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The inner ear is a very complex sensory organ whose development and function
depend on finely balanced interactions among diverse cell types. The many different
kinds of inner ear supporting cells play the essential roles of providing physical and
physiological support to sensory hair cells and of maintaining cochlear homeostasis.
Appropriately enough, the gene most commonly mutated among subjects with
hereditary hearing impairment (HI), GJB2, encodes the connexin-26 (Cx26) gap-junction
channel protein that underlies both intercellular communication among supporting cells
and homeostasis of the cochlear fluids, endolymph and perilymph. GJB2 lies at the
DFNB1 locus on 13q12. The specific kind of HI associated with this locus is caused
by recessively-inherited mutations that inactivate the two alleles of the GJB2 gene,
either in homozygous or compound heterozygous states. We describe the many diverse
classes of genetic alterations that result in DFNB1 HI, such as large deletions that either
destroy the GJB2 gene or remove a regulatory element essential for GJB2 expression,
point mutations that interfere with promoter function or splicing, and small insertions
or deletions and nucleotide substitutions that target the GJB2 coding sequence. We
focus on how these alterations disrupt GJB2 and Cx26 functions and on their different
effects on cochlear development and physiology. We finally discuss the diversity of
clinical features of DFNB1 HI as regards severity, age of onset, inner ear malformations
and vestibular dysfunction, highlighting the areas where future research should be
concentrated.
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INTRODUCTION

Hearing is an extraordinarily complex process that involves many cell types and diverse cellular
and molecular structures and mechanisms. The genetic causes of hereditary hearing impairment
(HI) are, in consequence, very heterogeneous. Over one hundred genes underlying nonsyndromic
hearing impairment (NSHI) have been identified so far1 and it is estimated that many more
genes remain to be identified. Unsurprisingly, most of these genes encode proteins that participate
in different aspects of the physiology of the cochlear sensory hair cells, including auditory

1http://hereditaryhearingloss.org
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TABLE 1 | Large deletions at the DFNB1 locus on 13q12.

Abbreviated name Name including exact coordinates1 Size of deleted interval Reference

del(GJB6-D13S1830) Chr13:g.(20,797,177_21,105,945)del 309 kb del Castillo et al. (2002)
del(GJB6-D13S1854) Chr13:g.(20,802,727_21,034,768)del 232 kb del Castillo et al. (2005)
del(131-kb) Chr13:g.(20,939,344_21,070,698)del 131 kb Wilch et al. (2010)
del(179-kb) Chr13:g.(20,921,711_21,101,115)del 179 kb Tayoun et al. (2016)
del(920-kb) Not applicable >920 kb Feldmann et al. (2009)
del(101-kb) Chr13:g.(20,757,021_20,858,394)del 101 kb Bliznetz et al. (2014)

1First and last nucleotide that are eliminated by the deletion, Human Genome Build GRCh37/hg19.

mechanotransduction and synaptic transmission mechanisms
(Richardson et al., 2011; Safieddine et al., 2012). Yet, the gene
most frequently mutated among subjects with NSHI in many
populations is not at all expressed in hair cells. This gene, GJB2,
lies at the DFNB1 locus on chromosome 13q12, and codes for
connexin-26 (Cx26), a gap junction protein that is essential for
the function of cochlear supporting cells.

DFNB1 owes its name to the first mapped locus for
nonsyndromic deafness (DFN) with autosomal recessive
inheritance (B; Guilford et al., 1994), and the acronym has
eventually come to represent the specific type of HI caused by
mutations at this locus (MIM# 220290). The identification of
the first GJB2 mutations causing DFNB1 HI (Kelsell et al., 1997)
was soon followed by screenings that revealed a high frequency
of GJB2 mutations among subjects with NSHI (Denoyelle
et al., 1997; Zelante et al., 1997). Since then, high prevalence of
DFNB1 HI was demonstrated in most populations (Chan and
Chang, 2014), and so searching for mutations affecting GJB2
quickly became the mainstay for the genetic diagnosis of NSHI.
The interest on DFNB1 HI spurred many diverse studies to
explore the underlying pathogenic mechanisms, ranging from
functional assays of wild-type and mutant proteins to generation
and analysis of DFNB1 mouse models. Here we review our
current knowledge on the molecular pathology and clinical
features of DFNB1 HI.

GENETIC ALTERATIONS THAT RESULT IN
DFNB1 HEARING IMPAIRMENT

GJB2 is 5513 bp long and contains two exons (193 bp and
2141 bp long, respectively) separated by a 3179-bp intron
(Kiang et al., 1997). Transcription is initiated from a single
start site and leads to the synthesis of a 2334-nucleotide mRNA
(GenBank NM_004004.5), which is considered canonical. The
678-bp sequence that codes for Cx26 is completely contained
within GJB2 exon 2. A genome-wide search for alternative
transcriptional start sites found an expressed sequence tag
(EST) that suggested the existence of an alternative 184-bp
first exon, located within the only GJB2 intron (Kimura
et al., 2006), which would lead to the production of a
2318-nucleotide mRNA (GenBank XM_011535049.2). This EST
(GenBank DA975033.1) was found in a cDNA library of
synovial membrane tissue from rheumatoid arthritis patients.
Further research is needed to determine whether this mRNA
is expressed in the inner ear, a relevant issue given that
this alternative first exon could be a novel target for

genetic screening in patients with NSHI (Parzefall et al.,
2017).

Cx26 belongs to the connexin family of integral membrane
proteins, which act as subunits of a hexameric annular assembly,
termed connexon, which forms a pore through the lipid bilayer.
Connexons can be composed by connexins of either the same
or different type (homo- or heteromeric connexons, respectively;
Kumar and Gilula, 1996). Because of this combinatorial
capability, pathogenic mutations in connexin genes can produce
a variety of clinical outcomes, and so it occurs to GJB2. Some
missense mutations, inherited in a dominant form, result in
Cx26 mutant subunits that exert dominant negative effects on
the activity of wild-type Cx26 alone or on Cx26 and connexin-30
(Cx30) together. They cause the DFNA3 type of autosomal
dominant nonsyndromic HI (NSHI; Denoyelle et al., 1998; Forge
et al., 2003b; Marziano et al., 2003; Zhang et al., 2011). Other
dominant missense mutations result in Cx26 mutant subunits
that impact the activity of both wild-type Cx26 and connexin-43
(Rouan et al., 2001). They cause different syndromes associating
HI with skin disorders, such as Vohwinkel (Maestrini et al., 1999)
or Bart-Pumphrey (Richard et al., 2004) syndromes, keratitis-
ichthyosis-deafness (KID; Richard et al., 2002; van Steensel
et al., 2002), hystrix-like ichthyosis and deafness (HID; van
Geel et al., 2002), palmoplantar keratoderma with deafness
(PPK-D; Richard et al., 1998) or sensorineural deafness with
erythematous plaques, cutaneous orthokeratotic hyperkeratosis
and parakeratosis in the oral and esophageal mucosa (Brown
et al., 2003).

However, a majority of GJB2 mutations are recessively
inherited, and result in DFNB1 NSHI when they are in
homozygous or compound heterozygous states (Kelsell et al.,
1997). About 200 GJB2 mutations have been reported to cause
DFNB1 HI2 (Stenson et al., 2017). They can be classified into
many different types: large deletions that remove the whole GJB2
gene (Feldmann et al., 2009; Bliznetz et al., 2014, 2017), large
deletions that remove regulatory sequences that are needed for
the expression of GJB2 but keep the gene intact (del Castillo
et al., 2002, 2005; Wilch et al., 2010; Tayoun et al., 2016;
Table 1), and a plethora of small-scale alterations, including
nonsense, missense and splice-site point mutations, as well
as frameshifting small insertions and deletions (del Castillo
and del Castillo, 2011). The frequencies of these mutations
are diverse, with different mutant alleles overrepresented in
different populations. The genetic epidemiology of DFNB1 HI
has been extensively reviewed (Chan and Chang, 2014), and

2http://davinci.crg.es/deafness/
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FIGURE 1 | Expression of connexin-26 (Cx26) and connexin-30 (Cx30) in the human cochlea. Cx26 and Cx30 are synthesized by all supporting cells types within the
organ of Corti (blue), including inner and outer pillar cells (dark blue), as well as by root cells (orange), interdental cells (pink), fibrocytes from the underlying connective
tissue (light blue) and basal (green) and intermediate cells (yellow) from the stria vascularis. For the sake of clarity, we have depicted only four fibrocytes (purple) in
connective tissue. Arrows indicate the pathways for K+ influx in hair cells (bordered in red) and K+ secretion into endolymph through the stria vascularis. It must be
noted that Cx26 and Cx30 seem to form distinct, homomeric plaques even when co-expressed in the same cell, although these plaques are closely associated.
Some immuhistochemical staining experiments suggest that co-expression may not occur in all the cell types indicated above (e.g., Cx26 may not be synthesized in
inner pillar cells and strial intermediate cells, whereas Cx30 may not be synthesized in strial basal cells), which might reflect specific functional associations with
additional ion transporters (Liu et al., 2009, 2016).

so we will focus on the molecular mechanisms by which
these mutations alter the functions of the GJB2 gene and the
Cx26 protein.

Mutations That Alter GJB2 Expression
GJB2 expression takes place in specific cell types in many
different tissues.With the significant exception of hair cells,GJB2
is expressed by nearly all cell types within the human cochlea,
including supporting cells in the sensory epithelium, fibrocytes
and mesenchymal cells in the lateral wall, basal and intermediate
cells of the stria vascularis and type I neurons in the spiral
ganglion (Figure 1; Liu et al., 2009).

Interestingly, a study performed on the closely related murine
Gjb2 promoter (81% sequence identity) revealed that Gjb2
and the neighboring Gjb6 gene (encoding mouse Cx30) are
transcriptionally co-regulated in cochlear supporting cells upon
activation of NF-κB (Ortolano et al., 2008), which is likely caused
by intracellular Ca2+ oscillations induced by connexin signaling

(see ‘‘Mutations Affecting the Function of Cx26 Hemichannels’’
section below; Rodriguez et al., 2012). This mechanism may
be not directly extrapolatable to the expression of the human
ortologs, since the murine promoter contains an NF-κB binding
site that is absent in the human promoter. Further studies are
needed to investigate a putative co-regulation of GJB2 and GJB6
in human cochlea.

Mutations Affecting the GJB2 Promoter
The 128-bp-long basal promoter ofGJB2 lies just upstream of the
canonical first exon (Kiang et al., 1997; Tu and Kiang, 1998). The
promoter includes a TATA box and two GC boxes (Figure 2),
which are bound by the Sp1 and Sp3 transcription factors, as
demonstrated by in vitro experiments and by the fact that the
promoter activity is drastically reduced by engineered mutations
in either of the GC boxes (Tu and Kiang, 1998).

So far only one human mutation has been reported to affect
the GJB2 promoter. It was found in the compound heterozygous
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FIGURE 2 | Sequence of the GJB2 basal promoter and first exon, showing the location of the GC boxes (at -81 and -93), the TATA motif (at -24) and the
transcription start site of the first canonical exon. The arrow indicates the position of the g.-77C>T promoter mutation.

state with mutation p.(Val84Met) in a Portuguese hearing-
impaired subject (Matos et al., 2007). This promoter mutation,
g.-77C>T (also known as -3438C>T and c.-259C>T), affects the
GC box at -81 (CCGCCC > CCGCTC). Taking into account
the effects of the in vitro engineered mutations in the GC
boxes, it was expected that this naturally occurring mutation
would impair the binding of Sp1 and Sp3. In fact, the mutant
promoter exhibited a drastically reduced activity in reporter-gene
experiments performed in different cell lines (Matos et al.,
2007).

Deletions Removing a Distal Enhancer
When mutation screening of the GJB2 coding region in subjects
with autosomal recessive NSHI became a general practice, it was
soon evident that there was an overrepresentation of affected
subjects in whom only one heterozygous pathogenic mutation
could be found. It was hypothesized that the missing mutations
might affect non-coding regulatory sequences or other genes.
Research on those unelucidated cases led to the identification
of pathogenic large deletions within the DFNB1 locus, which
however keep intact the structure of the GJB2 gene. They
can be classified in two different types: those that truncate
the neighboring GJB6 gene and those that also keep intact its
structure.

Two deletions were reported to truncate the GJB6 gene,
while keeping GJB2 intact. The first identified was del(GJB6-
D13S1830), which removes a 309-kb interval that includes the
first five exons of GJB6 and the whole CRYL1 gene (Table 1,
Figure 3; Lerer et al., 2001; del Castillo et al., 2002, 2003;
Pallares-Ruiz et al., 2002). Few years later, another deletion of
the same type was characterized. This deletion, named del(GJB6-
D13S1854), removes a 232-kb interval, with the proximal

breakpoint within GJB6 intron 5, and the distal breakpoint in
intron 4 of CRYL1 (Table 1, Figure 3; del Castillo et al., 2005).

These findings suggested that mutations in GJB2 and GJB6
could follow a digenic pattern of inheritance. Results from
some studies in humans and rodents fitted well into this
hypothesis. First, Cx26 and Cx30 share the same spatial pattern of
expression within the cochlea, with apparent co-localization, and
can form heteromeric connexons and heterotypic gap-junction
channels (Dahl et al., 1996; Lautermann et al., 1998; Forge
et al., 2003a,b), although these conclusions have been partly
challenged by a recent study using super-resolution structured
illumination fluorescence microscopy (Liu et al., 2016). Second,
some mutant Cx26 subunits involved in autosomal dominant
NSHI are able to exert dominant negative effects on the activity
of wild-type Cx30 (Forge et al., 2003b; Marziano et al., 2003).
Third, a mutation in GJB6 was found in a case of autosomal
dominant NSHI (Grifa et al., 1999). Finally, Gjb6 knock-out
mice were generated by replacing the complete Gjb6 coding
sequence with a cassette containing the lacZ reporter and the
neo selection gene (Teubner et al., 2003). These mice, termed
Gjb6tm1Kwi/tm1Kwi, have severe deafness and show a complete lack
of endocochlear potential (Teubner et al., 2003) due to disruption
of the endothelial barrier of capillaries embedded within the
stria vascularis (Cohen-Salmon et al., 2007). Furthermore,
intercellular transfer of metabolites such as glucose among
supporting cells in the organ of Corti of Gjb6tm1Kwi/tm1Kwi mice
is reduced, though electrical coupling is preserved (Chang et al.,
2008). Finally, Gjb2+/− Gjb6+/tm1Kwi double heterozygous mice
have moderate HI and a significantly reduced endocochlear
potential (Michel et al., 2003; Mei et al., 2017), although this
is in contrast with the severe or profound HI observed in a
majority of human double heterozygotes carrying del(GJB6-
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FIGURE 3 | Large deletions on chromosome 13q12 that are responsible for DFNB1 hearing impairment (HI). The proximal breakpoint of del131-kb and the distal
breakpoint of del(GJB6-D13S1854) delimit the 95.4-kb sequence stretch where the cis-acting element regulating the expression of GJB2 must be situated. The two
proximal breakpoints of deletions del(GJB6-D13S1830) and del(GJB6-D13S1854; vertical arrows) lie within GJB6.

D13S1830) and a pathogenic GJB2 mutation (Snoeckx et al.,
2005). A strong support for the hypothesis of the digenic
inheritance would have come from the finding of truncating
point mutations in GJB6 in cases of human autosomal recessive
NSHI, but this type of mutations have not been reported to
date.

An alternative explanation hypothesized thatGJB2 expression
in the cochlea would require a cis-acting regulatory element,
which would lie within the interval that is removed by the
deletions, and whose absence would abolish the expression of
the structurally normalGJB2 allele that is located downstream. In
fact, Cx26 expression in the ductal epithelium of sweat glands was
shown to be dramatically reduced in a double heterozygote for
GJB2 c.35delG and del(GJB6-D13S1830; Common et al., 2005).
In other studies, qualitative allele-specific RT-PCR was used
to investigate GJB2 expression in buccal epithelium cells. In
three double heterozygotes for del(GJB6-D13S1830) and a GJB2
mutation), no expression could be detected from the wild-type
GJB2 allele that was in cis with del(GJB6-D13S1830; Rodriguez-
Paris and Schrijver, 2009). Similar results were obtained when
studying three double heterozygous subjects for del(GJB6-
D13S1854) and a GJB2 mutation (Rodriguez-Paris et al.,
2011).

The hypothesis of the cis-acting regulatory element received
further support from the identification and characterization of
the second type of DFNB1 deletions, i.e., those keeping the
structure of both GJB2 and GJB6 intact (Wilch et al., 2006,
2010; Tayoun et al., 2016). The first reported deletion of this
type was del(ch13:20,939,344-21,070,698; Wilch et al., 2006,
2010). The deletion interval was 131-kb long. Its proximal
breakpoint was located between GJB6 (more than 100 kb
upstream of its 5′ end) and CRYL1 (Wilch et al., 2010; Table 1,
Figure 3). It was found in a family whose affected subjects

were double heterozygous, the other allele carrying the c.35delG
GJB2 mutation. Interestingly, qualitative allele-specific RT-PCR,
which was performed on buccal epithelium cells from these
subjects, revealed a dramatic reduction of the expression from
the wild-type GJB2 and GJB6 alleles in cis with the deletion. In
addition to supporting the existence of the cis-acting regulatory
element, these results suggest that it could be implicated in the
co-regulation of the expression of GJB2 and GJB6. A second
deletion of the same type has been reported recently (Tayoun
et al., 2016). It removes a 179-kb interval, with the proximal
breakpoint between GJB6 and CRYL1. It was found in a subject
with moderate NSHI carrying the p.(Val37Ile) in the other
allele.

A re-examination of the mice models also supports the
hypothesis of the cis-acting regulatory element. The Gjb6tm1Kwi

mouse is not only a Gjb6 knockout, as the engineered mutation
also decreases the transcription of the contiguous Gjb2 gene
(Ortolano et al., 2008; Lynn et al., 2011), a polar effect that
is likely due to the insertion of the long lacZ-neo cassette.
Boulay et al. (2013) recently generated an independent Gjb6
knock-out strain (termed Gjb6∆/∆) that carries a complete
deletion of the Gjb6 coding sequence, but no inserted material,
aside from a single loxP site, which minimizes the polar effect
on Gjb2. Indeed, while in the two Gjb6 knock-out strains
cochlear Gjb2 mRNA and Cx26 protein levels are reduced
compared to wild-type controls,Gjb6∆/∆ mice haveGjb2mRNA
levels similar to those of Gjb6+/tm1Kwi heterozygotes (which
are not deaf) and five times the amount of Cx26 shown
by their Gjb6tm1Kwi/tm1Kwi counterparts (Boulay et al., 2013).
Critically, Gjb6∆/∆ mice have no HI whatever (Boulay et al.,
2013), implying that the impaired hearing observed in Gjb2+/−

Gjb6+/tm1Kwi double heterozygotes is solely caused by the
reduced levels of Cx26.
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Altogether, currently available evidences from human
subjects and mice models strongly support the existence of the
regulatory element, but it still remains to be identified. It should
lie within the critical 95.4 kb interval that has been established
by overlapping all deletion intervals that are known to date
(Figure 3).

Mutations That Affect RNA Splicing
Given the simple structure of GJB2 (only one intron), few
splice-site mutations causing HI have been reported to date
in this gene (Denoyelle et al., 1999; Green et al., 1999; Mani
et al., 2009; Gandía et al., 2013). Since GJB2 exon 2 contains the
entire coding region, these splice-site mutations have no effect on
protein coding.

Mutation c.-23+1G>A affects the donor splice site of intron 1.
In a lymphoblastoid cell line derived from a heterozygous
individual, cDNA sequencing did not reveal any transcript from
the allele with this mutation. It was concluded that either the
c.-23+1G>A allele was not transcribed or that the transcript was
quickly degraded (Shahin et al., 2002).

Mutation c.-22-2A>C abolishes the acceptor splice site of
intron 1. It was first reported in three Spanish siblings who
were compound heterozygous for c.-22-2A>C and c.35delG,
and presented with mild postlingual HI (Gandía et al., 2013).
Later on, this same genotype was reported in an Italian subject
with moderate HI (Stanghellini et al., 2014). The effects of the
mutation were investigated by RT-PCR on RNA extracted from
saliva from one of the siblings of the Spanish family. The acceptor
splice site was actually abolished, and so normally processed
transcripts from this allele were absent. However, the RT-PCR
assays detected residual amounts of an abnormally processed
transcript. It was generated by using an alternative acceptor
splice site, which resulted in the insertion of a 38-bp intronic
sequence into the 5′-UTR, but keeping an intact coding region.
Therefore, Cx26 could still be translated from this transcript,
although its residual amounts are likely to be insufficient to
support a normal function, and this could explain the mild
phenotype observed in subjects with this mutation (Gandía et al.,
2013).

Given the late onset of the mild HI associated with c.-22-
2A>C, it was hypothesized that this mutation could contribute
to age-related hearing loss. The presence of the mutation was
investigated in a large cohort of Italian subjects with age-related
hearing loss and ethnically-matched control subjects with normal
hearing (Rubinato et al., 2016). The mutation was found in
homozygous, heterozygous, or compound heterozygous state
with other known pathogenic missense mutations. There was
no significant difference in allelic or genotypic frequencies
between patient and control groups (Rubinato et al., 2016).
Taking everything into consideration, it seems that c.-22-2A>C
would be a hypomorphic recessive allele, like p.(Met34Thr) and
p.(Val37Ile), with mild phenotypic effects or no effect at all,
depending on the pathogenic potential of the accompanying
allele.

Finally, exonic mutation c.-23G>T, lying adjacent to the
splice donor site of intron 1, was found in the compound
heterozygous state with p.(Trp24∗) in an Indian subject with

severe to profound NSHI (Mani et al., 2009). Although in silico
analysis predicted that it could abolish the use of that donor site,
this hypothesis still needs experimental confirmation.

Mutations in the GJB2 Coding Region
A Cx26 monomer is a 226-amino acid long polypeptide
that consists of four transmembrane helices (TM1–TM4)
linked by two extracellular loops (E1 and E2) and one
shorter intracellular loop, with N- and C-termini on the
cytosolic side of the membrane (Figure 4A). Newly-synthesized
Cx26 monomers undergo conformational maturation and
assembly into connexons when moving along the secretory
pathway for delivery at the plasma membrane. Once there,
Cx26 connexonsmay remain as so-called hemichannels, allowing
for transport of diverse small molecules (less than 1 kDa) between
the cytosol and the extracellular space. Alternatively, a connexon
may contact, in a head to head disposition, another connexon on
the plasma membrane of an adjacent cell to form an intercellular
channel. The juxtaposition of hundreds of intercellular channels
in plaques forms gap junctions (Kumar and Gilula, 1996),

FIGURE 4 | (A) Topological organization of the Cx26 monomer with its
different structural elements. Helices are represented as cylinders. Helices in
light green line the hydrophilic pore of the channel, whereas helices in dark
green are exposed to the hydrophobic environment of the lipid bilayer. Note
the projection into the cytosol of helices M2 and M3. (B) Location of the
truncating and missense mutations mentioned in the text within the different
structural elements.
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directly linking the cytoplasms of the two adjacent cells and
creating a functional syncytium. Mutations in the GJB2 coding
sequence may disrupt any of these maturation processes or
they may interfere with hemichannel or intercellular channel
function.

Mutations Truncating Cx26
Many pathogenic GJB2 mutations generate premature stop
codons, either directly (nonsense mutations; e.g., p.(Trp24∗))
or because small insertions, duplications or deletions cause
frameshifts (e.g., c.35delG, also known as p.(Gly12Valfs∗2)).
As the coding sequence of the GJB2 gene is completely
contained in the last exon, mRNAs harboring premature stop
codons are expected to escape the nonsense-mediated decay
surveillance pathway (reviewed in Lykke-Andersen and Jensen,
2015). Thus, truncated proteins will actually be synthesized, as
shown in HeLa cell assays of the c.235delC (p.(Leu79Cysfs∗3)),
p.(Tyr155∗), c.572delT (p.(Phe191Serfs∗5)) and c.631-632delGT
(p.(Cys211Leufs∗5)) mutations (Figure 4B; Choung et al., 2002;
Xiao et al., 2011). Nearly all of the known truncating mutations
(such as c.35delG (Denoyelle et al., 1997), c.167delT (Zelante
et al., 1997), p.(Trp77∗) (Kelsell et al., 1997) and c.235delC
(Fuse et al., 1999)) result in proteins lacking one or several
of the transmembrane segments and intervening loops, which
hampers Cx26 folding and oligomerization, resulting in retention
at the endoplasmic reticulum (ER) and ultimately causing a
total loss of function. This is the case even with just a partial
truncation of the TM4 helix and loss of the C-terminal stretch
(mutation c.631-632delGT, p.(Cys211Leufs∗5); Lim et al., 2003;
Xiao et al., 2011). Interestingly, ER retention of the truncated
subunits may induce in some cases the unfolded protein
response (reviewed in Lindholm et al., 2017) which in turn
may eventually lead to apoptosis of cells expressing those GJB2
mutant alleles, though this hypothesis is yet to be experimentally
tested. Only one frameshift mutation in which truncation does
not affect the transmembrane helices has been reported so
far: c.647-650del (p.(Arg216Ilefs∗7); Figure 4B). Although it is
a pathogenic mutation (Prasad et al., 2000), its effects have
not been functionally assayed yet. It is thus uncertain whether
truncation of the C-terminus only would also result in ER
retention or it would simply interfere with channel function,
since it is believed that the C-terminal hydrophilic stretch, whose
crystal structure is not yet solved, may participate in chemical
gating or complete pore closure (Maeda et al., 2009).

The p.(Met1Val) mutation (Estivill et al., 1998), which results
in no Cx26 protein synthesis at all (p.0 null allele; Thönnissen
et al., 2002), although not properly a truncating mutation, should
also be included in this category.

Missense Mutations
All the remaining DFNB1 pathogenic mutations result in amino
acid substitutions. These mutations fall in two categories:
those affecting residues involved in folding, oligomerization or
structural stability of Cx26 and those that impair one or several
aspects of Cx26 function, although any particular mutation
may have several different effects. The landmark publication of
the crystal structure of a Cx26 connexon (Maeda et al., 2009)

provided a framework for integrating at the molecular level data
obtained in diverse functional assays of these mutations.

Mutations affecting the structure of the Cx26 monomer
In the solved crystal structure, the monomer forms a
compact bundle of four helices in which adjacent helices
are antiparallel. Helices TM1 and TM2 from each monomer
face the interior of the connexon channel, while helices
TM3 and TM4 face the hydrophobic environment of the
membrane. The N-terminus forms a short helix that is also
embedded in the lipid bilayer (Figure 4A). Maeda et al.
(2009) identified four groups of residues—two hydrophilic
and two hydrophobic cores—that stabilized the structure of
the monomer by means of intramolecular interactions (salt
bridges or hydrogen bonds) among them. It is reckoned that
most amino acid substitutions affecting such residues would
result in misfolding and retention of the mutant polypeptide
in the ER. Mutations at those residues include: p.(Arg32Cys;
Prasad et al., 2000), p.(Arg32His; Mustapha et al., 2001),
p.(Arg32Leu; Wu et al., 2002), p.(Gln80Arg; Uyguner et al.,
2003), p.(Glu147Lys; Frei et al., 2004), p.(Ser199Phe; Green et al.,
1999), p.(Arg143Trp; Brobby et al., 1998), p.(Asn206Ser; Marlin
et al., 2001), p.(Asn206Thr; Wattanasirichaigoon et al., 2004),
p.(Ser139Asn; Marlin et al., 2001), p.(Ala40Glu; Feldmann
et al., 2004a), p.(Val43Met; Hwa et al., 2003), p.(Trp77Arg;
Carrasquillo et al., 1997) and p.(Met195Val; Tsukada et al.,
2010). Indeed, intracellular retention of the mutant polypeptide
in expression experiments performed in transfected cells
has been demonstrated for p.(Arg32His; Xiao et al., 2011),
p.(Trp77Arg; Martin et al., 1999; Bruzzone et al., 2003),
p.(Met195Val; Kim et al., 2016) and p.(Ser199Phe; Ambrosi
et al., 2013). However, not all mutations at those residues
cause intracellular retention, as shown for p.(Arg143Trp;
Wang et al., 2003) and p.(Asn206Ser; Ambrosi et al., 2013).
Apparently, those two particular amino acid substitutions
can be accommodated within the monomer structure
without total disruption of the intramolecular-stabilizing
interactions.

Additional stabilization of the monomer is provided by
three intramolecular disulfide bonds (Cys53-Cys180, Cys60-
Cys174 and Cys64-Cys169) connecting the E1 and E2 loops
(Maeda et al., 2009); indeed, formation of those disulfide bonds
is an essential part of the Cx26 conformational maturation
process. Unsurprisingly, all known mutations replacing any
of these cysteine residues result in DFNB1 NSHI, as they
probably result in misfolding and intracellular retention of the
mutant polypeptides, though to our knowledge none have been
investigated in functional assays. Examples include p.(Cys53Arg;
Dahl et al., 2001), p.(Cys60Tyr; Taniguchi et al., 2015),
p.(Cys64Tyr; Putcha et al., 2007), p.(Cys169Tyr; Azaiez et al.,
2004) and p.(Cys174Arg; Gardner et al., 2006).

Mutations affecting connexon assembly and oligomerization
Another set of residues participates in intermolecular
interactions within the connexon, influencing both correct
folding and oligomerization. Most of the mutations affecting
those residues are involved in dominantly inherited disorders,
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because the effect of the amino acid substitution on
intermonomer contacts impairs connexon assembly with
wild-type Cx26 subunits (Rouan et al., 2001). However, missense
mutations at these residues may also result in DFNB1 NSHI,
as it happens with p.(Arg184Pro; Denoyelle et al., 1997). Thus,
p.(Arg184Pro)-Cx26 is completely incapable of oligomerization
in HeLa cell assays (Thönnissen et al., 2002) and so unable to
interact with other connexin subunits, which explains why the
mutation has no dominant negative effect on wild-type Cx26.

Mutations affecting the hydrophilic channel pore
Missense mutations may also target residues of the hydrophilic
channel of the connexon. This channel is lined on the cytosolic
end by the protrusions of helices TM2 and TM3 of each
monomer, with net positive charge, and on the extracellular
end by the residues in the N-terminal half of the E1 loop
(Figure 4A). The N-terminus helix and the TM1 helix create a
funnel in the center of the channel that is involved in voltage-
sensitive channel gating (Maeda et al., 2009), with closure due to
inside positive potential (Verselis et al., 1994). DFNB1 mutations
at these residues, such as p.(Gly12Val; Rabionet et al., 2000),
p.(Met34Thr; Kelsell et al., 1997), p.(Val37Ile; Abe et al., 2000)
and p.(Arg143Trp), reduce channel permeability (Martin et al.,
1999; Thönnissen et al., 2002; Bruzzone et al., 2003; Bicego
et al., 2006; Zonta et al., 2014a; García et al., 2015). The
replacement of Met-34 with Thr and of Val-37 with Ile have only
slight structural effects and thus p.(Met34Thr) and p.(Val37Ile)
have weak pathogenic potentials. It must be remembered,
though, that the specific amino acid substitution in each case
may have very different functional consequences. For example,
both p.(Gly12Val)-Cx26 and p.(Gly12Arg)-Cx26 have altered
channel permeabilities. However, whereas p.(Gly12Val) only
causes DFNB1 NSHI, p.(Gly12Arg) underlies KID syndrome
due to a gain of function mechanism in which the mutant
subunit becomes able to oligomerize with Cx43 (García
et al., 2015). Finally, mutations that kink transmembrane helix
TM2 by introducing proline residues alter the orientation of
its cytosolic protrusion, which impairs channel permeability.
The best known example is p.(Leu90Pro; Denoyelle et al., 1999;
D’Andrea et al., 2002; Thönnissen et al., 2002; Bruzzone et al.,
2003).

Mutations affecting the function of Cx26 hemichannels
Cx26 hemichannels and gap-junction intercellular channels play
distinct physiological roles in cochlear cells. Cx26 hemichannels
mediate paracrine and autocrine signaling that is essential
for the acquisition of hearing during cochlear development
and in the function of the mature cochlea. One of the
crucial morphogenetic events in cochlear development is
the acquisition of Ca2+ signaling in all cell types (recently
reviewed by Mammano and Bortolozzi, 2017). In supporting
cells, developmental Ca2+ signaling is mediated by ATP-induced
spontaneous oscillations in the cytosolic concentration of free
Ca2+, which in turn propagate intercellular Ca2+ waves. The
underlying mechanism is as follows: ATP binding to plasma
membrane P2Y receptors provokes phospholipase C-dependent
synthesis of inositol 1,4,5-trisphosphate (IP3), which directs

Ca2+ release from ER stores. The increase in concentration
of intracellular free Ca2+ opens Cx26 hemichannels in the
apical plasma membrane, which release cytosolic ATP to
the endolymph, thereby propagating the Ca2+ oscillation to
neighboring cells, which helps coordinate cellular activity
(Beltramello et al., 2005; Piazza et al., 2007; Anselmi et al.,
2008). In mice, these intercellular Ca2+ waves control Cx26 and
Cx30 expression at the transcriptional level (Rodriguez et al.,
2012) and they participate in the final development of
cochlear structures, such as the formation of the mature
inner sulcus by crenation (osmotic shrinkage of cells) and
the functional maturation of inner and outer hair cells (Zhu
et al., 2013; Ceriani et al., 2016; Johnson et al., 2017). In
fact, supporting cells in the greater epithelial ridge (GER,
the precursor of the mature inner sulcus) spontaneously
release ATP through connexin hemichannels before hearing
onset by the mechanism described above. This spontaneous
ATP release coordinates cochlear morphogenetic events with
auditory pathway maturation. Autocrine ATP signaling in
GER supporting cells triggers both Cl− efflux, which induces
crenation, and K+ efflux, which causes depolarization of inner
hair cells and their subsequent exocytosis of glutamate, leading
to the firing of action potentials by spiral ganglion neurons
(Tritsch and Bergles, 2010; Wang et al., 2015). Such action
potentials evoke coordinated bursts of activity from central
auditory neurons in a precise, stereotyped pattern, which is
believed to help consolidate synapses in developing circuits
all along the auditory pathway (Tritsch et al., 2010). The
spontaneous ATP release by supporting cells ceases at hearing
onset. A similar role in ATP paracrine signaling in the adult
cochlea was also proposed for Cx26 hemichannels (Anselmi et al.,
2008), including modulation of outer hair cell electromotility
(Zhao et al., 2005), but further experimentation showed that
ATP release induced by Ca2+ signaling in the mature cochlea
is predominantly dependent on pannexin1 and not Cx26 (Chen
et al., 2015). Some DFNB1 missense mutations interfere with
this hemichannel function, either by reducing the stability
of hemichannels at the plasma membrane (p.(Asn206Ser);
Ambrosi et al., 2013) or by replacing the Glu-47 residue that
is critical for hemichannel closure at high extracellular Ca2+

concentration (p.(Glu47Lys); Marlin et al., 2001; Zonta et al.,
2014b).

Cx26 hemichannels may also play a second, intriguing
role in cochlear physiology. Recently, Cx26 hemichannels
have been implicated in CO2 chemosensitivity in the central
nervous system (Huckstepp et al., 2010a,b). Indeed, CO2
directly binds Cx26 at the beginning of the M3 helix,
probably by carbamylation of Lys-125 (Figure 4), which induces
opening of the Cx26 hemichannel and subsequent ATP release
(Meigh et al., 2013). Auditory transduction involves high
energy consumption in the cochlea and concomitant CO2
production, and thus CO2 may evoke Cx26 hemichannel-
dependent ATP signaling for coordination of supporting cell
activity. At least two DFNB1 mutations interfere with CO2-
mediated hemichannel opening, which would impair signaling:
p.(Met34Thr), which reduces the ability of the hemichannel
to open in response to CO2, and p.(Ala88Ser; Frei et al.,
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2002), with a reduced affinity for CO2 (de Wolf et al.,
2016).

Mutations affecting the function of Cx26 gap-junction
channels
Auditory transduction depends on three related homeostatic
processes: (1) maintenance of extracellular fluid (endolymph and
perilymph) composition; (2) preservation of the functionality
of hair cells; and (3) production of the endocochlear potential.
All three processes rely on extensive gap-junction coupling
among nearly all cells in the cochlea, with the exceptions
of marginal cells in the stria vascularis and hair cells in
the organ of Corti. In humans, recent reports show that
Cx26 forms small gap-junction plaques that are clearly separate
from, but closely associated to, the larger Cx30 plaques all
along the cochlea (Liu et al., 2016, 2017), suggesting that each
class of plaque would entirely consist of a single connexin
subunit (i.e., each plaque would consist of identical homomeric
connexons). How this spatial organization is achieved and
what are its pathophysiological implications remain to be
determined.

It has been proposed that Cx26 gap junctions participate
in the organ of Corti in spatial buffering (also termed
‘‘sinking’’) of excitotoxic substances—K+ and glutamate. Indeed,
it was hypothesized that K+ was dispersed away from
the hair cells and transported back to the endolymph
by a gap-junction mediated pathway (Santos-Sacchi and
Dallos, 1983; Kikuchi et al., 1995). Later on, the hair cell
degeneration observed in one Gjb2 knockout mouse (Cohen-
Salmon et al., 2002) suggested that the major mechanism
underlying DFNB1 NSHI might be the loss of such pathway,
but recent experiments in mice showing that Cx26 is dispensable
for spatial buffering have ruled out this hypothesis (reviewed in
Zhao, 2017).

In contrast, Cx26 gap junctions do have an important role in
the establishment andmaintenance of the endocochlear potential
by the stria vascularis, a two-layered epithelium in the lateral wall
of the cochlea that generates the endocochlear potential by active
transport of K+ from perilymph into endolymph (Wangemann
et al., 1995; Takeuchi et al., 2000; Marcus et al., 2002; Lang et al.,
2007). Within the stria, Cx26 and Cx30 gap junctions convey K+

ions actively taken up from the perilymph by fibrocytes and basal
cells to intermediate cells which release K+ into the intrastrial
space. The effects of Cx26 ablation in the stria vascularis have
not been explored directly, as mouse models with conditional
KO of Gjb2 in this structure have not been generated to date.
However, some insights have been provided by Cx30 KOmodels.
Gjb6tm1Kwi/tm1Kwi mice (with critically decreasedGjb2 expression
and no Cx30) show no endocochlear potential (Teubner et al.,
2003), Gjb2+/− Gjb6+/tm1Kwi double heterozygous mice (also
with reduced Gjb2 expression from the Gjb6+/tm1Kwi allele) have
a significantly reduced endocochlear potential (Michel et al.,
2003; Mei et al., 2017) and Gjb6∆/∆ mice are not deaf, indicating
a normal endocochlear potential (see ‘‘Deletions Removing a
Distal Enhancer’’ section). There are two alternative explanations
for these results as regards endocochlear potential generation:
either Cx26 is essential and Cx30 is dispensable or each of the two

connexins may be able to compensate for the lack of the other.
These hypotheses must be tested experimentally.

In addition to these homeostatic roles, recent research
has unveiled two roles of Cx26 gap junctions in cochlear
development. Coordination of gene expression among cells
in the developing cochlea is achieved by gap-junction-
mediated transfer of microRNAs (miRNAs) and specific
second messengers (such as IP3). Interestingly, in the inner
ear, only Cx26 gap junctions are permeable to miRNAs (Zhu
et al., 2015). Disruption of Cx26 gap junctions in mice blocks
miRNA intercellular transfer and results in aberrant organ
of Corti development that causes deafness (Kudo et al., 2003;
Zhu et al., 2015; Zong et al., 2016). To date, disruption of
miRNA permeability has only been demonstrated for the PPK-D
mutation p.(Arg75Trp; Zong et al., 2016), but any mutations that
reduce channel permeability may interfere with miRNA transfer.
Of particular interest are mutations located in the extracellular
loops that do not affect connexon intracellular sorting and result
in constricted channel pores, such as p.(Arg165Trp; Rickard
et al., 2001; Xiao et al., 2011). Future research should address the
effects of any mutations on miRNA transfer.

As regards intercellular traffic of second messengers, it is
well established that IP3 is one of the major players in inner
ear morphogenesis, participating in the gap-junction-mediated
propagation of intercellular Ca2+ waves between coupled cells
(Mammano and Bortolozzi, 2017). Among other processes,
IP3 transfer through gap junctions propagates the signal for
cytochrome C-dependent apoptosis from the triggering cell to
cells within the cell-death spreading zone, a crucial event in inner
ear morphogenesis (Decrock et al., 2012). Mutation p.(Val84Leu;
Kelley et al., 1998) specifically impairs Cx26-gap junction IP3
permeability (Beltramello et al., 2005; Decrock et al., 2012),
while being completely undistinguishable fromwild-type Cx26 in
all other aspects tested in functional assays (Bruzzone et al.,
2003; Wang et al., 2003). Impairment of IP3 permeability likely
happens in other mutations that disrupt gap-junction channel
transfer of most substances, as demonstrated for p.(Val95Met;
Kelley et al., 1998; Beltramello et al., 2005). However, it seems
that impairment of IP3 permeability alone is sufficient to
cause HI, underscoring the importance of this particular role
of Cx26.

Harmless variants
The last group of missense variants in GJB2 does not
affect any residues known to be critical for the structure of
Cx26. Given the available genetic data, they are considered
harmless variants, among them p.(Val27Ile; Kelley et al., 1998),
p.(Phe83Leu; Scott et al., 1998), p.(Arg127His; Estivill et al.,
1998), p.(Val153Ile; Rickard et al., 2001) and p.(Ile203Thr; Kudo
et al., 2000). However, caution is needed when analyzing those
genetic data, as indicated by the case of the p.(Glu114Gly)
mutation (Fuse et al., 1999). p.(Glu114Gly) nearly always
appears in cis with p.(Val27Ile) in a complex allele, as
indicated by the notation [p.(Val27Ile); p.(Glu114Gly)]. Variant
p.(Glu114Gly) has usually been considered harmless because
[p.(Val27Ile); p.(Glu114Gly)] /[p.(Val27Ile); p.(Glu114Gly)]
homozygotes had been observed in a large number of normal
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hearing control individuals (e.g., 18.7% of controls from the
Korean population; Choi et al., 2011). However, functional assays
of p.(Glu114Gly) alone indicate defective gap junction channel
and hemichannel functions that are largely compensated in
the complex allele [p.(Val27Ile); p.(Glu114Gly)] (Choi et al.,
2011). Thus, p.(Glu114Gly) might underlie DFNB1 HI in those
rare cases in which this mutation does not present in cis with
p.(Val27Ile).

Overall, accumulating evidence on Cx26 mutations in the
GJB2 coding sequence paints a very complex picture in which
particular mutations may have several very different pathological
effects, according to the specific Cx26 structural or functional
defect(s) that they cause. Truncating mutations, by interfering
with most of Cx26 roles in the ear, are supposed to have the
most dramatic effects, but even relatively subtle defects that
only impair a single function (e.g., p.(Val84Leu)) result in HI.
Future research should strive to understand better the pathogenic
processes caused by the most common mutations, including:
(1) agreeing on a standard set of functional assays that addresses
as many Cx26 functional aspects as possible; and (2) paying
particular attention to inner ear developmental defects.

Mutation Screening for the Genetic
Diagnosis of DFNB1 HI
Genetic diagnosis of inherited NSHI is complicated, in terms
of cost-effectiveness, by the extreme genetic heterogeneity of
this condition. So the high prevalence of DFNB1 HI in most
populations (Chan and Chang, 2014), together with the simple
structure of the GJB2 gene, which facilitated the design and
application of different molecular tests, made screening for GJB2
mutations the mainstay of genetic testing of inherited NSHI.

Strategies for DFNB1 genetic testing have evolved over the
years, following the technical advances of Human Molecular
Genetics. As specific GJB2 mutations are overrepresented in
different populations and ethnicities (Chan and Chang, 2014),
earliest strategies were based on the detection of some of
those mutations through specific tests, eventually followed by
Sanger DNA sequencing. Given the increasing multiethnicity of
many populations, those approaches were considered insufficient
(Chan et al., 2011), and DNA sequencing of the whole coding
region and splice sites of GJB2 was recommended instead
(Hoefsloot et al., 2013). This should be complemented by tests
detecting deletions in the DFNB1 locus.

The advent of massively-parallel sequencing (MPS) facilitated
novel strategies. Currently, the most cost-effective approach
is using comprehensive panels of genes involved in inherited
HI, which can provide sequencing data as well as detection
of copy number variants (Shearer and Smith, 2015). Other
laboratories use whole-exome sequencing followed by targeted
analysis of genes known to be involved in HI (Zazo-Seco et al.,
2017).

CLINICAL FEATURES OF DFNB1 HI

A summary of the clinical features of DFNB1 HI is presented in
Table 2.

Age of Onset and Severity
DFNB1 HI is mostly prelingual, but postlingual onset has also
been reported, usually in association with specific mutations.
In most subjects it is stable, but progression has also been
documented, usually in cases with late onset. Severity is greatly
variable, ranging from mild to profound even among subjects
with the same genotype. Audiogram shapes are ordinarily flat or
down-sloping.

Although DFNB1 HI is mostly prelingual, it should not be
assumed that the onset is actually congenital in all cases. This
issue is of concern to programmes for newborn audiological
hearing screening, because infants with normal responses at birth
could develop a severe HI within the next few months. An early
study reported two children who were homozygous for c.35delG
in GJB2. One of them had normal auditory brainstem responses
at birth, but was diagnosed with a profound deafness at age
15 months. The other child had normal hearing at age 5 months,
but was diagnosed with severe HI at age 9 months (Green
et al., 2000). In another study, nine children who had passed
the newborn hearing screening received a diagnosis of NSHI
later in life and were shown to carry two GJB2 mutant alleles.
The frequency of non penetrance at birth was estimated to be at
least 3.8% (Norris et al., 2006). More recently, 14 deaf children
with two GJB2 mutant alleles were reported to have passed the
newborn hearing screening, indicating that the frequency of non
penetrance at birth could be at least 6.9% (Minami et al., 2013).
In fact, it has been postulated that an early but not always
congenital onset of DFNB1 HI could be followed by a quick
progression of the hearing loss (Gopalarao et al., 2008). Orzan

TABLE 2 | Summary of clinical features of DFNB1 hearing impairment (HI).

Inheritance Autosomal recessive (simplex and multiplex cases)

Age of onset Mostly prelingual (not always congenital), but postlingual onset has also been reported
Evolution Mostly stable, but progression has also been documented
Severity Mild to profound

Truncating mutations usually result in more severe phenotypes
Audiogram shape Flat or down-sloping
Inner ear malformations Prevalence typically lower than 10%

Enlarged vestibular aqueduct, Mondini dysplasia
Vestibular function Apparently normal, but a saccular dysfunction may go undetected (it can be revealed by VEMP or caloric testing)
Cochlear implantation Good outcomes (improvement of speech perception skills and reading performance).
Phenotype of carriers Loss of hearing in frequencies higher than 6 kHz

Earlier onset of age-related hearing loss
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and Murgia (2007) reported that 26 out of 47 children with
profound DFNB1 HI had normal hearing at age 3 months, and
this was followed by a sudden and severe deterioration. Also, a
c.35delG homozygous boy who was diagnosed with HI at age
8 years suffered a sudden progression at age 23 years (Kokotas
et al., 2008). Finally, another study reported an 8-year-old
boy who was compound heterozygous for c.35delG and c.299-
300delAT, whose late-onset hearing loss had started suddenly
and progressed rapidly (Kenna et al., 2010).

Given the large numbers of subjects with a molecular
diagnosis of DFNB1 HI, correlations between genotype and
severity of the hearing loss have been studied in detail. In the
largest cross-sectional study so far, genetic and audiological data
were gathered from over 1500 affected subjects from 16 countries
(Snoeckx et al., 2005). The severity of the HI was widely
diverse even for the same genotype. However, when mutations
were classified according to the severity of their molecular
effects, some correlations were revealed. Genotypes including
two truncating mutations (those mutations leading to premature
stop codons) resulted in significantly more severe hearing
losses than genotypes containing two non-truncating mutations
(those mutations leading to amino acid substitutions; Snoeckx
et al., 2005). Truncating/non-truncating genotypes resulted in
phenotypes of intermediate severity between those two groups.
Interestingly, a few genotypes resulted in HI with specific degrees
of severity. Thus, profound HI was observed in the majority
of cases with the c.35delG/p.(Arg143Trp) or c.35delG/del(GJB6-
D13S1830) genotypes (Snoeckx et al., 2005). In contrast, mild
or moderate HI was common in subjects carrying p.(Leu90Pro),
p.(Met34Thr), or p.(Val37Ile) in combination with a mutation of
the truncating type (Snoeckx et al., 2005). Further studies in other
cohorts have confirmed these conclusions (Azaiez et al., 2004; Liu
et al., 2005; Marlin et al., 2005; Primignani et al., 2009; Bartsch
et al., 2010; Chan et al., 2010; Kenna et al., 2010; Tsukada et al.,
2010; Burke et al., 2016).

There have been many contradictory reports on the
pathogenicity of two missense mutations, p.(Met34Thr) and
p.(Val37Ile) (Kelley et al., 1998; Griffith et al., 2000; Kudo et al.,
2000; Marlin et al., 2001; Feldmann et al., 2004b). Controversy
arose because of their high carrier rates is some populations and
because they have been found in hearing-impaired subjects but
also in subjects with normal hearing, as part of homozygous
or compound heterozygous genotypes, the other allele being a
clearly pathogenic mutation. All available data are consistent
with the interpretation that these two alleles are hypomorphic,
i.e., they have low penetrance and weak pathogenic potential.
Accordingly, it is expected that their associated phenotypes range
from normal hearing to late onset, progressive, mild to moderate
hearing loss (Cucci et al., 2000; Houseman et al., 2001; Dahl
et al., 2006; Huculak et al., 2006; Schrijver and Chang, 2006;
Pollak et al., 2007; Tsukada et al., 2010; Zhao et al., 2011; Kim
et al., 2013; Chai et al., 2015; Huang et al., 2015; Du et al.,
2016).

The wide variability in severity of DFNB1 HI could be
attributed at least partly to the influence of genetic modifiers.
A large whole-genome association study investigated the
phenotypic variability of c.35delG homozygotes by grouping

cases in two classes according to the severity of the phenotype
(mild/moderate HI vs. profound HI; Hilgert et al., 2009). The
analysis was performed in two steps. First, a set of 255 samples
was investigated by using a pooling-based strategy, followed
by individual genotyping of the top 250 most significantly
associated SNPs, in the same sample set. In a second step,
those SNPs that still had significant P-values were genotyped
in an independent set of samples. After this replication assay,
nine SNPs still had significant P-values. Results from this
study suggest that the variability in the severity of the HI
that is observed in c.35delG homozygotes is not caused by
one major genetic modifier, and that those nine SNPs might
individually contribute just small modifying effects (Hilgert et al.,
2009).

Temporal Bone
High-resolution computed tomography (CT) scans of the
temporal bone have been used to investigate putative inner
ear malformations in subjects with DFNB1 HI. Early studies
did not reveal temporal bone anomalies (Cohn et al., 1999;
Denoyelle et al., 1999). Subsequent studies have coincided in
establishing that temporal bone malformations in subjects with
DFNB1 HI would not be frequent, their prevalence being
typically lower than 10% (Kenna et al., 2001, 2011; Preciado
et al., 2004; Azaiez and Smith, 2007; Lee et al., 2009). Findings
included unilateral or bilateral enlarged vestibular aqueduct, and
bilateral Mondini dysplasia. In contrast with these results, one
study found temporal bone anomalies in up to 72% of subjects
with DFNB1 HI. These anomalies included hypoplastic cochlea,
hypoplastic modiolus, dilated endolymphatic fossa, or enlarged
vestibular aqueduct (Propst et al., 2006). This discrepancy has
been attributed to differences in the composition of the cohorts of
studied subjects (severity of hearing loss, genotypes. . .) as well as
in methodology (radiologic image acquisition and interpretation;
Propst et al., 2007; Kenna et al., 2011).

Histopathology of temporal bones in DFNB1 HI has been
scarcely explored. In the only report published so far, samples
from subjects with congenital profound HI were selected from
the archives of a repository of temporal bones for genetic testing.
Only one of the selected samples carried two mutant GJB2 alleles
(c.35delG/p.(Glu101Gly) compound heterozygote). Microscopic
analysis of cochlear sections from this subject revealed some
gross anomalies of the inner ear: agenesis of the stria vascularis,
a detached tectorial membrane, and extensive degeneration of
hair cells. In contrast, no degeneration of neural structures (spiral
ganglion cells and eighth cranial nerve) was observed. Damage to
those cochlear structures could be the result of Cx26 deficiency.
However, it must be taken into account that the subject
had a history of diabetes mellitus, coronary atherosclerosis,
hypertension and chronic renal failure, pathologies that might
have contributed to those degenerative processes (Jun et al.,
2000).

Vestibular Function
Subjects with DFNB1 HI usually do not complain of vertigo or
dizziness, so their vestibular function is not routinely explored,
and reports on this issue are sparse. In a study, vestibular-
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evoked myogenic potentials (VEMP) were absent bilaterally in
two subjects carrying two pathogenic GJB2 mutations. This
finding is suggestive of a saccular dysfunction. However, the
patients did not report vertigo or dizziness, probably as a
consequence of central compensation (Todt et al., 2005). Also,
VEMP and caloric responses could not be elicited in 3 out
of 5 subjects with two pathogenic GJB2 mutations (Zagólski,
2007). In another study on seven subjects with DFNB1 HI,
vestibular dysfunction was bilateral in one subject and unilateral
in four subjects, as revealed by either VEMP recording or the
caloric test (Kasai et al., 2010). In a series of 23 subjects with
two mutant DFNB1 alleles, only 2 had unilaterally abnormal
caloric responses, but 17 showed decreased VEMP amplitudes
(Tsukada et al., 2015), which again would suggest a saccular
dysfunction. No patient in this series complained of vertigo
or dizziness (Tsukada et al., 2015). In another study, a
survey was used to assess symptoms of vestibular dysfunction
in subjects with two GJB2 mutant alleles, and 127 out of
235 participants (54%) reported dizziness and vertigo (Dodson
et al., 2011).

Taking into account the available data, it seems that vestibular
dysfunctionmay bemore common in DFNB1HI than previously
recognized, but its manifestations might be so subtle that they
could go easily undetected, unless revealed by VEMP recording.
Vestibular testing of larger series of DFNB1 hearing-impaired
subjects is needed to clarify this issue.

Outcome of Cochlear Implantation
Several studies have compared the outcome of cochlear
implantation in subjects with DFNB1 HI vs. subjects with
non-DFNB1 HI. Speech perception skills improved clearly
after implantation in the two groups. In some studies,
differences between the two groups were not significant
(Green et al., 2002; Bauer et al., 2003; Cullen et al.,
2004; Taitelbaum-Swead et al., 2006; Connell et al., 2007),
whereas in other studies the DFNB1 HI group showed better
outcomes (Fukushima et al., 2002; Matsushiro et al., 2002;
Sinnathuray et al., 2004). These differences are likely due
to the heterogeneous compositions of the non-DFNB1 HI
groups, which include HI of different, sometimes unknown,
etiologies. In contrast, reading performance was consistently

better in the DFNB1 HI group (Green et al., 2002; Bauer et al.,
2003).

Audiologic Phenotype of Carriers
In agreement with the recessive inheritance pattern of
DFNB1 HI, heterozygous carriers of DFNB1 mutations do
not show any obvious hearing anomaly. However, some studies
have revealed subtle audiological alterations in some subjects. In
a cohort of heterozygous carriers for different GJB2 mutations
(c.35delG, p.(Trp77Arg), p.(Val37Ile)), conventional pure-tone
audiometry and auditory brainstem responses were normal.
However, testing for distortion-product oto-acoustic emissions
revealed significantly lower amplitudes in carriers than in
non-carrier controls (Engel-Yeger et al., 2002, 2003). These
results were not replicated in a different cohort (Groh et al.,
2013). Disparities in the results could be atributed in part to
the heterogeneous composition of the non-carrier groups.
In other studies, pure-tone audiometry revealed significant
hearing losses for frequencies higher than 6 kHz in c.35delG
heterozygous carriers (Franzé et al., 2005; Groh et al., 2013).
Recently, a study on subjects who were heterozygous for
the splice-site mutation c.-23+1G>A revealed an earlier
onset of age-related hearing loss (at about age 40 years)
that in the control group (Barashkov et al., 2014). Studies
on these issues are still sparse and some of them provide
disparate results, indicating that investigation of larger series
of carriers of different mutations is needed to establish firm
conclusions.
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