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Alzheimer disease (AD) is a frequent and devastating neurodegenerative disease
in humans, but still no curative treatment has been developed. Although many
explicative theories have been proposed, precise pathophysiological mechanisms
are unknown. Due to the importance of astrocytes in brain homeostasis they have
become interesting targets for the study of AD. Changes in astrocyte function have
been observed in brains from individuals with AD, as well as in AD in vitro and
in vivo animal models. The presence of amyloid beta (Aβ) has been shown to disrupt
gliotransmission, neurotransmitter uptake, and alter calcium signaling in astrocytes.
Furthermore, astrocytes express apolipoprotein E and are involved in the production,
degradation and removal of Aβ. As well, changes in astrocytes that precede other
pathological characteristics observed in AD, point to an early contribution of astroglia in
this disease. Astrocytes participate in the inflammatory/immune responses of the central
nervous system. The presence of Aβ activates different cell receptors and intracellular
signaling pathways, mainly the advanced glycation end products receptor/nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, responsible for the
transcription of pro-inflammatory cytokines and chemokines in astrocytes. The release
of these pro-inflammatory agents may induce cellular damage or even stimulate the
production of Aβ in astrocytes. Additionally, Aβ induces the appearance of oxidative
stress (OS) and production of reactive oxygen species and reactive nitrogen species
in astrocytes, affecting among others, intracellular calcium levels, NADPH oxidase
(NOX), NF-κB signaling, glutamate uptake (increasing the risk of excitotoxicity) and
mitochondrial function. Excessive neuroinflammation and OS are observed in AD, and
astrocytes seem to be involved in both. The Aβ/NF-κB interaction in astrocytes may play
a central role in these inflammatory and OS changes present in AD. In this paper, we also
discuss therapeutic measures highlighting the importance of astrocytes in AD pathology.
Several new therapeutic approaches involving phenols (curcumin), phytoestrogens
(genistein), neuroesteroids and other natural phytochemicals have been explored in
astrocytes, obtaining some promising results regarding cognitive improvements and
attenuation of neuroinflammation. Novel strategies comprising astrocytes and aimed to
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reduce OS in AD have also been proposed. These include estrogen receptor agonists
(pelargonidin), Bambusae concretio Salicea, Monascin, and various antioxidatives such
as resveratrol, tocotrienol, anthocyanins, and epicatechin, showing beneficial effects in
AD models.

Keywords: astrocytes, Alzheimer’s disease, neuroinflammation, oxidative stress, NF-κB pathway,
neurodegeneration

INTRODUCTION

The loss of cognitive abilities induced by the development
of dementia represents one of the main pathological burdens
in humans, critically interfering with social and occupational
activities. According to the World Alzheimer Report, over
46 million people live with dementia worldwide, totaling an
estimated cost of US $818 billion in 2015, expecting to rise
up to $1 trillion by 2018 (Prince et al., 2015). The elevated
economic and social impact of dementia has been considered
as a public health priority by the World Health Organization
(Frankish and Horton, 2017). Many types of dementia with
varied pathophysiological mechanisms have been described, but
the most frequent in humans is AD accounting for 50–70%
of all cases (Querfurth and LaFerla, 2010). Characteristically,
AD has been divided in early-onset AD (<65 years) and late-
onset AD, with the latter representing around 90% of AD-
affected individuals (Mendez, 2017; Pierce et al., 2017). The
development of early-onset AD has been related to an altered
genetic background, explained primarily by autosomal dominant
mutations in APP (MIM #104760), Presenilin 1 (PSEN1) (MIM
#104311), and Presenilin 2 (PSEN2) (MIM #600759) genes
(Lanoiselée et al., 2017). Whereas a complete explanation for
the development of late-onset AD (also commonly referred
to as sporadic AD) remains obscure, despite the many risk
factors associated with this pathology. Among these factors
are included: genetic, such as the presence of the APoE ε4
allele, environmental, and several modifiable lifestyle factors
(Killin et al., 2016; Van Cauwenberghe et al., 2016; Vos et al.,
2017).

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; AGE, advanced
glycation end products; Aldh1L1, aldehyde dehydrogenase 1 family member L1;
AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; APP, amyloid
precursor protein; ApoE, apolipoprotein E; BACE-1, beta-site APP cleaving
enzyme 1; BBB, blood–brain barrier; CaN, calcineurin; CaSR, calcium sensing
receptor; CD, cluster of differentiation; CNS, central nervous system; COX,
cyclooxygenase; ECE, endothelin-converting enzyme; ERK, extracellular regulated
kinase; GABA, gamma-aminobutyric acid; GFAP, glial fibrillary acid protein;
GLAST, glutamate aspartate transporter; GLT-1, glutamate transporter 1; GPX,
glutathione peroxidase; GSH, glutathione; HMGB1, high mobility group box-
1; IDE, insulin degrading enzyme; IKBα, NF-κB inhibitor alpha; IKK, IκB
kinase; IL, interleukin; iNOS, inducible nitric oxide synthase; IR, insulin receptor;
INF, interferon; JNK, c-Jun N-terminal kinase; MAO, monoamine oxidase;
MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase;
nAChR, nicotinic acetylcholine receptor; NADH, reduced nicotinamide-adenine
dinucleotide; NADPH, nicotinamide adenine dinucleotide phosphate; NEMO,
NF-κB essential modulator; NEP, neprilysin; NFAT, nuclear factor of activated
T-cells; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells;
NMDA, N-methyl-D-aspartate; NO, nitric oxide; NOS, nitric oxide synthase; 8-
OHG, 8-hydroxyguanosine; OS, oxidative stress; PI3K, phosphoinositide 3-kinase;
PPARγ, peroxisome proliferator-activated receptor gamma; RAGE, advanced
glycation end products receptor; RNS, reactive nitrogen species; ROS, reactive

The main pathological hallmarks of AD are the presence of
extracellular Aβ plaques, intraneuronal neurofibrillary tangles
primarily composed of hyperphosphorylated tau, and brain
atrophy, together with increased brain neuroinflammation
(Raskin et al., 2015; Bronzuoli et al., 2016). Although many
theories have been proposed to explain the pathogenesis of
AD, the most widely accepted is the amyloid hypothesis, which
states that Aβ dyshomeostasis is responsible for the cognitive
phenotype of the disease, acting upstream and contributing
to other molecular and cellular alterations observed in this
condition (Selkoe and Hardy, 2016). Aβ peptide is obtained
from the serial cleavage of APP, first through the action of
BACE-1 also referred to as beta-secretase, and posteriorly
through the gamma-secretase complex (Carroll and Li, 2016;
Yan, 2017). The gamma-secretase complex, which also acts on
the notch pathway, is composed of four subunits: presenilin
(1 or 2), nicastrin, anterior pharynx-defective 1 (APH-1),
and presenilin enhancer 2 (PEN2); with presenilin being the
most actively studied and related to AD, as it contains the
catalytic subunit of the complex (Ahn et al., 2010). Alterations
in the cleaving process of APP produce abnormal lengthy
species of the Aβ peptide which are deleterious to the brain
cellular environment. These Aβ species have been reported
to exhibit different profiles of toxicity, and among them, the
soluble forms seem to be more neurotoxic than the fibrillary
(aggregated) forms. In particular, the oligomeric form of the
soluble Aβ1−42 is considered to be highly harmful (Wang Z.-X.
et al., 2016).

The pathological study of brains from individuals with AD has
revealed the presence of both neuroinflammation and OS (Lue
et al., 1996; Ansari and Scheff, 2010). The precise mechanistic
basis leading to the development of these changes in AD is not
clear, and the debate of whether they are a causative factor or a
consequence of the disease is still open. Despite the discussion,
accruing evidence support a direct relationship between Aβ

abnormal production and the development and/or maintenance
of neuroinflammation and OS (Guerriero et al., 2016).

Plenty receptors and carriers have been reported to interact
with the different presentations of Aβ, although it seems
that depending on the structure of Aβ (monomer, oligomer,
fibrillary), some promote clearance or degradation while others
mediate the neurotoxic effects through uptake and accumulation
(Jarosz-Griffiths et al., 2016). Aβ interacts and binds to several
cellular-expressed pattern recognition receptors in astrocytes

oxygen species; SEC-R, serpin-enzyme complex receptor; SOD, superoxide
dismutase; TGF-β, transforming growth factor beta; TLR, Toll-like receptor;
TNFα, tumoral necrosis factor-alpha; TRAF, tumor necrosis receptor-associated
factor; TREM2, triggering receptor expressed on myeloid cells 2.
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and microglia, initiating an innate immune response (Minter
et al., 2016). Accordingly, components of innate immunity and
complement cascade have been considered risk factors for the
development of AD and have been associated with abnormal
clearing or deposition of Aβ; in particular, variants in the genes
complement receptor 1 (CR1) (Zhu et al., 2015), CD33 (Walker
et al., 2015), and TREM2 (Yeh et al., 2016). Also, it has been
shown that Aβ species, such as Aβ1−42, are able to induce
the release of several proinflammatory cytokines and agents,
including IL-1β, IL-6, NO, and TNFα, from glial cells (Lindberg
et al., 2005; Hou et al., 2011). The precise intracellular signaling
pathways involved in the proinflammatory and OS responses
in neuronal and non-neuronal cells in AD are still not clear,
although the NF-κB pathway has been reported to become
activated in both settings (Shi et al., 2016).

Astrocytes are important CNS resident cells involved in
numerous physiological aspects. Similar to neurons, astrocytes
represent a heterogeneous population of cells depicting diverse
functional and morphological characteristics (Ben Haim and
Rowitch, 2017). Astrocytes express several markers that allow
them to be distinguished from neurons and other glial cells,
including GFAP, calcium-binding protein S100B, glutamine
synthetase, and Aldh1L1 (Sofroniew and Vinters, 2010).
Astrocytes are key for the maintenance of homeostatic balance
and participate in processes such as neurotransmitter uptake and
recycling, gliotransmitter release, neuroenergetics, inflammation,
modulation of synaptic activity, ionic balance, and maintenance
of BBB, among others (Magistretti and Allaman, 2015; Iglesias
et al., 2017; Vasile et al., 2017). Precisely, due to this wide array of
functional properties, astrocytes have become interesting targets
for the study and treatment of numerous brain pathologies. In
AD, several reports have shown that astrocytes contribute to
cellular and functional degeneration, disrupting glial–neuronal
and glial–vascular signaling (Acosta et al., 2017).

The aim of this paper is to review the relevant aspects
concerning a possible role of astrocytes in the neuroinflammatory
and OS changes observed in AD. As well, we will discuss
novel neuroprotective and therapeutic measures highlighting the
importance of astrocytes in AD pathology.

ASTROCYTES AND ALZHEIMER’S
DISEASE

Different studies have shown that the cooperative activity
between glia and neurons results in the modulation of
cognitive functions (Perea et al., 2009; Fields et al., 2014).
Neuron–glial interactions actively control synaptic plasticity and
neurotransmission. The concept of “tripartite synapse” refers to
this cellular network involving both presynaptic and postsynaptic
neurons, as well as astrocytes (Araque et al., 1999; Perea
et al., 2009). Numerous gliotransmitters released from astrocytes
control synaptic plasticity in different brain structures (Yang
et al., 2003; Pascual et al., 2005; Panatier et al., 2006) such as
cortex (Ding et al., 2007) and hippocampus (Araque et al., 1998;
Jourdain et al., 2007), and are involved in the modulation of
memory and learning processes. The interruption of astrocyte’s

functions and hence in glia transmission, may result in different
neuropsychiatric disorders (Rajkowska et al., 1999; Cohen-Gadol
et al., 2004; Fellin et al., 2004; Webster et al., 2005), as well as
neurodegenerative diseases, including AD (Forman et al., 2005;
Halassa et al., 2007).

Calcium Dysregulation
A pathological increase in the amount of Aβ can induce
functional and morphological changes in glial cells, including
calcium dysregulation. In fact, microglia and astrocytes are
activated close to senile plaques to internalize and break down
Aβ (Mohamed and Posse de Chaves, 2011). This cellular
activation may result in an inflammatory response and OS,
playing a dual role in the pathophysiology of AD with
both detrimental and neuroprotective results. Inflammatory
mediators (i.e., bradykinin) may increase intracellular calcium
concentration via nicotinic receptors and PI3K–Akt pathway in
cultured astrocytes (Makitani et al., 2017). Tau has also been
connected with astrocytes in AD, as Aβ was shown to bind
the CaSR in human astrocytes, activating intracellular signaling
which induced the production and release of phosphorylated Tau
(Chiarini et al., 2017).

Amyloid beta has been shown to disrupt gliotransmission
by enhancing calcium signaling in astrocytes (Lee et al.,
2014). This calcium/gliotransmission alteration could underlie
an important role of astrocytes in AD pathology. Actually,
astrocytic calcium levels are abnormal in several models of AD
as both acute and chronic exposure to Aβ elevates baseline
calcium levels in cultured astrocytes (Haughey and Mattson,
2003; Alberdi et al., 2013; Lim et al., 2013). This calcium
is partially released from intracellular sources such as the
endoplasmic reticulum (Toivari et al., 2011). In addition, Aβ

interacts with several types of surface receptors in astrocytes
which leads to calcium entry, including purinergic receptor
P2Y1 (Delekate et al., 2014), nicotinic receptors (α7-nAChRs)
(Xiu et al., 2005; Lee et al., 2014), and glutamate metabotropic
receptor mGluR5 (Grolla et al., 2013; Ronco et al., 2014).
For instance, hippocampal astrocytes exposed to Aβ increased
the frequency of NMDA receptor-mediated slow inward
currents, together with calcium elevations mediated through
α7nAChR activation (Pirttimaki et al., 2013). Aβ-induced
dysfunction of NMDA receptors in astrocytes disrupts neuron–
glial signal transmission with dramatic consequences on neuronal
homeostasis, synaptic transmission, and plasticity. Therefore,
neurotoxicity and selective neurodegeneration may be explained
by Aβ simultaneous interaction with several receptors and
neurotransmitter systems in the context of astrocyte calcium
dysregulation.

Glutamatergic Dysfunction and
Excitotoxicity
In AD, it has been shown that Aβ can interrupt glutamate
uptake capacity and astrocytic calcium signaling (Vincent
et al., 2010; Matos et al., 2012). Also, an increase in the
expression of astrocytic Tau from aged transgenic animals
leads to a decline in GLT activity and therefore in subsequent
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neurodegeneration (Komori, 1999; Dabir et al., 2004). Some
studies have demonstrated in ex vivo astrocyte preparations that
Aβ1−42 decreases the expression of GLT-1 and GLAST, two major
GLTs in astroglia, via adenosine A2A receptors (de Vivo et al.,
2010; Matos et al., 2012). Therefore, disruption in the clearance of
excitatory neurotransmitters and increased levels of Aβ and Tau
from astrocytes seem to be involved in the neuronal excitotoxicity
observed in AD.

Glutamate NMDA and AMPA receptors have been related
to the physiopathology of AD (Parameshwaran et al., 2008).
Different studies have identified the expression of functional
NMDA receptors in astrocytes (Kommers et al., 2002; Lalo et al.,
2006) involved in cerebral vasodilatation, synaptic transmission,
and neuronal–glial signaling (Verkhratsky and Kirchhoff, 2007;
Palygin et al., 2010; Parfenova et al., 2012). Hence, Aβ-induced
dysfunction in the expression and function of glutamate receptors
in astrocytes, mainly in NMDA receptors, can interfere with
neuronal–glial communication (Mota et al., 2014). The cellular
excitotoxicity produced by the excessive stimulation of NMDA
receptors in neurons and astrocytes has been shown to be
reduced with the use of MK801 and memantine (NMDA receptor
antagonists) (Lee et al., 2010). Furthermore, due its possible
therapeutic role in neurodegenerative diseases including AD, a
recent antagonist (UBP141) with preferential effects on astroglial
NMDA receptors has been developed (Palygin et al., 2010, 2011).
A better comprehension of the differences between neuronal
and glial NMDA receptors may provide key elements for the
development of novel therapeutics which primarily or selectively
target astrocytic function. As well, Aβ can induce glutamate
release from astrocytes resulting in an extrasynaptic activation of
NMDA receptors. In this case, nitromemantine, which selectively
inhibits extrasynaptic NMDA receptors, may protect against
Aβ-induced synaptic dysfunction in the hippocampus (Talantova
et al., 2013). Additionally, nitromemantine may prevent the
synapse-destroying effects of Aβ/α7-nAChR signaling (Dal Prà
et al., 2015).

Therefore, using astrocytic signaling as a possible target for
drug development may have a therapeutic function in AD’s
prevention and control. The antiepileptic drug levetiracetam has
shown to reverse synaptic dysfunction as well as memory and
learning deficits in human APP (hAPP) transgenic mice (Sanchez
et al., 2012). Moreover, a retrospective observational study has
shown clinical benefits of levetiracetam in early AD (Vossel
et al., 2013). One way this drug may act is increasing glutamate
and GABA transporters in astrocytes (Ueda et al., 2007).
Chronic administration of levetiracetam may attenuate glutamate
excitotoxicity and increase inhibitory neurotransmission. This
molecular mechanism involving astrocytes may result in a
reduction of cognitive abnormalities in AD.

Aβ Clearance
Astrocytes also participate in the degradation and removal
of Aβ as they express different types of proteases involved
in the enzymatic cleaving of Aβ. The metalloendopeptidases
NEP, IDE, and ECE1 and ECE2 have been reported to be
expressed in astrocytes, and are involved in the degradation of
monomeric Aβ species (although NEP also hydrolyze oligomeric

forms) (Mulder et al., 2012; Ries and Sastre, 2016). It has
been proposed that the modification from “natively folded-
active” to “aggregated-inactive” form of IDE and NEP may be
a relevant pathological mechanism in late-onset AD (Dorfman
et al., 2010). Astrocytes also express and secrete several MMPs,
including MMP-2 and MMP-9, which degrade both monomeric
and fibrillar extracellular forms of Aβ (Ries and Sastre, 2016).
Furthermore, it was found in APP/presenilin 1 transgenic mice
that astrocytes surrounding Aβ plaques increased the expression
of both MMP-2 and MMP-9 (Yan et al., 2006; Yin et al., 2006).

Apolipoprotein E is primarily produced by astrocytes in the
CNS and has been proposed to play a major role in AD. In
mice, ApoE(−/−) astrocytes have been shown to fail to respond
or internalize Aβ deposits to the same extent as do wild-type
astrocytes (Koistinaho et al., 2004). As well, mice astrocytes
expressing the ApoE ε4 allele were less effective eliminating
Aβ plaques than those astrocytes expressing the ApoE ε3 allele
(Simonovitch et al., 2016). Astrocytes derived from human
induced pluripotent stem cells (iPSC) which expressed the ApoE
ε4 allele failed to support neuronal neurotrophic functions such
as survival and synaptogenesis (Zhao et al., 2017). As the presence
of ApoE ε4 allele is considered a major risk factor in AD while
the presence of ApoE ε2 allele is considered a protective factor, a
differential regulation of these isoforms regarding the presence of
Aβ and associated responses such as neuroinflammation has been
proposed (Dorey et al., 2017).

AD and Astrocyte Imaging
One of the most important research areas in AD is related
to the development of biomarkers. Although several types of
biomarkers have been explored, there is still not one that
specifically diagnose, differentiate, and predict the rate of decline
between populations of cognitively healthy/preclinical dementia,
mild cognitive impaired and AD individuals (Fiandaca et al.,
2014; Salvatore et al., 2015; Huynh and Mohan, 2017). Due to
their fundamental role in CNS homeostasis, astrocytes could be
considered as possible targets for tracking and studying in vivo
changes in AD as well as serving as a biomarker for the disease.

L-Deprenyl is a selective inhibitor of the enzyme MAO-B,
predominantly found on astrocytes (Levitt et al., 1982). This
compound has been successfully used in vitro and in vivo to
study the distribution and activity of MAO-B through different
techniques including quantitative autoradiography and positron
emission tomography (PET) (Kumlien et al., 1992; Arakawa et al.,
2017). In postmortem samples from individuals with AD, the
activity of both MAO-B and the binding of [3H]L-deprenyl was
found to be increased in many brain regions (Jossan et al., 1991).
In addition, MAO-B has been found to be increased during
reactive astrocytosis in neurodegenerative conditions (Ekblom
et al., 1993, 1994). As astrocytes produce MAO-B and this enzyme
is increased during reactive astrocytosis, which is a process
observed in AD, it seemed plausible to use L-dyprenyl as a marker
of astrocytosis in this condition.

Accruing evidence seems to support the use of L-deprenyl in
AD. A comparative study using PET between one of the currently
accepted biomarkers for AD, the 11C-Pittsburgh Compound
B, and (11)C-deuterium-L-deprenyl, concluded that the latter
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provided non-redundant information on both functional and
pathologic aspects of the disease (Rodriguez-Vieitez et al., 2016a).
Furthermore, L-deprenyl has provided valuable information
about the stage of progression of AD. In a human study, the
highest binding for (11)C-deuterium-L-deprenyl was observed
in Braak I–II (initial AD stages), whereas it decreased with the
most advanced Braak stages (Gulyás et al., 2011). Similar results
have been obtained in other studies using (11)C-deuterium-L-
deprenyl, where astrocytosis is prominent at the initial phases,
even at preclinical stages, and then declines as the disease
progresses (Carter et al., 2012; Schöll et al., 2015; Rodriguez-
Vieitez et al., 2016b). In addition, a similar laminar binding
pattern for tau and [3H]L-deprenyl at the temporal lobe was
recently demonstrated, suggesting tau deposits and astrocytic
inflammatory processes are closely related in AD (Lemoine et al.,
2017). All these results point to an early contribution of astrocytes
in AD pathology.

GABA–Glutamine Cycle
Neurons and astrocytes work in a coordinated way throughout
different metabolic pathways to synthesize and release glutamate
and GABA (Bak et al., 2006). At inhibitory synapses this
pathway is called the GABA–glutamine cycle and it depends
on GABA transporters and a multi-enzyme machinery that
coordinates this process (i.e., GABA transaminase, glutamate
decarboxylase, and glutamine synthetase) (Bak et al., 2006;
Hertz, 2013). In AD, the processes related to GABA–glutamine
cycle and GABA release from astrocytes seem to be altered.
The glutamine–glutamate/GABA cycle consists of the transfer
of glutamine from astrocytes to glutamatergic and GABAergic
neurons. This process depends on glutamine synthetase and
the tricarboxylic acid cycle (Walls et al., 2015). A reduction
in pyruvate carboxylation, glutamine levels, and tricarboxylic
acid cycle turnover in GABAergic neurons and astrocytes
was shown in the transgenic rat AD model, McGill-R-
Thy1-APP (Nilsen et al., 2014). Similarly, reduced expression
of glutamine synthetase in postmortem AD brain samples
indicates a profound alteration in neurotransmitter and protein
synthesis, as well as metabolic dysfunction (Robinson, 2000).
Astrocytes may produce and release GABA, with a main role
on hippocampal synaptic plasticity function during memory
processing. Increased activity of glutamate decarboxylase enzyme
was found in glial synaptosomes obtained from the cortex
of APP/TS1 transgenic mice, suggesting Aβ plaques stimulate
GABA synthesis from astrocytes (Mitew et al., 2013). Reactive
astrocytes from APP/PS1 transgenic mice have also been shown
to produce GABA involving MAO-B, and release it through
the bestrophin 1 channel, in an aberrant manner (Jo et al.,
2014). In the same study, the suppression of GABA production
or release from astrocytes completely restored the cognitive
deficits and impairments in synaptic plasticity observed in the
mice. Under physiological conditions, astrocytic GABA exerts
a disinhibitory action at the perforant path to dentate gyrus
neurons via GABAB receptors on interneurons. However, in
the APPswe/PSEN1dE9 mice, it has been shown an inhibitory
action of astrocytic GABA by targeting GABAA receptors in
glutamatergic terminals (Yarishkin et al., 2015). These results

provide a useful specific GABAergic target aimed at memory
impairment reduction in AD. Alterations in the metabolic
functions of astrocytes and consequently in glutamate and
GABA–glutamine cycles may help explain cognitive disorders
in AD (Le Prince et al., 1995; Robinson, 2000; Nilsen et al.,
2014). Neurotransmitter transporters and effectors together with
GABA-metabolizing enzymes are of special interest in drug
development regarding therapeutical options for GABA-related
neurological dysfunctions such as AD (Sarup et al., 2003;
Nava-Mesa et al., 2014; Mutis et al., 2017; Sánchez-Rodríguez
et al., 2017). Although special attention should be taken
regarding the differential functional roles of neuronal and glial
neurotransmitter transporters and overlying GABA/glutamate
metabolic pathways in the development of high selective cell-
specific drugs, in order to avert pharmacological interactions and
unexpected side effects.

Metabolic Compromise
The metabolic cooperation between astrocytes and neurons is
essential to the brain functioning. The energy metabolism of
neurons depends on blood oxygen supply but also on astrocytic
glucose transporters, mainly GLUT1 (Morgello et al., 1995).
In addition, astrocytes may convert glycogen to lactate during
periods of higher activity of the nervous system (Falkowska et al.,
2015). Both in vivo and in vitro studies indicate that astrocytes
participate in the regulation of cerebral blood flow according
to neuronal activity and metabolic demand (Magistretti and
Pellerin, 1999; Magistretti, 2006). Therefore, astrocytes are key
to guarantee an adequate coupling between brain activity and
metabolic supply. Several studies have shown reduced cerebral
glucose metabolism in early stages of AD and correlation with
symptoms severity (Desgranges et al., 1998; Mosconi et al.,
2005, 2006, 2008). As mentioned early, Aβ affects neuronal
excitability and it also may reduce astrocytic glycolytic capacity
(Soucek et al., 2003; Schubert et al., 2009) and reduce the
neurovascular unit function (Acosta et al., 2017; Kisler et al.,
2017). Moreover, reductions in GLUT1 and lactate transporters
in astrocyte cultures derived from transgenic AD mice have
been reported (Merlini et al., 2011). In AD, the resulting
metabolic dysfunction may alter the overall oxidative neuronal
microenvironment (Mosconi et al., 2008). The chronic sustained
effect of diminished lactate supply, increased neuronal activity,
and reduced neurovascular coupling, underlines the OS increase
during AD. Therefore, astrocytes are crucial players either acting
as protectors against OS or participating in the progression of
AD. The specific role of astrocytes on inflammatory response and
OS damage will be reviewed in the next sections.

NEUROINFLAMMATION, ALZHEIMER’S
DISEASE, AND ASTROCYTES

Inflammation is a protective physiological response necessary
to regulate processes associated with damage mechanisms in
the organism. Several actions related to general inflammatory
activities include protection against microorganisms, tissue
repair, and removal of cellular debris. The CNS possesses some
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characteristics that differentiate the immune and inflammatory
activities of the brain and spinal cord from those occurring in
the rest of the body. Mainly, these differences arise through the
presence of the BBB, which restricts the pass of leukocytes into
the brain parenchyma, and also due to the cellular interactions
of microglia and astrocytes, responsible for most of the
immune/inflammatory CNS responses (Ransohoff et al., 2015).
Although neuroinflammation arises innately as a protective
mechanism when injury is present in the CNS, alteration in
any of the components of this response may compromise the
cellular microenvironment and become noxious to the brain.
Many neurodegenerative conditions, including AD, have been
associated with the presence of abnormal neuroinflammation
(Ransohoff, 2016).

The role of astrocytes in neuroinflammation has been
highlighted in the past years with many observations both
in vivo and in vitro depicting the importance of these glial
cells in this process (Colombo and Farina, 2016). In fact, an
increase in the expression of GFAP is commonly considered as
a hallmark of neuroinflammation in many neurodegenerative
conditions, including AD (Millington et al., 2014). Astrocytes,
together with microglia, react to a diverse range of pro- and
anti-inflammatory agents (Sofroniew, 2014). Depending on the
cytokine, astrocytes modify their phenotype to either activated
or deactivated state. Increased levels of INF-γ, IL-1β, IL-6,
and TNFα induce astrocytes to adopt a classical activation
state (increased activation of NF-κB pathway, production of
ROS and NO, and release of IL-1β, IL-6, and TNFα), while
increased levels of IL-4 and IL-13 induce an alternative activation
(increased secretion of IL-4 and decreased production of
ROS and NO); oppositely, high levels of IL-10 and TGF-β
induce astrocytic deactivation (reduced immune surveillance and
proinflammatory signaling) (Dá Mesquita et al., 2016).

Furthermore, the reactive state of astrocytes may also depend
on the source of injury (neuroinflammation or ischemia),
indicating the complex range of responses these cells are capable
to produce (Zamanian et al., 2012). In a recent paper, a new
classification of reactive astrocytes was proposed, designating
A1 those astrocytes that developed a neurotoxic phenotype
and A2 those that depicted neurotrophic and neuroprotective
characteristics (Liddelow et al., 2017). The authors also reported
that the presence of IL-1α, TNFα, and C1q (all three released
from microglia) promoted the appearance of A1 astrocytes and
that this phenotype was found to be predominant in brain tissue
from AD patients. These findings raise a number of questions
regarding the manner in which the brain deals with different
types of injuries and specifically how astrocytes and astrocytic-
cellular interactions induce either a protective or harmful profile.
An increase in A1 astrocytes seems to occur in AD, but still is not
clear if Aβ induces this phenotype or if another specific agent is
involved in this reaction. Nonetheless, it has been reported that
the interaction of Aβ with astrocytes induces a pro-inflammatory
profile and even astrogliosis (Batarseh et al., 2016).

RAGE, Astrocytes, and Amyloid Beta
Amyloid beta has been reported to interact with numerous
cellular receptors and astrocytes express a large amount

of them, including TLRs, scavenger receptors, glycoprotein
receptors, lipoprotein receptors, RAGE, acetylcholine receptors,
complement and chemokine receptors, T-cell receptors, and
mannose receptor, among others (Farfara et al., 2008). Binding
of Aβ to different types of receptors seems to depend on
the Aβ peptide form (monomer or fibrillar). For example, IR-
and SEC-R bind monomeric forms of Aβ, scavenger receptor
CD36 and glycoprotein receptors lactadherin, and CD47 prefers
fibrillary Aβ, while RAGE, ApoE, and nAChR α7nAChR bind
both monomer and fibrillar forms (Verdier et al., 2004). The
specific outcome of all these complex Aβ-astrocytic interactions
is still under research, as the precise intracellular and intercellular
communication changes prompted by the different types of Aβ

acting on these receptors is yet to be elucidated. Despite the
gaps in knowledge, the activation of some receptors, in particular
RAGE, has been reported to induce proinflammatory changes
in astrocytes when exposed to Aβ (González-Reyes and Graciela
Rubiano, 2016).

Advanced glycation end products receptor is a multiligand
pattern-recognition receptor, member of the immunoglobulin
superfamily with a variety of isoforms present in brain cells
(Ding and Keller, 2005). In addition to Aβ and several AGE,
RAGE can bind DNA-binding protein HMGB1/amphoterin
(Hori et al., 1995) and S100/calgranulins (Hofmann et al., 1999).
The main intracellular pathway activated through RAGE is the
NF-κB pathway (Tóbon-Velasco et al., 2014), although it can
also activate other downstream pathways including Cdc42-Rac,
p21ras and MAPK, JNK, and ERK (González-Reyes and Graciela
Rubiano, 2016). Furthermore, astrocytes have been reported to
adopt a phagocytic profile capable of engulfing Aβ, mediated by
CD36, CD47, and RAGE receptors (Jones et al., 2013). Apart
from Aβ, the interaction of astrocytic RAGE with other ligands,
such as S100B, may also be involved in AD neuroinflammation
(Cirillo et al., 2015). These findings point to the interaction of
RAGE/NF-κB pathway in astrocytes as an important factor in the
development or maintenance of inflammation in AD.

Astrocytes and NF-κB Pathway
The transcription factor NF-κB is currently considered as
an important agent related to neuroinflammation in AD
(Shi et al., 2016). NF-κB is known to be mainly activated
by two pathways, the canonical (or classical) and the non-
canonical (or alternative) (Nakajima and Kitamura, 2013). The
canonical pathway involves activation of various receptors
including RAGE and cytokine receptors, such as TNF receptor,
IL-1 receptor, and the TLR family. These will induce the
further activation of many downstream agents, in special IKKs
alpha (IKKα) and beta (IKKβ), and NEMO (in charge of
the degradation of the cytoplasmic inhibitor IKBα), and the
subsequent complexes (mainly RelA) that act as transcription
factors in the nucleus (Marcu et al., 2010; Wan and Lenardo,
2010). The non-canonical pathway, also known as the NEMO-
NF-κB-independent pathway, occurs when NF-κB is activated
by specific recruitment of TRAF2 and TRAF3, and involves
p52 and RelB (Morgan and Liu, 2011). Both canonical (Wang
et al., 2013) and non-canonical (Akama and Van Eldik, 2000)
activation of NF-κB has been observed in astrocytes stimulated
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with Aβ, but still is not clear which type predominates in AD
or if a differential NF-κB activation is related to the stage of
the disease. It has been reported that most of the cytokines and
chemokines produced by non-stimulated and activated astrocytes
are direct targets of the NF-κB pathway, suggesting a central
role of this factor in the proinflammatory (neurotoxic) and
immunoregulatory (neuroprotective) actions of astrocytes in the
CNS (Choi et al., 2014). Also, NF-κB is involved in other
functions such as neuronal survival, differentiation, apoptosis,
neurite outgrowth, and synaptic plasticity, all found to be altered
in AD (Mémet, 2006).

In astrocytes and microglia, the activation of NF-κB due to
Aβ stimulation leads to the production of the pro-inflammatory
cytokines IL-1β, IL-6, iNOS, and TNFα (Bales et al., 1998; Akama
and Van Eldik, 2000; Hou et al., 2011). In rats treated with Aβ1−42
oligomers, it was shown that COX-2, IL-1β, and TNFα were
expressed in reactive astrocytes surrounding the Aβ-injection site
and in nearby blood vessels, as well was found co-localization
of NF-κB proteins with GFAP and COX-2 (Carrero et al.,
2012). In primary astrocytic and mixed astrocytic-neuronal cell
cultures from rats, the use of minocycline, an anti-inflammatory
agent, reduced astrocytic inflammatory responses together with
a decrease in neuronal loss, caspase-3 activation, and caspase-
3-truncated Tau species in neurons (Garwood et al., 2011).
Minocycline has been shown to inhibit the NF-κB signaling
pathway in spinal rat astrocytes (Song et al., 2016). Other reports
of beneficial outcomes due to regulation of the NF-κB signaling
pathway in astrocytes were reviewed by Colombo and Farina
(2016). Although an exaggerated neuroinflammatory response is
observed in AD, an absolute suppression of the NF-κB signaling
pathway may be undesirable and even worsen the pathological
condition. In APPswe/PS1dE9 transgenic mice, the suppression
of NF-κB attenuated astrogliosis in the hippocampus and cortex
of the animals but increased the amount of Aβ1−42, suggesting a
role of astrocytic-mediated neuroinflammation in the clearance
of Aβ (Zhang et al., 2009). As well, the clinical evidence for
the use of non-steroidal anti-inflammatory drugs (NSAIDS) in
AD patients has not proven to be of benefit (Aisen et al., 2008;
Szekely et al., 2008; Beeri et al., 2012; Alzheimer’s Disease Anti-
inflammatory Prevention Trial Research Group, 2013).

Inflammatory Induction of Aβ in
Astrocytes
Astrocytes not only are activated and induced to release
chemokines and cytokines in the presence of Aβ, these cells
also react to the presence of pro-inflammatory cytokines and
even increase the production of Aβ in response. Therefore, the
presence of inflammation is capable of increasing the production
of Aβ. In addition, the development of neuroinflammation has
also been related to cognitive changes in AD (Westin et al., 2012;
Echeverria et al., 2016; Laurent et al., 2017).

Neuroinflammation in AD is characterized by the
accumulation of cytokines such as IL-1β, IL-6, TNF-α, or
TGF-β, which can contribute with cerebral amyloid deposition,
augmentation of APP expression, Aβ formation, and subsequent
recruitment and activation of microglial cells (Esler and Wolfe,

2001). In general, TNF-α, IL-1β, IFN-γ, L-6, and TGF-β are
able to stimulate β-secretase and γ-secretase enzymatic activity
through a JNK-dependent MAPK pathway, which cleaves
APP and initiates Aβ formation (Liao et al., 2004). Astrocytes
express and respond to a large scope of cytokines and chemokines
suggesting a central role in the inflammatory-induced production
of Aβ.

A study reported that a systemic immune challenge in wild-
type mice during late gestation induced the development of AD-
like pathology during aging, with animals displaying increased
levels of hippocampal APP and altered Tau phosphorylation,
together with microglia and astrocytic activation (Krstic et al.,
2012). Additionally, it was shown that LPS-induced systemic
inflammation in mice could contribute to cognitive impairment
and increased expression of APP and Aβ1−42, associated with
increased production of inflammatory mediators such as COX-2,
IL-1, and iNOS (Lee et al., 2008). The same paper reported
that these changes were accompanied with astrocytic activation.
Other studies have found evidence, both in human and murine
models, that inflammation induces the expression of Aβ. Primary
astrocytes from mice, treated with a combination of TNFα and
INF-γ, significantly increased levels of BACE1, APP, and Aβ1−40
(Zhao et al., 2011). In human primary astrocytes, treatment
with INF-γ in combination with either TNFα or IL-1β induced
the secretion of Aβ1−40 and Aβ1−42 (Blasko et al., 2000).
Furthermore, TGF-β1 was found to induce overexpression of
APP in astrocytes but not in neurons (Lesné et al., 2003).
Cytokines seem to act on the 5′-untranslated region (5′-UTR) of
the APP gene in astrocytes (Lahiri et al., 2003).

On the one hand, it seems that the presence of Aβ is able to
induce the production and release of pro-inflammatory cytokines
and chemokines from astrocytes, which could as well act in an
autocrine manner to further induce the production of Aβ from
astrocytes and possibly other cells. On the other hand, these
results suggest that inflammation may be present at early stages
(pre-clinical) of the disease or even that inflammation may be
responsible for the appearance of pathological Aβ production and
accumulation. Under both circumstances, astrocytes appear to be
deeply involved in inflammatory changes observed in AD.

Astrocytes and Other Mechanisms of
Neuroinflammation
Other factors related to astrocytes may contribute to the
appearance or enhancement of neuroinflammation in AD. For
example, the presence of elevated glucose levels (as found in
diabetes) has been shown to increase neurotoxicity and the
release of pro-inflammatory cytokines from primary human
astrocytes (Bahniwal et al., 2017). A relation between AD
and diabetes/metabolic syndrome has been explored previously
(González-Reyes et al., 2016), as both Aβ and AGE bind to RAGE
in astrocytes. As well, pro-inflammatory signaling in astrocytes
may involve changes in the expression of the calcium-dependent
phosphatase CaN, which has been shown to interact with another
transcription factor involved in inflammatory responses, the
NFAT (Acosta et al., 2017). Enhanced nuclear accumulation
of CaN/NFAT was observed in human AD hippocampus and
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astrocytic cultures treated with Aβ (Abdul et al., 2009). In
addition, it has been reported that Aβ deregulates calcium
homeostasis via CaN and its downstream target NF-κB, as well as
increasing NF-κB-dependent expression of mGluR5 and IP3R2
in astrocytes (Lim et al., 2013). Changes in mGluR5 and IP3
receptor expression have been reported in astrocytes surrounding
amyloid plaques in a genetic mouse model of AD (Norris et al.,
2005). Another possible factor contributing to the presence of
neuroinflammation is the BBB, as in AD, it has been reported that
the BBB occasionally loses its integrity (Chakraborty et al., 2017).
This may be explained in part thanks to the accumulation of Aβ

in brain blood vessels and also due to the associated vascular
inflammation, allowing crossed communication between the
peripheral immune system and the brain (Takeda et al., 2014).
As astrocytes have a very important interaction with the
BBB and its functional components are plausible to consider
their involvement in BBB-associated neuroinflammatory changes
in AD.

Uncontrolled neuroinflammation is a critical element in the
progression of AD, impairing the normal function of the CNS.
Astrocytes, together with microglia, are the main cells involved
in the inflammation/immune responses of the CNS. The presence
of Aβ activates different astrocytic cell receptors, mainly RAGE,
inducing the activation of the inflammatory pathway NF-κB
responsible for the transcription of numerous pro-inflammatory
cytokines and chemokines in astrocytes. In addition, the presence

of pro-inflammatory cytokines such as IL-1β can act on astrocytes
stimulating the production of Aβ and perpetuating a pro-
inflammatory profile in astrocytes. Astrocytes are key in the
maintenance of the homeostatic balance of the CNS and use
the mechanism of reactive astrogliosis as a defensive reaction
(Pekny et al., 2016), therefore is fundamental to understand
the pathophysiological process that causes astrocytes to convert
from a protective agent into a cell that produces a maladaptive
astrogliosis response in AD (Table 1).

OXIDATIVE STRESS, ALZHEIMER’S
DISEASE, AND ASTROCYTES

Oxidative stress is the result of a dysregulation between the
amount of free and non-free radicals produced, including ROS
and RNS. This can be attributed to the loss of homeostasis
due to mitochondrial overproduction of oxidants over the
production of antioxidants (Swomley and Butterfield, 2015).
Among the most important ROS are the peroxyl radicals (ROO·),
NO, the superoxide radical anion (O−2 ), the hydroxyl radical
OH· and some other non-radical species such as peroxynitrite
(ONOO−), single oxygen (O2), and hydrogen peroxide (H2O2)
(Dasuri et al., 2013). ROS, as well as RNS, are produced
under physiological conditions during the common metabolic
pathways. These reactive species act on second messengers

TABLE 1 | Summary of studies reporting effects of Aβ or AD on pro-inflammatory and anti-inflammatory cytokines and chemokines in astrocytes.

Experimental model Pro-inflammatory
agents

Anti-inflammatory agents Reference

Primary culture of rat astrocytes treated with Aβ1−42 ↑TNFα; ↑IL-1β;
↑IL-6; ↑COX-2;
↑PGE2; ↑IL-17;
↑INF-γ; ↑IP-10

↑IL-13 Hu et al., 1998; Akama and
Van Eldik, 2000; Garwood
et al., 2011; Wang et al.,
2013; Aguirre-Rueda et al.,
2015

Isolated rat astrocytes treated with Aβ25−35 ↑TNFα; ↑IL-1β Del Bo et al., 1995;
Ayasolla et al., 2004

Primary cultures of rat astrocytes treated with Aβ1−40 ↑IL-1β; ↑IL-6 Bales et al., 1998

Mixed cultures of rat neurons and astrocytes treated with
Aβ1−42 and Aβ25−35

↑TNFα Masilamoni et al., 2005b

Primary cultures of rat astrocytes treated with spherical
aggregates of synthetic Aβ

↑IL-1β Todd and Garrard, 1979

In vivo i.c. infusion of Aβ1−42 oligomers in rats ↑IL-1β; ↑TNFα;
↑COX-2

Carrero et al., 2012

Primary culture of mice astrocytes treated with Aβ1−42 ↑IL-1β; ↑IL-6;
↑TNFα

↓TGF-β1 Liu et al., 2009; Hou et al.,
2011

Brain sections of Tg2576 mice stained for GFAP ↑IL-1β; ↑IL-6;
↑INF-γ; ↑IL-12

↑TGF- β1; ↑IL-10 Mehlhorn et al., 2000; Apelt
and Schliebs, 2001; Abbas
et al., 2002

In vivo i.c.v infusion of Aβ1−42 oligomers in mice ↓TGF-β1 Diniz et al., 2017

In vivo i.c.v infusion of Aβ1−42 in IL-32β transgenic mice ↑IP-10;
↑GM-CSF

↑IL-13 Yun et al., 2015

Astrocytoma human cell line U-373 MG treated with Aβ1−40

(co-treated with IL-1β)
↑IL-6 Gitter et al., 1995

Postmortem brain tissue from patients with AD, stained for
GFAP (or other astrocytic marker)

↑IL-1β; ↑IL-6;
↑IL-18

Ojala et al., 2009; Bouvier
et al., 2016

TNFα, tumor necrosis factor alpha; TGF-β1, transforming growth factor beta 1; COX-2, cyclooxygenase-2; PGE2, prostaglandin E2; GFAP, glial fibrillary acidic protein;
IP-10, interferon gamma-induced protein 10; GM-CSF, granulocyte–macrophage colony-stimulating factor; i.c., intracerebral; i.c.v., intracerebroventricular.
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and subsequently may influence several signaling pathways
in a positive or negative form, depending on the regulatory
mechanism of its concentration, called redox regulation (Valko
et al., 2007). Likewise, mitochondria are able to produce
antioxidants which counteract the harmful effects of OS to
maintain the balance between the production and detoxification
of ROS. These antioxidants are classified in two main groups:
enzymatic antioxidants such as SOD, catalase, antioxidant
GSH, GPX, GSH reductase, and GSH-S-transferase, and non-
enzymatic antioxidants such as GSH, thioredoxin, vitamins A, E,
and C, flavonoids, and proteins like albumin and metallothionein
(Valko et al., 2007; Halliwell, 2012).

Oxidative Stress and Alzheimer’s
Disease
The development of OS in AD has been related to mitochondrial
dysfunction, leading to superoxide overproduction ending in
synaptic damage (Friedland-Leuner et al., 2014; Bhat et al.,
2015). Mitochondrial dysfunction in AD seems to be linked
to the increased presence of ROS and RNS (Islam, 2017).
Müller et al. (2010) observed a decreased mitochondrial
potential in transgenic Thy1-APP751SL mice. The same authors
reported that increased intracellular Aβ production might trigger
mitochondrial dysfunction quite early and independently of
Aβ plaques and, that the accumulation of these alterations
with aging lead to disruption of respiratory chain complexes
(mainly III and IV) and significant reduction in the generation
of NADH. The authors suggested that progressive increase in
oxidant production together with a decrease in antioxidant
components may conduce to the loss of brain homeostasis
observed in AD. However, in AD, it has been demonstrated
that prior to the appearance of senile plaques, brains present
glucose hypometabolism due to abnormal oxidative metabolic
routes in the mitochondria, which also induce increased ROS
production and subsequent oxidative cell damage (Maruszak
and Żekanowski, 2011). Additionally, variants of gene expression
profiles in AD have shown downregulated expression of
NeuroD6, which encodes a transcription factor involved in
triggering antioxidant responses and the maintenance of the
production of mitochondrial antioxidants (Uittenbogaard et al.,
2010; Fowler et al., 2015). Also, RNA-Seq and microarray data
analysis indicated a consistent downregulation of NeuroD6
in brains of individuals with AD, suggesting downregulation
of NeuroD6 as a possible biomarker for AD (Satoh et al.,
2014).

The role of ROS and OS in neurodegenerative diseases,
including AD, is not entirely clear, although it has been observed
that a modest level of oxidative RNA damage occurs during
the process of aging in brain neurons, but a prominent level of
oxidative RNA damage is present in vulnerable neurons which
correspond to the earliest stage of cognitive decline in the
transition from cognitively normal aging to AD (Nunomura et al.,
2012). Furthermore, DNA bases are vulnerable to OS damage
involving hydroxylation, protein carbonylation, and nitration in
AD (García-Blanco et al., 2017). Changes in oxidative markers
have been reported in brain regions such as hippocampus and

inferior parietal cortex, which are also compromised in AD
(Floyd and Hensley, 2002).

Brain is considered to be especially vulnerable to OS and
susceptible to lipid peroxidation because of its high lipid and
poly-unsaturated fatty acids content, and its low concentrations
of antioxidants (Butterfield et al., 2013). In AD, neurotoxic
effects of Aβ induce OS through lipid peroxidation, protein
degradation, and amino acid oxidation, which in turn increase
the production of ROS and RNS by positive feedback (Swomley
and Butterfield, 2015). Alkenals, 4-hydroxynonenal (HNE), and
2-propenal (acrolein) are reactive products obtained from lipid
peroxidation induced by Aβ. These agents can modify covalently
some amino acids residues or change protein conformation,
which in turn affects its function. Thus, a coupling between
increased lipid peroxidation and structural modification of GLT-
1 has been proposed, explained by increased HNE binding due
to excessive Aβ1−42 (Butterfield et al., 2002). These events can
compromise astrocyte function, inducing glutamate transport
inhibition and increasing excitotoxicity to neurons in AD.

Astroglia Role in Oxidative Stress
Astrocytes seem to be involved in the processes leading to the
appearance or maintenance of OS in AD. Abramov et al. (2004a),
working in rat astrocytes, have shown that Aβ treatment increases
intracellular-free calcium influx from the extracellular space, and
induces changes in mitochondrial functions. These changes are
associated with the activation of NOX due to Aβ interaction on
the membrane, which, in turn, induces [Ca2+]i changes. The
main changes leading to mitochondrial dysfunction in astrocytes
are associated with mitochondrial depolarization, increased
conductance, and presence of mitochondrial permeability
transition pores (Duchen, 2000). A possible mechanism which
explains why calcium influx is induced by Aβ into astrocytes
could be related with the formation of calcium selective channels
on the membrane, which seem capable of generating a different
conductance (Abramov et al., 2004b). These channels have
been shown to be formed by insertion of Aβ peptides in the
membrane, and also are arranged in a structural configuration
which requires a lesser content of cholesterol on the lipidic
membrane (Kawahara and Kuroda, 2001; Arispe and Doh, 2002;
Arispe et al., 2007).

Additionally, it has been found that Aβ1−42 oligomers
are key factors on the induction of OS stress by astrocytes.
Aβ1−42 oligomers binding to RAGE on astrocytes induce ROS
production via NOX complex activation (Askarova et al., 2011).
However, astrocytes are also able to trigger ERK1/2 pathways
and cytosolic phospholipase A2 phosphorylation, independent of
NOX activation, which in turn causes mitochondrial dysfunction
by decreasing mitochondrial membrane potential, enhancement
of NOX activity, and overproduction of ROS (Zhu et al., 2006).
Astrocytes seem to be a primary target of Aβ, as this peptide
induces various effects related to OS such as altered intracellular
calcium signaling and calcium-dependent reduction in astrocytic
GSH (Abramov et al., 2004b). Although this GSH depletion
affects astrocytes, neurons are the cells that show a higher
rate of cell death, suggesting that neurotoxicity reflects the
neuronal dependence on astrocytes for antioxidant support.

Frontiers in Molecular Neuroscience | www.frontiersin.org 9 December 2017 | Volume 10 | Article 427

https://www.frontiersin.org/journals/molecular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-10-00427 December 18, 2017 Time: 17:33 # 10

González-Reyes et al. Astrocytes, Alzheimer’s, and Neuroinflammation

This could better be explained by the fact that astrocytes are the
producers of the primary elements required for the production
of GSH in neurons, such as glycine and cysteine (Abramov
et al., 2003; Gandhi and Abramov, 2012). Regarding GSH, it
has also been shown that in cultured astrocytes, a prolonged
incubation with Aβ reduces induction of the transporter
ABCC1 which is the main pathway for GSH release (Ye
et al., 2015). Astrocytes play a central role in maintaining the
neuronal integrity, nevertheless cytokines and neurotransmitters
released by damaged or activated astrocytes may increase the
neurotoxicity and vulnerability of neurons. During chronic
OS, as observed in AD, the crosstalk communication between
astrocytes and neurons is impaired resulting in disrupted
memory consolidation. This compromise in memory formation
is probably due to calcium overload and activation of MAPK
pathways in astrocytes, which involve as well the JNK/SAPK
pathways, and may conduce to anomalous deleterious signaling,
including autophagic astroglial signals and apoptosis (Ishii et al.,
2017).

Oxidative Stress and the Connection
with Neuroinflammation
During neuroinflammation, increased concentrations of
ROS/RNS may lead to the activation of the transcription factor
NF-κB which induces the overexpression of NO synthases
in astrocytes and microglia, in particular NOX2 and iNOS,
resulting in peroxynitrite production by superoxide and NO
reaction producing neuronal damage (Saha and Pahan, 2006;
Brown, 2007; Morgan and Liu, 2011). Moreover, NF-κB
activation induces the expression of COX-2 and cytosolic
phospholipase A2, which in turn stimulate the generation of
prostaglandins, promoting inflammation and OS (Hsieh and
Yang, 2013). Castegna et al. (2003) reported that the formation
of peroxynitrite ONOO− leads to protein nitration in enzymes,
such as alpha and gamma enolases, implicated in brain glucose
metabolism. Thus, the signaling pathway NF-κB, which is also
heavily involved in inflammatory reactions, has been proposed to
be involved in OS, as a direct crosstalk between ROS and NF-κB
has been reported (Turillazzi et al., 2016). In AD, the presence of
chronic OS alters the protective physiological role of the NF-κB
transcription pathway, which normally promotes cell survival
and prevents apoptosis and necrosis, through modulation
of the JNK signaling pathway (Morgan and Liu, 2011). In
astrocytes, it was reported that under certain conditions,
IL-1β may act stimulating astrocytic GSH production, and
potentially, augmenting total antioxidant capacity in the brain,
via an NF-κB-dependent process (He et al., 2015). In this way,
NF-κB pathway has been associated with both pro-oxidant
and antioxidant roles. In AD, an alteration of this pro- and
anti-oxidant role of NF-κB in astrocytes seems to be present,
tending toward a pervasive pro-oxidative and pro-inflammatory
profile (Table 2).

Novel anti-Alzheimer’s drugs will need to consider the
selective modulation of astrocyte activity in order to reduce
pro-inflammatory signaling as well as to attenuate OS and
diminish excitotoxicity (Figure 1). Taking into account the
complex physiopathology of AD, a deep knowledge about

dysfunctional astrocyte intracellular pathways evoked by Aβ

opens the possibility for the design of new effective multi-target
directed drugs.

NOVEL NEUROPROTECTIVE AND
THERAPEUTIC MEASURES IN
ALZHEIMER’S DISEASE

Alzheimer’s disease is a major neurodegenerative disease
affecting millions worldwide without a known curative
treatment. Currently, only five drugs have been approved by
the Food and Drug Administration (FDA) of the United States,
three cholinesterase inhibitors (donepezil, galantamine, and
rivastigmine), an NMDA receptor antagonist (memantine) and
a combined donepezil–memantine drug. The cholinesterase
inhibitors are approved for symptomatic treatment of mild-to-
moderate stages of AD, while the NMDA antagonist is used
for moderate-to-late stages. Regrettably none of these drugs
is able to halt the progression of the disease and its uses are
aimed at maximizing the quality of life of patients though broad
symptom management (Caselli et al., 2017). Is therefore of great
importance to design and develop new treatments which offer
better therapeutic outcomes and disease-modifying responses
to the patients with AD. Epidemiologic studies indicated that
prolonged treatment with anti-inflammatory agents such as non-
steroidal anti-inflammatory drugs could delay AD onset, as well
as reduce disease rate progression (McGeer et al., 1990; Pasinetti,
2002; Cudaback et al., 2014). The inhibition of COX-mediated
signaling pathways may reduce some inflammatory cytokines
related with the physiopathology of AD. In addition, human
studies confirm that OS plays a main role in the physiopathology
of AD (Schrag et al., 2013; Chang et al., 2014). However, there
are some controversies between observational studies and
randomized controlled trials about the efficiency of antioxidative
agents and anti-inflammatory drugs to reduce AD risk (Viña
et al., 2004; Cudaback et al., 2014; Wang et al., 2015; Jiang et al.,
2016). Many research groups and pharmaceutical companies
have been developing new strategies to overcome the disease, but
so far none of the Aβ-targeted phase three clinical trials reported
has shown statistically significant benefit on its pre-specified
clinical endpoints (Selkoe and Hardy, 2016). Many explanations
may be offered for this lack of success, ranging from poorly
designed trials to late interventions (irreversible modification of
the disease due to advanced stage) but also, to the incomplete
knowledge about the basic pathophysiological mechanisms of
AD. As astrocytes have been shown to be involved in a diverse
range of pathological changes observed in AD, they have been
proposed as an interesting novel therapeutic target (Finsterwald
et al., 2015). Because increased proinflammatory cytokines
induced by Aβ are associated with enhanced production of
free radicals in the astrocytes (Masilamoni et al., 2005a), new
compounds with antioxidative and anti-inflammatory properties
could reduce the effects of neurodegeneration in AD.

Various approaches involving astrocytes have been reported
recently and some of them offer promising results in in vitro,
animal, and preclinical models for the treatment of AD. In
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TABLE 2 | Summary of studies showing astrocytic-induced OS in several models of AD.

Experimental model Prooxidative Antioxidative Reference

Isolated cortical astrocytes; hippocampal neurons and
astrocytes in coculture, and preparations of astrocytes from rat
hippocampus (Aβ25−35, Aβ1−42).

↑NOX; mitochondrial
depolarization; ↑ROS

↓GSH Abramov et al., 2004a

Primary culture of cortical rat astrocytes (Aβ1−42). ↑NOX; ↑ROS;
mitochondrial
depolarization; ↑iNOS

↓Cu/Zn SOD; =MnSOD Hu et al., 1998; Zhu et al.,
2006; Askarova et al.,
2011; Bungart et al., 2014;
Aguirre-Rueda et al., 2015

Mixed cultures of rat hippocampal neurons and astrocytes.
Isolated cortical astrocytes (Aβ25−35, Aβ1−42).

↓GSH Abramov et al., 2003

Cultured cortical rat astrocytes (fibrillar, oligomeric, and
scrambled Aβ1−42).

↑iNOS and NO-derived
peroxynitrite

Akama et al., 1998; Hu
et al., 1998

Postmortem brains from AD patients. APP23 transgenic mice.
APP induced by electrolytic cortical lesion.

↑eNOS and iNOS Lüth et al., 2001

AD postmortem brains. nNOS immunocytochemistry in reactive
astrocytes.

↑nNOS Simic et al., 2000

Primary astrocyte culture derived from C57BL/6 (Aβ1−42) and
derived from 5xFAD mice.

Acute ↑GSH after monomeric
Aβ. Induction of ABCC1 was
reduced in 6-month old 5xFAD
mice.

Ye et al., 2015

Intrahippocampal injection of Aβ25−35. GFAP measured by
ELISA in rats.

=iNOS ↓Catalase Sohanaki et al., 2016

Cultured cortical rat astrocytes (Aβ25−35). ↑NOX ↓Catalase; ↓SOD, ↓GSH;
↑GST

Jeong et al., 2005

Isolated rat astrocyte cultures (Aβ25−35). ↑iNOS; ↑ROS; ↑RNS ↑MnSOD Ayasolla et al., 2004

Mixed cultures of mice neurons and astrocytes. Isolated mice
astrocytes (Aβ25−35; Aβ1−42).

↑ROS; ↑RNS ↓SOD; ↓GSH; ↓Catalase Masilamoni et al., 2005b

AD postmortem human cerebral cortex and hippocampus.
Immunocytochemistry for GFAP.

↑MnSOD; ↓Cu/Zn SOD Furuta et al., 1995; Maeda
et al., 1997

ROS, reactive oxygen species; RNS, reactive nitrogen species; iNOS, inducible nitric oxide synthase; eNOS, endothelial nitric oxide synthase; nNOS, neuronal form of
nitric oxide synthase; GSH, glutathione, GST, glutathione-S-transferase; GFAP, glial fibrillary acidic protein.

primary cortical rat astrocytes, the use of a light-generating
nanoparticle attenuated Aβ-induced OS and inflammatory
responses, through a reduction in the superoxide anion
production and a lowering of IL-1β and iNOS expression
(Bungart et al., 2014). Curcumin, a natural phenol obtained
from plants and commonly used as a spice, has been proposed
to be of benefit in AD, reducing Aβ formation and decreasing
neurotoxicity in the brain (Lim et al., 2001; Yang et al., 2005;
Cole et al., 2007). In a recent study using APP/PS1 transgenic
mice and primary rat mixed neuronal/glial cultures, curcumin
was reported to improve spatial memory deficits and promote
cholinergic neuronal function in vivo, and in vitro, attenuated
the inflammatory response of both microglia and astrocytes,
acting through PPARγ, which inhibited the NF-κB signaling
pathway in these cells (Liu et al., 2016). Activation of PPARγ

with the use of the isoflavone phytoestrogen genistein showed
an increase in the release of ApoE from primary astrocytes in
an in vivo mouse model of AD (Bonet-Costa et al., 2016). In the
same paper, the authors reported that treatment with genistein
improved several cognitive features (hippocampal learning,
recognition memory, implicit memory, and odor discrimination)
as well as a reduction in the number and area of Aβ plaques.
Neuroesteroids, such as progesterone, have been proposed to
offer neuroprotection in neurodegenerative diseases including
AD (Liu et al., 2013). In primary cultures of rat astrocytes,

treatment with progesterone reduced Aβ-induced inflammatory
responses (decreasing the production of IL-1β and TNFα), and
also suppressed endoplasmic reticulum stress activation together
with attenuation of PERK/elF2a signaling (Hong et al., 2016).
In addition to polyphenols, many other natural phytochemicals
have shown anti-inflammatory and immunosuppressive efficacy
in AD models. For example, triptolide extract inhibit activation of
microglia and astrocytes in the APP/PS1 transgenic mouse model
of AD (Li et al., 2016). Punicalagin, a compound derived from
pomegranate, not only may reduce neuroinflammation (lowering
TNFα and ILβ) but also prevents OS through the reduction of
iNOS, COX-2, and the production of ROS (Kim et al., 2017).

Other compounds with anti-amyloidogenic, antioxidative,
and anti-inflammatory effects may have a potential role against
dementia (Libro et al., 2016). For instance, the cannabinoid
agonist WIN 55,212-2 has shown anti-inflammatory actions in
primary cultured astrocytes after Aβ1−42 exposure. WIN pre-
treatment prevented IL-1β, TNFα, and iNOS increase induced
by Aβ. In addition, pretreatment with WIN prevented a decrease
in copper/zinc-SOD induced by Aβ1−42 (Aguirre-Rueda et al.,
2015). Cannabinoid receptor type 2 (CB2) agonist (MDA7)
also reduced inflammation and also promoted clearance of
amyloid plaques in the transgenic APP/PS1 mice model of
AD (Wu et al., 2017). Astroglial hemichannel activity and
inflammatory reactions evoked by Aβ25−35 were prevented by
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FIGURE 1 | Pathophysiological events involving astrocytes in AD. Schematic representation of the molecular mechanisms linking the NF-κB pathway activation to
AD pathogenesis. OS, abnormal neuroinflammatory response, and excitotoxic neuronal damage are related to several pathways of astrocyte dysfunction. In black
are the elements common to the three mechanisms, namely the Aβ/RAGE/NF-kB interaction. In blue are the elements related to neuroinflammation. In red the
elements related to OS. In green the elements related to neurotoxicity/excitotoxicity. Aβ, amyloid-beta; RAGE, receptor for advanced glycation products; NF-κB,
nuclear factor kappa-light-chain-enhancer of activated B cells; iNOS, inducible nitric oxide synthase; RNS, reactive nitrogen species, ROS, reactive oxygen species;
LP, lipid peroxidation; TNFα, tumor necrosis factor alpha; IL, interleukin; GSH, glutathione; SOD, superoxide dismutase; EAAT, excitatory amino acid transporter;
BACE1, beta-secretase 1; NMDA, N-methyl-D-aspartate receptor; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NADPH oxidase, nicotinamide
adenine dinucleotide phosphate oxidase; Ca++, calcium; ABCC1, ATP-binding cassette subfamily C member 1.

several cannabinoid receptor agonists such as WIN, 2-AG,
and methanandamide (Gajardo-Gómez et al., 2017). Pantethine
(B5 vitamine precursor) was able to modulate the astrocytic
metabolic changes and inflammatory patterns induced by
Aβ1−42 in astrocytes derived from the 5xFAD transgenic mouse
model of AD (van Gijsel-Bonnello et al., 2017). In cultured
cortical astrocytes, donepezil was shown to reduce inflammatory
responses via nAChR and PI3K-Akt pathway, and to decrease
intracellular ROS levels (Makitani et al., 2017). As mentioned
early, donepezil is a cholinesterase inhibitor commonly used in
AD patients.

Other strategies to reduce OS in AD models involve enhancers
of antioxidative endogenous factors. For instance, pelargonidin
(estrogen receptor agonist) increases catalase activity, reduces
astrocyte activation in the hippocampus after Aβ25−35 exposure,
and also prevents Aβ-induced spatial memory impairment
(Sohanaki et al., 2016). Bambusae concretio Salicea treatment
increases GSH-S-transferase and prevented catalase, SOD, GPX
reduction, induced by Aβ25−35 in cultured astrocyte cells (Jeong
et al., 2005). The novel compound Monascin is able to activate
the expression of several antioxidative genes such as SOD-1,
SOD-2, SOD-3, and Hsp16.2, and as a consequence reduced
Aβ toxicity (Shi et al., 2016). In vitro and in vivo studies with
exogenous antioxidative compounds such as resveratrol (Wang

G. et al., 2016), tocotrienol (vitamin E form) (Ibrahim et al.,
2017), anthocyanins (Rehman et al., 2017), and epicatechin
(Cuevas et al., 2009) have shown beneficial effects in AD models.
Finally, 3H-1,2-dithiole-3-thione, a potent free radical scavenger,
is able to reduce ROS production in the AD cellular model
N2a/APPswe (Wang et al., 2017).

CONCLUSION

Neuroinflammation and OS are part of the functional changes
frequently observed in the brains of individuals with AD. Aβ has
been shown to alter the normal dynamics of both inflammatory
and antioxidant and prooxidant balance, promoting an
unhealthy state for the brain and neuronal–glial communication
networks. Astrocytes are involved in both inflammation and
OS regulation in the CNS, and seem to have a central role
in the basic pathophysiological aspects that surround this
neurodegenerative disease. Although the precise relation
between neuroinflammation, OS, astrocytes, and AD is still not
clear, the evidence points toward an important participative
role of the Aβ/NF-κB interaction in astrocytes as a critical agent
in the pathological mechanism of AD. Despite the continuous
efforts to develop a successful treatment for AD, there is still a
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gap in the knowledge of the precise etiological aspects of this
disease which difficult the advance of therapeutics. Therefore,
and due to the evidence presented in this review, is important
to start considering astrocytes as a valuable novel therapeutic and
neuroprotective target for future studies related to the treatment
and mechanistic comprehension of AD.
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