f 1
s
-,9_. 60
© ~
S 2
95
"
g2 [
K] 20
o
0- T
N Vv
Number of Variants in RRM-Containing
Proteins with PrLD
B

=0.02
— p=0.025

—

80

60

40+

20 =5

0- T
N a

Number of Variants in G4C2-Repeat Binding
Partners Plus C90RF72 Expansions

Disease Duration
(Months)

(]

80+

60+

—

Disease Duration
(Months)
FS
o

N 4 L ™ o
Number of Mutations

FIGURE 1 | Number of identified rare deleterious variants in RNA-binding
proteins is significantly correlated with ALS clinical phenotype only when
variants are considered within functional subgroups. Plots show disease
duration for ALS patients divided by number of identified rare deleterious
variants. A significant relationship with ALS clinical phenotype is identified only
when variants are considered within functional subgroups. ALS patients with
two rare deleterious variants in RRM-containing proteins with PrLDs have a
significantly faster disease course than patients with a single variant (t-test, p
= 0.033) (A). Rare deleterious variants in G4C2-binding partners lead to more
rapid ALS disease progression when combined with a COORF72 G4C2-repeat
expansion (t-test, p = 0.025) (B). In contrast when identified variants are
considered together with mutations known ALS genes (including COORF72
G4C2-repeat expansions) there is no significant correlation with disease
phenotype (C).

mutation in EEFIG, a p.P12R mutation in HNRNPA3, and a
p.A297P/p.A308P mutation in SRPK2. This clustering of cases
for each of these genes supports the functional significance of the
rare variants we have discovered.

Rare Deleterious Variants in RNA-Binding

Proteins Are Enriched in ALS Cases

To calculate whether the observed frequency of rare deleterious
variants in RNA-binding proteins in our DNA sequencing screen
is higher than expected we utilized ExAC frequencies and CADD
scores for the identified changes. CADD scoring is expressed
as the observed frequency of variants which are at least as
pathogenic as the observed variant. For this analysis we assumed
that observed frequency is independent of pathogenicity on
the basis that ALS does not usually affect reproductive fitness.
We observed 39 rare deleterious variants in 1,223,647 bases
of DNA from 103 patients; this is a significant enrichment
compared to observed control frequencies (p = 5.31E-18)
suggesting that these variants are significantly enriched in ALS
patients.

Synergy between Variants Is Function
Specific

No significant correlation was identified between total number
of variants per patient and the clinical phenotype (Pearson
correlation, correlation coeflicient = —0.20, p = 0.21)
(Figure 1C). This was unchanged whether or not C9ORF72
expansions are considered. In contrast, when either RRM-
containing proteins with PrLDs or G4C2 binding partners are
considered in isolation, then there is a significant synergistic
effect on clinical phenotype (Figures1A,B). We conclude
that a synergy is present only between variants in functionally
interacting genes/proteins.

DISCUSSION

A new period of ALS genetics has begun in which we need
to think of ALS as not a predominantly sporadic disease with
a small proportion of monogenic familial cases, but rather
as a pathogenesis shaped by synergy between oligogenic rare
variants. It is likely that many ALS-associated genetic variants
do not cause disease except in combination with other genetic
and environmental factors. This is consistent with ALS as a
multistep process as proposed by Al-Chalabi et al. (2014).
With an oligogenic model in mind, we performed targeted
genetic sequencing of RNA-binding proteins in ALS patients
and identified rare deleterious variants at a significantly higher
than control frequency. We aimed to identify novel pathogenic
mutations and to discover evidence that these mutations act
synergistically to produce the ALS phenotype. We achieved
this and for the first time we have shown that synergy
between mutations is specific to groups of functionally related
genes/proteins.

We have shown that rare deleterious variants in RRM-
containing proteins with a PrLD act synergistically to determine
speed of ALS progression. Synergy is consistent with action in a
common pathway. PrLD are thought to facilitate protein-protein
interactions which are key to the formation of membrane-less
cellular compartments (March et al., 2016). Important examples
of membrane-less compartments are RNA-protein complexes
such as P-bodies and stress granules. These RNA granules
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TABLE 4 | Identified rare deleterious variants in G4C2-repeat binding partners.

Gene Variant Amino acid change Sporadic/Familial Exac constrained (PLi > 0.95) CADD  C90RF72 expansion
SLC1A3 AB09G/AB47G N170S/N216S Sporadic No 13.9 Yes
SLC1A3 C372G/C510G F124L/F170L Familial No 101 No
ATP5B T803C V268A Sporadic Yes 25.5 No
MYH9 A3181T S1061C Sporadic No 19.2 Yes
EEF1G T1209A D403E Familial Yes 14.5 Yes
EEF1G C979T R327C Sporadic Yes 18.3 No
HNRNPUL1 C161A P54Q Familial Yes 11.8 No
EPB41L3 G1295A/G968A R432H/R323H Sporadic No 29.2 No
EZR C1714T R572W Sporadic Yes 26.7 No
GRSF1 A364G K122E Familial No 14.7 Yes
HNRNFA3 C35G P12R Familial Yes 16.9 No
HNRNPU C1202T/C1259T S401L/5420L Familial Yes 35 Yes
HSFA5 G76A D26N Sporadic No 18.6 No
ILF3 C1445T S482L Familial Yes 12.4 No
PA2G4 AB44G 1182V Familial Yes 1.2 No
SRPK2 G889C/G922C A297P/A308P Familial Yes 20.4 No
XRCC6 T893C/T1043C/T920C M298T/M348T/M307T  Sporadic Yes 20 No
XRCC6 G16156A/G1765A/G1642A  G539R/G589R/G548R  Sporadic Yes 1.2 No

are dependent on protein-protein interaction via PrLDs in
combination with protein-RNA interaction via RRMs (Harrison
and Shorter, 2017). It is proposed that mutations in PrLDs
or RRMs can affect this interaction and may increase the
probability of transition to pathological aggregation. In support
of this, a significant number of mutations already associated
with ALS, which occur in RRM-containing proteins with PrLDs,
cluster in or close to the PrLD or the RRM and make the
protein more aggregation prone (Harrison and Shorter, 2017). A
prediction of this model is that mutations in multiple proteins
may act in synergy to produce aggregation. Consistent with
this 76% of the variants we identified in RRM-containing
proteins with PrLDs are within a low complexity sequence or a
RRM.

We found that rare deleterious variants in G4C2-repeat-RNA
binding partners act synergistically with COORF72 expansions to
shorten disease duration. This is consistent with work from our
group and others providing evidence for sequestration of these
proteins by repeat-RNA in C9ORF72-ALS cases (Cooper-Knock
et al,, 2014, 2015a). Moreover, we identified rare deleterious
variants in these proteins in patients without C9ORF72
expansions suggesting that dysfunction of G4C2 binding partners
could be pathogenic in the absence of C9ORF72 expansions.
Other mechanisms of C9ORF72-ALS pathogenesis have been
highlighted in the literature, but our findings support the relative
importance of the repeat-RNA sequestration hypothesis. We have
shown that, based on proposed RNA toxicity, we could select
candidate genes and identify novel ALS genetic variants.

It is noteworthy that if all identified mutations are considered
together then there is no correlation between variant-load
and clinical phenotype. This probably reflects the diversity of
mechanisms affected. To understand oligogenic inheritance, our
data suggest that mutations will have to be understood as

acting synergistically only within groups of functionally related
genes/proteins.

Many of the variants identified potentially represent novel
causative ALS genes, but we were not able to demonstrate
segregation in families due to an absence of available samples. In
certain cases the clustering of mutations with changes identified
in Project MinE and the ALS Variant Server is highly suggestive
of true pathogenicity. Most compelling are examples where we
have identified more than one patient with a candidate mutation.
Mutations that we believe are most likely to represent novel ALS
variants and genes will now be discussed.

SLC1A3

SLCIA3 encodes excitatory amino acid transporter 1 (EAAT1)
which is a glial glutamate transporter and also a G4C2 binding
partner. Mutations of SLCIA3 are a cause of episodic ataxia
type 6 (EA6). The proposed mechanism is excitotoxicity
via loss of glutamate uptake—excitotoxicity has also been
proposed as a pathophysiological mechanisms in ALS
(Cooper-Knock et al, 2013). Of the mutations associated
with EA6, a p.C186S mutation in transmembrane segment
4 is the closest to both of our identified variants: p.N216S
and p.F170L (Table4). Transmembrane segment 4 has
been associated with inter-subunit contact to stabilize the
trimeric structure of the transporter (Yernool et al., 2004). The
p-N216S mutations occur in a eukaryotic specific insertion
between transmembrane domains 4b and 4c. The p.F170L
mutation occurs in transmembrane domain 4A. Interestingly,
while complete loss of SLCIA3 function leads to a severe
phenotype with progressive ataxia (Jen et al., 2005), mutation
in transmembrane segment 4 has been associated with partial
loss of function and variable penetrance (de Vries et al,
2009) which is consistent with a late onset disease such
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as ALS. It is noteworthy that Project MinE identified an
additional ALS patient with a rare (ExAC frequency <1/10,000
control alleles) mutation within the 4A transmembrane
region.

EEF1G

EEFI1G encodes a component of the elongation factor-1 (EF1)
complex involved in the elongation phase of protein translation
which is a G4C2 binding partner. The EEF1G subunit is not
proposed to have a direct role in translation (Fan et al., 2010), but
co-immunoprecipitates with tubulin (Janssen and Moller, 1988)
and has been observed to bind mRNA directly (Al-Maghrebi
etal,, 2002). This is consistent with a role for EEF1G in anchoring
and translation of mRNAs in cytoskeleton bound ribosomes
(Corbi et al., 2010). Translation at sites distant from the nucleus
is particularly relevant in neurons and in large motor neurons in
particular. We have identified two patients with mutations in the
C-terminal domain of EEF1G: p.D403E and p.R327C (Table 4).
Project MinE identified an additional ALS patient with a T902C
variant in exon 8, the same exon as the C979T change we have
identified.

XRCC6

XRCC6 is a component of the non-homologous end joining
(NHEJ) complex involved in repair of double stranded DNA
breaks and is a G4C2 binding partner. Two patients were
identified with rare deleterious variants in XRCC6: p.M348T and
p-G589R (Table 4). Both variants occur within DNA binding
domains, therefore both variants could conceivably lead to loss
of function which is consistent with our disease model. Deletion
of XRCC6 in mice leads to premature aging without an increased
rate of neoplasm (Li et al, 2007). This is consistent with
observations in ALS and indeed impairment of NHE] has been
previously implicated in ALS (Sama et al., 2014).

PPARGC1B

PPARGCIB is a transcription factor with roles in energy
metabolism and mitochondrial biogenesis and a RRM-
containing protein with a PrLD. We identified three young
sporadic patients with rare deleterious variants in PPARGCIB:
pP385H, p.S589G, and p.E434K (Table 3). Two of the variants
identified lie within exon 4 either within or close to a low
complexity region containing glutamic acid repeats. The
p.E434K variant is actually within the glutamic acid repeats
region and the same genetic change is observed in an additional
three familial ALS cases within the ALS Variant Server. It
seems likely that the variants we have identified and those
found in the ALS Variant Server affect the function of the PrLD
within PPARGCIB, leading to an increased risk of pathological
aggregation.

C90RF72

A rare predicted deleterious variant was identified in C9ORF72
in a patient who also carries a G4C2-repeat expansion. From
a single patient it is not possible to determine whether
there was synergy between the variant and the expansion but
it is noteworthy that the patient identified suffered rapidly

progressive disease: death occurred in 12 months from first
symptom onset. In our population this is within the 10%
most rapidly progressive COORF72-ALS patients (Cooper-Knock
et al.,, 2012). If this variant is pathogenic and synergistic with
the G4C2-repeat expansion, then it provides some insight into
the pathogenesis of C9ORF72-ALS. A variant in C9ORF72
could not recapitulate the proposed gain-of-function toxicity
attributed to the G4C2-repeat, but it could potentially cause
loss-of-function highlighting the relative importance of proposed
haploinsuffuciency due to G4C2-repeat expansion.

CONCLUSION

For the first time we have provided evidence for an oligogenic
model of ALS in which rare variants act synergistically within
discrete pathways. We have highlighted RRM-containing
proteins with PrLDs and illustrated how mutations in G4C2-
binding partners might exacerbate sequestration of the same
proteins by repeat-RNA transcribed from the C9ORF72
expansion. Several of the mutations we identified are candidate
novel ALS genes and we have highlighted the examples of
SLCIA3, EEFIG, XRCC6, and PPARGCIB. Our findings have
significant implications for the design of ALS disease models and
therapeutics.
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