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Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in numerous
physiological and pathophysiological processes. We have previously reported a
S1P-induced nocifensive response in mice by excitation of sensory neurons via
activation of an excitatory chloride current. The underlying molecular mechanism for the
S1P-induced chloride conductance remains elusive. In the present study, we identified
two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated
a S1P-induced excitatory Cl~ current in sensory neurons by combining RNA-seq,
adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp
recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated
delivery of shRNA dramatically reduced S1P-induced CI~ current and membrane
depolarization in sensory neurons. The mechanism of S1P-induced activation of
the chloride current involved Rho GTPase but not Rho-associated protein kinase.
Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved
Rho-dependent process, the lack of correlation of the S1P-activated CI~ current and
the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary
components for S1P-induced excitatory ClI~ currents but not for the amplification of
TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic
insight into the importance of bioactive sphingolipids in nociception.

Keywords: CLCN3, CLCN5, DRG neurons, Rho, Sphingosine 1-phosphate, TRPV1

INTRODUCTION

Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid that is involved in numerous
cellular functions, such as cell migration and morphogenesis (Kupperman et al., 2000; Pyne and
Pyne, 2000), lymphocyte egress (Pappu et al., 2007), angiogenesis and neurogenesis (Kono et al,,
2004; Mizugishi et al., 2005). SIP is generated through conversion of ceramide into sphingosine
by means of ceramidases and subsequent phosphorylation of sphingosine by sphingosine kinases
(Pyne and Pyne, 2000; Spiegel and Milstien, 2003). Human platelets contain high concentrations of
sphingolipids, particularly S1P, which is actively released into circulation upon platelet activation by
physiological agonists (e.g., thrombin and collagen) or by damage to blood vessel such as surgery or
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CLCN Channel for S1P-Evoked CI~ Current

local trauma (Yatomi et al, 1995, 1997; Tani et al., 2005;
Golebiewska and Poole, 2015; Vito et al., 2016), resulting in
micromolar S1P concentrations in blood plasma (Murata et al.,
2000; Schmidt et al., 2006; Ohkawa et al,, 2008; Ono et al,
2013). In general, S1P exerts its pleiotropic effects by signaling
through a family of S1P receptors, consisting of five G-protein-
coupled receptors designated SIPR;_s (Spiegel and Milstien,
2003; Salvemini et al., 2013). S1P receptors are expressed in a
wide variety of tissues including brain, spinal cord and dorsal
root ganglia (DRG). SIPR;, S1PR; and S1PRs subtypes are
mainly coupled to Gy, whereas SIPR; and S1PR; subtypes are
coupled to Gyj, Gq and Ggiz/13 (Spiegel and Milstien, 2003;
Brinkmann, 2007).

Pain is an unpleasant sensory and emotional experience
associated with tissue damage, and millions of individuals suffer
from acute or chronic pain every year. It has been well established
that the perception of pain is initiated by the activation of
peripheral sensory afferents and hypersensitization of peripheral
sensory neurons contributes to the development of inflammatory
and neuropathic pain (Khan et al., 2002; Shim et al., 2005; Xiao
and Bennett, 2007; Devor, 2009; Berta et al., 2017). Previous
studies have suggested the importance of the bioactive lipid SIP
in peripheral sensitization (Joseph and Levine, 2004; Zhang et al.,
2006a,b; Doyle et al., 2011; Mair et al., 2011; Welch et al., 2012;
Camprubi-Robles et al., 2013; Salvemini et al., 2013; Langeslag
et al,, 2014; Li et al,, 2015). For example, S1IP/S1PR; signaling
enhances the activity of TRPV1 channel (Langeslag et al., 2014),
a vital ion channel in nociceptors for heat transduction and pain
sensitization (Li et al., 2008; Wang, 2008; Basso and Altier, 2017;
Berta et al., 2017), resulting in enhanced thermal hypersensitivity
in mice (Mair et al., 2011). Apart from that, SIP mediates
nerve growth factor (NGF)- and TNF-a-induced sensitization
of sensory neurons (Joseph and Levine, 2004; Zhang et al,
2006b; Doyle et al., 2011), implying that SI1P may regulate
neuronal excitability. Moreover, we and others have shown that
S1P in preclinical models enhanced the excitability of sensory
neurons in vitro and elicited spontaneous pain behavior in vivo
as well as signatures of nociceptor activation in humans (Zhang
et al., 2006a; Mair et al., 2011; Camprubi-Robles et al., 2013; Li
etal,, 2015), suggesting that peripherally released S1P may evoke
significant nociception by directly exciting peripheral neurons.

Furthermore, we have demonstrated that SIP excites DRG
neurons via evoking an excitatory ionic current by activation of
a chloride conductance (Camprubi-Robles et al., 2013). A similar
depolarizing chloride current elicited by S1P has been reported
in other cell types such as N1E-115 neuroblastoma cells (Postma
et al., 1996, 2001). To date, the underlying molecular basis for
the S1P-evoked chloride conductance remains to be elucidated.
In the present study we aimed to identify the chloride channel
that mediates the S1P-activated chloride conductance in sensory
neurons.

MATERIALS AND METHODS

Ethics Statement
All animal breeding and experiments have been performed
with  permission of the Austrian BMWEF ministry

(BMWE-66.011/0113-11/3b/2010; BMWEF-66.011/0051-
I1/10b2008; GZ 66.011/85-C/GT/2007) and according to
ethical guidelines of the IASP (International Association for the
Study of Pain).

DRG Neurons Culture

Lumbar (L1-L6) DRG containing the cell bodies of primary
afferents that project into the hindpaw were harvested from
adult C57BL/6] mice (age 8-12 weeks) as previously published
(Camprubi-Robles et al., 2013; Langeslag et al., 2014). Briefly,
ganglia were treated enzymatically with Liberase Blendzyme
1 (9 mg/100 ml DMEM, Roche) for two times 30 min
and 1x Trypsin-EDTA (Invitrogen) for 15 min. The DRG
were then washed and dissociated mechanically in serum-free
TNB® medium (Biochrom) with a fire-polished Pasteur pipette,
and centrifuged through a 3.5% BSA gradient (Sigma) to
eliminate non-neuronal cells and debris. The resulting sensory
neurons were resuspended, plated on poly-L-lysine/laminin
coated coverslips and cultivated in TNB medium supplemented
with NGF (25 ng/ml), L-glutamine, penicillin G sodium and
streptomycin sulfate (all from Invitrogen) at 37°C in 5% CO, for
24 h, unless otherwise indicated.

Adenoviral shRNA Infection of DRG

Neurons

The shRNA adenoviruses Ad-GFP-U6-m-CLCN3-shRNA
(shADV-255571), Ad-GFP-U6-m-CLCN4-shRNA (shADV-
255572) and Ad-GFP-U6-m-CLCN5-shRNA (shADV-255574)
were purchased from Vector Biolabs. A non-specific scrambled
shRNA adenovirus Ad-GFP-U6-scrambled-shRNA (Vector
Biolabs, 1122N) expressing green fluorescent protein (GFP)
alone was used as a control.

For adenoviral infection, after centrifugation of dissociated
DRG in 3.5% BSA gradient, the resulting pellet was resuspended
in serum-free TNB medium containing Ad-GFP-U6-scrambled-
shRNA,  Ad-GFP-U6-m-CLCN3-shRNA,  Ad-GFP-U6-m-
CLCN4-shRNA or Ad-GFP-U6-m-CLCN5-shRNA at a
concentration of 2 x 10% pfu/mL. The mixture was then
plated on coverslips or 24-well culture dishes (Nunc) coated
with poly-L-lysine/laminin and incubated at 37°C in 5% CO,.
Two hours after incubation, the medium was replaced with
fresh supplemented TNB medium. Three days after infection,
adenovirus-infected neurons were used for electrophysiological
recording and RNA extraction. The shRNA adenoviral vector
contained a reporter gene encoding GFP under the control of
U6 promoter, and all electrophysiological recordings were made
from GFP-positive neurons only.

Electrophysiology

Whole-cell patch-clamp recordings were performed using patch
pipettes with a tip resistance of 2-4 M as previously described
(Camprubi-Robles et al., 2013). Ionic currents were recorded
from isolated DRG neurons in the whole-cell voltage-clamp
configuration at —60 mV holding potential, unless otherwise
indicated. S1P-induced currents and capsaicin-induced currents
were measured from baseline to peak. The external solution
(ECS) contained (in mM): 145 NaCl, 5 KCI, 2 CaCl,, 1 MgCl, (all
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Sigma), 10 glucose and 10 HEPES (Merck, Darmstadt, Germany),
at pH 7.3 adjusted with NaOH (Merck), and electrodes were
filled with internal solution (ICS, in mM): 140 KCI, 2 MgCl,,
2 Na-ATP, 0.2 Na-GTP, 0.1 CaCl,, 1 EGTA (all Sigma) and
10 HEPES (Merck), at pH 7.3 adjusted with KOH (Merck).
For the experiments recorded after treatment with C3 toxin
and Y-27632, low Ca** ECS was used, containing 145 NaCl,
5 KCl, 0.1 CaCl,, 1 MgCl, (all Sigma), 10 glucose and 10 HEPES
(Merck, Darmstadt, Germany), at pH 7.3 adjusted with NaOH
(Merck). The membrane potential was recorded using current-
clamp configuration using an ECS containing the following
(in mM): 145 NaCl, 5 KCl, 2 CaCl,, 1 MgCl, (all Sigma), 10
D-glucose and 10 HEPES (Merck), at pH 7.3 adjusted with NaOH
(Merck). The pipette solution was composed (in mM) of 45 KCl,
98 K-gluconate, 0.5 CaCl,, 5 EGTA, 10 HEPES, 2 MgATP,
0.2 NaGTP, pH 7.3 adjusted with KOH (Merck).

A seven-barrel system with common outlet was used for
fast drug administration (WAS 02, Dittel, Prague). Neurons
were visualized with an inverted microscope (Zeiss, Germany)
equipped with a CCD camera and MetaFluor® fluorescence
imaging software (Molecular Devices). Membrane current and
voltage were filtered at 2.9 kHz, sampled at 1 kHz and
recorded with an EPC-10 amplifier (HEKA, Germany) and the
Patchmaster software (HEKA). Acquired traces were analyzed
using Patchmaster and Fitmaster software (HEKA). Pipette
and membrane capacitance were compensated using the auto
function of Patchmaster. Voltage-gated currents were evoked
using a standard series of voltage commands. Briefly, the neurons
were depolarized from —60 to +40 mV in increments of 5 mV
(40 ms test pulse duration). All experiments were performed
at room temperature. Sphingosine-1-phosphate (S1P) and
Capsaicin were purchased from Sigma Aldrich. Cell-permeable
C3 toxin was from Cytoskeleton (Tebu-bio), and Y-27632 was
from Calbiochem.

RT-PCR

Total RNA was isolated from murine DRG explants and primary
cultures of DRG neurons by using peqGOLD TriFast (PeqLab) as
previously described (Malsch et al., 2014). The quantity of RNA
was analyzed using Nanodrop 2000 (ThermoScientific). Total
RNA was reverse transcribed using MuLv reverse transcriptase
(2.5 U/ul, Applied Biosystems) with random hexamer primers
(10 ng/ul), RiboLock (2 U/ul), 1x Taq Buffer (all from Thermo
Scientific), MgCl, (5 mM) and dNTPs (1 mM, Fermentas),
followed by PCR performed with gene specific primers. The
primer sequences used in this study were listed in Table 1. Mouse
B-actin was used as an internal standard. The thermal cycling
protocol was 94°C for 30 s, 55°C for 30 s and 72°C for 30 s.
All PCR reactions were cycled 30 times. The amplified PCR
products were visualized following electrophoresis in 1% agarose
gels containing SYBR Safe stain (Thermo Fisher Scientific).

Microfluorimetric Calcium Measurements

Calcium imaging was performed as previously described
(Camprubi-Robles et al., 2013). Briefly, cultured cells were
non-disruptively loaded with 3 WM of the Ca’>" sensitive dye
Fura-2 AM (Invitrogen) in ECS containing (in mM): 145 NaCl,

TABLE 1 | Primer pairs used for PCR amplifications.

Gene GenBank Primer sequence (5'-3') Length
Accession (bp)
No.
Clcn2 NM_009900 Forward: TGAGTCCATGATCCTACTG 309
Reverse: CCTGCTGACTCCATGTTG
Clen3 NM_007711 Forward: CCTCTTTCCAAAGTATAGCAC 549
Reverse: CTGGCATTCATGTCATTTC
Clen4 NM_011334 Forward: GAGGACTTCCACACCATA 411
Reverse: TGCAAACAGCAACGCCCATA
Clecn5 NM_016691 Forward: GGAACATCTTGTGCCACTG 563
Reverse: TGTGTTGAAGTGGTTCTC
Clcn6 NM_011929 Forward: TCTTCCACGAGTCAAACC 406
Reverse: TCATCCTTACAACCCCAC
Clen7 NM_011930 Forward: GCTCCTGCCTTTCAGTTGTC 219

Reverse: TTCAAGAACTGCACCACTGC

TABLE 2 | List of chloride channels detected by RNA sequencing from wild-type
mouse dorsal root ganglia (DRG) explants.

Gene symbol Gene name RPKM value
Clen2 Voltage-gated chloride channel 2 5.7
Clen3 \oltage-gated chloride channel 3 25.7
Clen4 Voltage-gated chloride channel 4 31.0
Clens Voltage-gated chloride channel 5 6.9
Clcn6 Voltage-gated chloride channel 6 26.0
Clen7 Voltage-gated chloride channel 7 1.7
Clict Chloride intracellular channel 1 69.9
Clns1a Chloride channel, nucleotide-sensitive, 1A 1.2

RPKM: Reads per kilo base per million mapped reads.

5 KCl, 2 CaCl,, 1 MgCl,, 10 D-glucose (all from Sigma) and
10 HEPES (Merck), at pH 7.3 adjusted with NaOH (Merck)
and were incubated at 37°C in 5% CO, for 25 min. Then cells
were washed and kept in ECS for experiments. Experiments
were performed using an Olympus IX71 microscope (Olympus)
with a20x/0.85 N.A. oil-immersion objective (Olympus). Fura-2
was excited at 340 nm and 380 nm (excitation time: 25 ms)
with a polychrome IV monochromator (TILL Photonics), and
fluorescence intensities were filtered by a 510 nm LP filter and
recorded with a CCD camera (CoolSNAP ES, Photometrics). The
ratio of fluorescence intensities exited at 340 nm and 380 nm
(F340/380) was calculated after background correction, and the
changes of intracellular Ca®* signal were depicted as ratio change
(AF340/380) measured as peak F340/380 ratio over baseline.
For data acquisition, MetaFluor4.6r8 (Molecular Devices) was
used and off-line analysis was performed with OriginPro7.SR2
(Origin Lab). The threshold for S1P-positive cells was set to
fourfold the SD of the Ca?* signal evoked by 0.1% methanol
(AF340/380 = 0.04).

Data and Statistical Analysis

All statistical comparisons were two-sided and were performed
with Graphpad Prism 7 software. For all in vitro experiments,
recordings were pooled from at least three mice. Unpaired ¢-test,
Mann-Whitney U test, Fisher’s exact test and two-way ANOVA
analysis were used for two-group comparison. The association
between S1P-induced CI~ current and S1P-induced potentiation
of Ieaps Was tested by Pearson correlation coefficient calculation.
Differences with a p < 0.05 were considered to be statistically
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significant. All results are expressed as mean = standard error of ~ CLCN channels of voltage-gated chloride channel family were
the mean (SEM). detected by RNA sequencing, spanning from CLCN2-CLCN7
(Table 2). RT-PCR analysis validated Clcn3, Clcnd, Clen5 and
Clen6 mRNA expression in both DRG explants and cultured

RESULTS DRG neurons (Figure 1A and Supplementary Figures S1, S4),
while there was lack of expression of Clcn2 and Clcn7
Expression of Voltage-Gated Chloride mRNA in both sample types (Figure 1A and Supplementary

Channels in Sensory Neurons Figure S1).

Previous ionic substitution and pharmacological inhibition .
experiments have revealed that S1P-induced CI~ current is Chloride Channels CLCNS and

mediated by Ca?*-independent Cl~ channels (Camprubi-Robles CLCNS5 Mediate S1P-Induced Excitatory

et al, 2013). To identify the S1P-activated chloride channel ~Conductance in Sensory Neurons

in DRG neurons, we thus first searched for Ca”—independent The four identified chloride channels (CLCN3-6) reside
Cl™ channels that are expressed in DRG based on our RNA  predominantly in intracellular membranes of the endocytotic-
sequencing data from wild-type mouse DRG explants. Several  lysosomal pathway (Jentsch et al, 2005a,b). However,
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FIGURE 1 | Down-regulation of Clcn4 mRNA does not alter S1P-induced CI~ current in sensory neurons. (A) Expression of chloride channels in mouse dorsal root
ganglia (DRG). Representative RT-PCR results for Clcn2, Clcn3, Clen4, Clen5, Clen6 and Clen7 mRNA in intact DRG. Marker: 100bp DNA ladder. (B) Cultured DRG
neurons were infected with scrambled shRNA adenovirus (Ad-Scr-shRNA) or adenovirus encoding specific shRNA against CLCN4 (Ad-CLCN4-shRNA).
Representative RT-PCR results from three independent experiments showed that Clcn4 mRNA level was reduced 3 days after infection by CLCN4 shRNA
adenovirus but not with scrambled shRNA adenovirus. (C) Example traces of excitatory inward currents (carried by Cl~ efflux) induced by 1 uM S1P recorded in
DRG neurons infected with scrambled shRNA adenovirus or CLCN4 shRNA adenovirus at —60 mV holding potential. (D) Dot-plot depicting the amplitude of
S1P-induced inward current between Ad-Scr-shRNA and Ad-CLCN4-shRNA groups. Each dot represents a single cell. The mean values and standard error of the
mean (SEM) bar were indicated in the graph. There was no difference in the amplitude of S1P-evoked inward current between Ad-Scr-shRNA and
Ad-CLCN4-shRNA groups (Mann-Whitney U test, n = 27-35, p > 0.05). (E) Bar-chart showing that knockdown of CLCN4 level with adenovirus-mediated shRNA
did not alter S1P-induced current density in DRG sensory neurons (Mann-Whitney U test, n = 27-35, p > 0.05).
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CLCN3 and CLCN4, together with CLCN5, have also been
suggested to act as Cl™ channels at the plasma membrane
(Kawasaki et al., 1995; Friedrich et al., 1999; Huang et al., 2001;
Jentsch et al., 2005a). Therefore we selected CLCN3, CLCN4 and
CLCNS5 as possible candidates and investigated whether these
three chloride channels contribute to S1P-activated chloride
conductance in sensory neurons. The expression of each chloride
channel candidate was down-regulated using an adenovirus-
based RNAi knockdown strategy in DRG neurons and 72 h
post-infection the S1P-activated currents were recorded using
the whole-cell voltage clamp configuration of the patch-clamp
technique.

To confirm the efficiency of adenovirus-based RNAi
knockdown in DRG neurons, the mRNA level of each
candidate was assessed with the RT-PCR technique also
72 h after adenoviral infection. Analysis of RT-PCR results
confirmed efficient reduction of Clen3, Clen4 and Clen5
mRNA levels by viral delivery of their corresponding shRNA
(Figures 1B, 2A and Supplementary Figures S5, $6). In
line with our previous report (Camprubi-Robles et al,
2013), application of SIP (1 wM, 1 min) evoked a slowly
activating and deactivating inward current in most of the
recorded neurons infected with virus carrying scrambled
shRNA (Ad-Scr-shRNA), with a peak current amplitude of
689.3 + 72.4 pA (Figures 1C,D, n = 35 cells). Knockdown
of Clcn4 mRNA by adenovirus-mediated CLCN4 shRNA
did not alter the amplitude of S1P-induced inward current
(Isip; Figure 1D, Ad-CLCN4-shRNA: 740.3 4+ 112.3 pA in
n = 27 neurons, Mann-Whiney U test, p = 0.874). When
the S1P-induced transmembrane current was corrected for
membrane capacitance, which is shown as current density
(current amplitude/cell capacitance, pA/pF), no significant
difference was observed between Ad-Scr-shRNA group and
Ad-CLCN4-shRNA group in DRG neurons (Figure 1E,
Ad-Scr-shRNA: 16.82 £+ 2.3 pA/pF in n = 35 neurons,
Ad-CLCN4-shRNA: 14.1 + 3.5 pA/pF in n = 27 neurons,
Mann-Whiney U test, p = 0.429). These data suggested that
CLCN4 does not contribute to the S1P-induced conductance in
Sensory neurons.

On the contrary, delivery of virus encoding CLCN3 shRNA
(Ad-CLCN3-shRNA) significantly reduced the amplitude of
Isjp (Figures 2B,C, Is;p amplitude: 4269 + 729 pA in
Ad-CLCN3-shRNA group (n = 25), Mann-Whiney U test,
p = 0.0054) and S1P-induced current density (Figure 2D, Is;p
current density: 10.07 £ 1.78 pA/pF in Ad-CLCN3-shRNA
(n = 25), Mann-Whiney U test, p = 0.0084), suggesting the
S1P-induced conductance is partially mediated by chloride
channel CLCN3. Similarly, downregulation of Clcn5 mRNA
expression by adenovirus-mediated CLCN5 shRNA robustly
reduced Is;p amplitude (Ad-CLCN5-shRNA: 373.8 £ 70.9 pA in
n = 25 neurons, Mann-Whiney U test, p = 0.0002) and current
density (7.33 £+ 1.14 pA/pF in Ad-CLCN5-shRNA (n = 25),
Mann-Whiney U test, p < 0.0001; Figures 2A-D), revealing
a significant contribution of CLCN5 to the S1P-induced
conductance in sensory neurons. Taken together, these data
suggest that S1P-induced current in sensory neurons is mediated
by at least two chloride channels, including CLCN3 and CLCN5.

CLCN3 and CLCN5 Regulate S1P-Induced
Membrane Depolarization in Sensory
Neurons

In a previous study, we have shown that SI1P elicited
a significant membrane depolarization in mouse DRG
neurons, supporting a direct excitatory effect of SIP
on primary afferent neurons (Camprubi-Robles et al,
2013). We therefore tested whether chloride channels
CLCN3 and CLCNS5 are involved in S1P-induced membrane
depolarization in mouse DRG neurons. Whole-cell current
clamp recordings were performed to monitor membrane
potential (Em) before and during SIP exposure of adenovirus-
infected DRG neurons. Application of S1P (1 uM, 1 min)
resulted in a membrane potential change in Ad-scrambled
shRNA-infected DRG neurons of approximately +24 mV
with the Em depolarizing from —59.77 + 0.38 mV to
—3528 + 2.76 mV (Supplementary Figure S2, unpaired
t-test, n = 29, p < 0.0001), confirming the depolarizing effect
of S1P on DRG neurons. SIP also induced a depolarization
of membrane potential in DRG neurons infected with
adenovirus encoding CLCN3 shRNA or CLCN5 shRNA
(Supplementary Figure S2). However, adenovirus-based siRNA
knockdown of CLCN3 or CLCNS5 significantly reduced the
magnitude of S1P-induced Em change (AEm®'?) compared
with Ad-Scr-shRNA group (Figures 3A,B; Ad-Scr-shRNA:
AEm®'* = 2442 + 038 mV, n = 29; Ad-CLCN3-shRNA:
AEm®® = 1325 + 1.39 mV, n = 35 Ad-CLCN5-shRNA:
AEmS'? = 15,54 4 2.38 mV, # = 32; unpaired t-test, Ad-Scr-
shRNA vs. Ad-CLCN3-shRNA p = 0.0004, Ad-Scr-shRNA
vs. Ad-CLCN5-shRNA p = 0.0143). These data suggest that
chloride channels CLCN3 and CLCNS5 significantly contribute
to the S1P-induced membrane depolarization in sensory
neurons.

The membrane potential at resting state was not affected by
Ad-CLCN3-shRNA or Ad-CLCN5-shRNA in DRG neurons
(Figure 3C, unpaired t-test, Ad-Scr-shRNA vs. Ad-CLCN3-
shRNA p = 0.9605, Ad-Scr-shRNA vs. Ad-CLCN5-shRNA
p = 0.1077), indicating that chloride channels CLCN3 and
CLCN5 most likely do not contribute to the background
ClI™ conductance in sensory neurons. Previous reports
have shown that CLCN3 and CLCN5 can be activated by
large membrane depolarization when expressed in oocytes
and cell lines (Kawasaki et al., 1994, 1995; Friedrich et al.,
1999). We therefore examined the contribution of chloride
channels CLCN3 and CLCN5 to voltage-gated currents in
DRG neurons. Voltage-gated currents were recorded under
whole-cell voltage clamp conditions in DRG neurons infected
with adenovirus carrying scrambled shRNA, CLCN3 shRNA
or CLCN5 shRNA. Current-voltage (I-V) plots showed
that knockdown of CLCN3 or CLCN5 in DRG neurons
by shRNA did not significantly alter voltage-gated inward
currents (Supplementary Figure S3, Two-way repeated measures
ANOVA, Ad-Scr-shRNA vs. Ad-CLCN3-shRNA p = 0.3608,
Ad-Scr-shRNA vs. Ad-CLCN5-shRNA p = 0.7435) and outward
currents (Supplementary Figure S3, Two-way repeated
measures ANOVA, Ad-Scr-shRNA vs. Ad-CLCN3-shRNA
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FIGURE 2 | Adenovirus-mediated underexpression of CLCN3 or CLCN5 by shRNA reduces S1P-induced CI~ current in mouse sensory neurons. (A) Cultured DRG
neurons were infected with scrambled shRNA adenovirus (Ad-GFP-U6B-scrambled shRNA) or adenovirus carrying specific ShRNA against CLCN3
(Ad-GFP-UB-CLCN3 shRNA) or CLCN5 (Ad-GFP-UB-CLCN5 shRNA). Representative RT-PCR results from three independent experiments showed that Clcn3 and
Clen5 mRNA levels were reduced by their corresponding specific sShRNA 3 days after adenoviral infection. (B) Representative whole-cell voltage clamp recording of
inward CI~ currents induced by S1P (1 uM, 1 min) from DRG neurons infected with Ad-Scr-shRNA, Ad-CLCN3-shRNA or Ad-CLCN5-shRNA adenovirus at —60 mV
holding potential. (C) Dot-plot graph showing the amplitude of S1P -induced inward current in Ad-Scr-shRNA (n = 35), Ad-CLCN3-shRNA (n = 25) and
Ad-CLCN5-shRNA (n = 25) groups. Each dot represents a single cell and mean and SEM are indicated. Note the reduced amplitude of S1P-activated inward current
by Ad-CLCNS-shRNA or Ad-CLCN5-shRNA in DRG neurons 3 days after viral infection (Mann-Whitney U test, Ad-Scr-shRNA vs. Ad-CLCN3-shRNA **p < 0.01,
Ad-Scr-shRNA vs. Ad-CLCN5 shRNA ***p < 0.001). (D) Quantitative comparison of S1P-induced current density (current amplitude/cell capacitance, pA/pF) in DRG
neurons after adenoviral infection of Ad-Scr-shRNA, Ad-CLCN3-shRNA or Ad-CLCN5-shRNA. Adenovirus-mediated knockdown of CLCN3 or CLCN5 by shRNA
significantly reduced S1P-induced current density in DRG neurons (Mann-Whitney U test, Ad-Scr-shRNA vs. Ad-CLCN3-shRNA **p < 0.01, Ad-Scr-shRNA vs.
Ad-CLCN5 shRNA **p < 0.001).

p = 0.9225, Ad-Scr-shRNA vs. Ad-CLCN5-shRNA p = 0.4906),  in voltage-gated currents in sensory neurons in a physiological
suggesting CLCN3 and CLCNS5 are not significantly involved  range.
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FIGURE 3 | Adenovirus-based shRNA knockdown of CLCN3 or CLCN5 decreases S1P-induced membrane depolarization in sensory neurons. (A) Representative
whole-cell current clamp recording of membrane potential evoked by stimulation of S1P (1 wM, 1 min) from DRG neurons 3 days after adenoviral infection of
Ad-Scr-shRNA, Ad-CLCNS3-shRNA or Ad-CLCN5-shRNA. (B) The depolarizing effect of S1P was significantly decreased by viral infection of Ad-CLCN3-shRNA or
Ad-CLCN5-shRNA (Unpaired t-test, Ad-Scr-shRNA vs. Ad-CLCN3-shRNA, n = 29-35, ***p < 0.001, Ad-Scr-shRNA vs. Ad-CLCN5-shRNA, n = 32-35, *p < 0.05).
(C) Bar-chart showing that the resting membrane potential (RMP) was not affected by viral infection of Ad-CLCN3-shRNA or Ad-CLCN5-shRNA (Unpaired t-test,
Ad-Scr-shRNA vs. Ad-CLCNB3-shRNA, n = 29-35, p > 0.05, Ad-Scr-shRNA vs. Ad-CLCN5-shRNA, n = 32-35, p > 0.05).
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Rho-Dependent Activation of S1P-Induced

Chloride Conductance in Sensory Neurons
We have previously reported that SIP activated the chloride
conductance in mouse DRG neurons through the G-protein
coupled S1PR; receptor (Camprubi-Robles et al, 2013),
strongly indicating that S1P did not directly activate chloride
channels, but through second messengers activated upon
receptor binding. Thus we set out to explore the downstream
signaling events for the activation of Is;p in sensory neurons.
Previous studies in NIE-115 neuroblastoma cells have
demonstrated the requirement of RhoA for the activation
of Gy13-mediated chloride conductance by bioactive lipids such
as lysophosphatidic acid (LPA) and S1P (Postma et al., 2001;

Ponsioen et al., 2009), and we recently found S1P induced the
activation of RhoA in sensory neurons (Quarta et al., 2017).
Therefore, we utilized the non-enzymatically active Rho specific
inhibitor C3 toxin to address the role of RhoA in the activation of
Is;p in sensory neurons. Overnight pretreatment of DRG neuron
cultures with C3 toxin (0.5 pg/ml) dramatically reduced Is;p
(Figures 4A,B, unpaired ¢-test, Control: 13.49 £ 3.28 pA/pF in
n = 20 neurons, C3 toxin: 2.33 &= 0.55 pA/pF in n = 13 neurons,
p = 0.0108), signifying that Rho signaling is critically involved in
the activation of Is;p in DRG neurons.

The Rho-associated protein kinase (ROCK) is a major
downstream effector of Rho GTPase (Amano et al.,, 2010), we
therefore tested whether ROCK is involved in the activation
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FIGURE 4 | Activation of Rho but not Rho-associated protein kinase (ROCK) is required for S1P-induced activation of a Cl~ conductance in sensory neurons. (A)
Example traces of inward current induced by 1 wM S1P recorded under whole-cell voltage clamp conditions in cultured DRG neurons pretreated without (control) or
with Rho inhibitor C3 toxin (0.5 pg/ml, overnight) or ROCK inhibitor Y-27632 (10 M, 30 min) at —80 mV holding potential. (B) Quantitative comparison of
S1P-induced current density in control and drug-pretreated DRG neurons. Pretreatment with C3 toxin (0.5 pg/ml, overnight) significantly reduced S1P-induced
inward current in cultured sensory neurons (Unpaired t-test, n = 13-20, *p < 0.05). No significant difference was obtained between control and Y-27632-pretreated
group (Unpaired t-test, n = 14-20, p > 0.05). (C) Calcium imaging was used to record S1P-evoked Ca?* transients in control and C3 toxin-pretreated DRG neurons.
Stacked histograms showing that pretreatment with Rho inhibitor C3 toxin (0.5 g/ml) significantly decreased the percentage of S1P-responding neurons (Fisher’s
exact test, n = 273-306, **p < 0.001). (D) The dot-plot graph showing no significant difference in S1P-evoked Ca* increase magnitude between control and
C3-toxin treated groups (Mann-Whitney U test, n = 103-180, p > 0.05). Each dot represents a single S1P-responding cell.

of Is;p in sensory neurons using the ROCK specific inhibitor
Y-27632 (10 wM, 30 min). No attenuation of Is;p was observed
in the presence of Y-27632 (Figures 4A,B, unpaired t-test,
Control: 13.49 £ 3.28 pA/pF in n = 20 neurons, Y-27632:
9.02 £ 1.81 pA/pF in n = 14 neurons, p = 0.2966), suggesting that
ROCK is unlikely contributing to Is;p activation. Taken together,
these results suggest that Rho but not its downstream effector
ROCK is a critical component of Igjp activation in sensory
neurons.

We have previously reported that S1P induced Ca?"
influx in sensory neurons through chloride channel-dependent

depolarization and concomitant activation of voltage-gated
Ca?* channels (Camprubi-Robles et al, 2013). To confirm
the functional importance of Rho in the neuronal response
to S1P, a Fura 2-based ratiometric calcium imaging technique
was applied to measure SI1P-induced Ca®' transients after
C3 toxin pretreatment. The proportion of neurons that displayed
S1P-induced Ca?*t transients was significantly reduced from
59.9% (180/306 cells) in the control to 40.9% (103/273 cells)
in the C3 toxin-treated neurons (Figure 4C, Fisher’s exact test,
p < 0.001), corroborating the functional significance of Rho
in the neuronal Ca’** response to S1P in sensory neurons.
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In contrast, no significant differences were observed in the
peak amplitude of S1P-induced Ca?" transients between control
and C3 toxin-treated groups (Figure 4D, Mann-Whiney U test,
n=103-180, p = 0.2234).

S1P-Rho-Induced CI~ Current Is
Independent of S1P-Rho-Induced
Potentiation of lcaps in Sensory Neurons

We have demonstrated that S1P potentiated TRPV1-mediated
currents induced by capsaicin (Mair et al., 2011; Langeslag et al.,
2014), however, it is unclear whether the S1P-Rho signaling
pathway is involved in this process. Thus, we explored if

Rho signaling is also involved in S1P-mediated potentiation of
capsaicin-evoked currents (Ic.ps) in sensory neurons. As shown
previously, exposure of S1P (1 uM, 1 min) significantly increased
Leaps (capsaicin; 0.3 |LM) in DRG neurons (Figures 5A,B, control
vs. S1P, unpaired ¢-test, n = 9, p = 0.0133). This potentiation of
Leaps by S1P was significantly reduced after overnight treatment
of cultured DRG neurons with the Rho inhibitor C3 toxin
(0.5 pg/ml, Figures 5A,B, fold increase, S1P:3.07 £ 0.74inn =9,
S1P+C3 toxin: 1.16 = 0.13 in n = 11, unpaired ¢-test, p = 0.0120),
suggesting that Rho is also involved in S1P-induced potentiation
of Icaps. Inhibition of ROCK activity with Y-27632 (10 M)
had no effect on SIP-induced Ips facilitation (Figure 5B, fold
increase: 3.02 £ 1.13 in SIP+Y-27632 group, unpaired t-test,
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FIGURE 5 | Rho but not ROCK is involved in S1P-induced lcaps potentiation in sensory neurons. (A) Typical voltage-clamp recording of current stimulated repetitively
with capsaicin (0.3 wM) in DRG neurons treated without or with Rho inhibitor C3 toxin (0.5 pg/ml) or ROCK inhibitor Y-27632 (10 wM) at —60 mV holding potential.

1 M S1P was applied between capsaicin stimulation. (B) Quantification of S1P-induced leaps potentiation, which was normalized to the control leaps peak amplitude
(letri: leaps before S1P application), in DRG neurons treated without or with C3 toxin or Y-27632. Exposure to S1P (1 wM, 1 min) significantly increased lgaps in DRG
neurons (Unpaired t-test, control vs. S1P, *p < 0.05). C3 toxin (0.5 pg/ml, overnight) treatment significantly reduced S1P-induced potentiation of leaps in DRG
neurons (Unpaired t-test, S1P vs. S1P+C3 toxin, *p < 0.05). Y-27632 pretreatment (10 pM, 30 min) did not affect S1P-induced potentiation of lcaps in DRG neurons
(Unpaired t-test, S1P vs. S1P+Y27632, p > 0.05). The number of recorded cells was noted in the bar. (C) Pearson correlation scatter plots showing that there was
no linear correlation between S1P-induced CI~ current and S1P-induced potentiation of leaps (1 = 16, p = 0.6293, r? =0.0171). Isip and lcaps Were recorded on the
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n = 8-9, p = 0.9720). In summary, these data suggested that S1P
activated Is;p and induced potentiation of I.,ps via signaling Rho
but not ROCK in sensory neurons.

Based on these findings, it remains unknown whether the
potentiating effect of SIP on Ic,ps Was associated with Igip in
sensory neurons. A correlation analysis of Is;p amplitudes and
S1P-induced ratio change of I..ps revealed that there was no
linear correlation between S1P-induced potentiation of Ic,ps and
the activation of Is;p (Figure 5C, Pearson correlation coefficient,
p = 0.6293). Despite the involvement of RhoA in both cellular
effects, SIP-induced excitation through activation of a CI~
current and the potentiating effect of S1IP on TRPV1 function
may be considered as independent processes in sensory neurons.

DISCUSSION

We have previously reported that the sphingolipid SIP excites
DRG neurons through activation of a depolarizing chloride
current (Camprubi-Robles et al, 2013). The present study
revealed, for the first time to our knowledge, that chloride
channels CLCN3 and CLCN5 mediated the activation of an
excitatory current evoked by S1P in mouse sensory neurons.
Furthermore, using electrophysiological recordings, ratiometric
calcium imaging technique together with pharmacological
inhibition approach, we showed that activation of Igp was
dependent on Rho GTPase, but not ROCK. Additionally,
we showed that, although utilizing similar cellular signaling
components, Is;p and S1P-induced potentiation of I .ps appear
to represent independent events in sensory neurons.

Voltage-gated chloride channel CLCN family proteins are
localized in plasma membrane and intracellular vesicles. In
mammals, there exist nine different CLCN genes, which can
be broadly grouped into two branches. One branch encodes
plasma membrane Cl~ channels and includes the muscle-specific
Cl™ channel CLCNI, the ubiquitously expressed CLCN2 and
kidney-specific CI~ channel isoforms CLCNKa and CLCNKb.
The five CLCN channels (CLCN3-7) of the second branch
are predominantly localized to endosomal and lysosomal
membranes (Jentsch et al., 2005a,b). Using RNA sequencing
followed by RT-PCR we identified four CLCN transcripts,
CLCN3 to CLCNG6 in sensory neurons.

Several studies have suggested that CLCN3, CLCN4 and
CLCNS5 are also located in the plasma membrane where they
give rise to plasma membrane CI~ currents (Steinmeyer et al.,
1995; Friedrich et al., 1999; Wang et al., 2006; Cuddapah and
Sontheimer, 2010; Reed et al.,, 2010). For example, CLCN3 is
located at the plasma membrane of hippocampal neurons and
contributes to a transmembrane Cl~ current in immature
neurons (Wang et al.,, 2006). In cultured sensory neurons we
have identified the chloride channels CLCN3 and CLCNS5 that
mediate an excitatory Cl~ current after S1P stimulation through
an adenovirus-based gene silencing technique and whole-cell
electrophysiological patch-clamp recordings.

The reduction of S1P-induced membrane depolarization
after knockdown of CLCN3 and CLCN5 channels in mouse
DRG neurons suggested that the membrane depolarization

evoked by S1P is attributed to the activation of a CI~
conductance. S1P may induce the activation of chloride channels
CLCN3 and CLCNS5, resulting in the Cl™ efflux in DRG neurons.
Since the intracellular Cl~ concentration is high in primary
afferent neurons and subsequently the C1™ equilibrium potential
is around —40 mV (Alvarez-Leefmans et al., 1988; Gilbert
et al., 2007; Rocha-Gonzalez et al., 2008), the activation of
CLCN3 and CLCNS5 channels would result in Cl~ efflux causing
depolarization of DRG neurons.

We and others showed previously in ion replacement
experiments and with pharmacological inhibition that the
S1P-induced current is carried by CI™ in sensory neurons and
neuroblastoma cells (Postma et al., 2001; Camprubi-Robles et al.,
2013). Moreover, Postma et al. (1996, 2001) demonstrated that
S1P-induced currents depolarized the membrane potential in
the perforated patch-clamp configuration that keeps intracellular
ionic conditions largely intact. In support of this, we also
performed a small number of recordings in DRG sensory
neurons with perforated patch-clamp technique and the
S1P-induced current was indeed a depolarizing current also in
sensory DRG neurons (data not shown). Thus, most probably
S1P induces excitatory inward currents also under physiological
conditions.

Previous studies have shown that a depolarizing Cl~ current
and subsequent membrane depolarization can be evoked by
various G-protein coupled receptors agonists such as SIP,
LPA, thrombin and acetylcholine (Janssen and Sims, 1992;
Postma et al., 1996, 2001), and the Cl™-dependent membrane
depolarization has been reported in a broad ranges of cell
types including both neuronal and nonneuronal cells (Kremer
et al., 1989, 1992; Janssen and Sims, 1992; Postma et al.,
2001; Camprubi-Robles et al., 2013). CI~-dependent membrane
depolarization may serve diverse physiological functions such
as controlling membrane excitability in excitable cells and
modulating Ca*™ signaling (Kremer et al, 1989; Postma
et al., 2001; Camprubi-Robles et al., 2013). Since CLCN3 and
CLCNS5 are broadly expressed in tissues and cells (Steinmeyer
etal., 1995; Jentsch et al., 2002; Fu et al., 2010), these two chloride
channel (CLCN3 and CLCN5) may also play a role in the CI™
current induced by other G-protein coupled receptors agonists
such as LPA, thrombin and acetylcholine.

We observed that inhibition of Rho GTPase with its
specific inhibitor C3 toxin greatly reduced the amplitude of
S1P-induced Cl~ current and less DRG neurons responded
to SIP with Ca®* transients whose amplitude however was
unchanged. This indicates that Rho GTPases may modulate Ca?*
transients through Cl~-dependent membrane depolarization. In
the presence of the Rho inhibitor C3 toxin, the amplitude of
S1P-induced Cl™ current was greatly reduced, which would
reduce the level of membrane depolarization induced by S1P.
The reduced membrane depolarization in the presence of
C3 toxin may have less possibility of activating voltage-gated
Ca?* channels. As a result, less DRG neurons were responsive to
S1P when imaging S1P-induced Ca?* signal increases. Whenever
the membrane is depolarized sufficiently by SIP to activate
voltage-gated Ca?" channel, the amount of Ca>* influx might not
be affected by Rho inhibitor. Subsequently, we would probably
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not be able to observe a significant difference in the amplitude
of S1P-induced Ca’?" transients after C3 toxin treatment. In
line with our study, RhoA is required for the activation of a
CI™ current by SIP in N1E-115 neuroblastoma cells (Ponsioen
et al., 2009). This report together with our results, support a
critical role for Rho protein for the activation of chloride currents
by bioactive sphingolipids. Although Rho-kinase (ROCK), a
serine/threonine kinase, is an important downstream effector
protein of Rho GTPase (Amano et al., 2010), pharmacological
inhibition of ROCK did not affect S1P-induced CI~ current. This
indicates that Rho per se or downstream effectors other than
ROCK may act on chloride channels to activate the current. Since
Rho activation is a critical process in SI1P induced ClI~ current
and RhoA can be activated by Ggi3 after receptor activation
(Postma et al., 2001), it is most likely that activation of chloride
currents occurred after S1P binding to the SIPRj; receptor
expressed in sensory neurons (Camprubi-Robles et al., 2013).

At present, mechanistic insight into how Rho activation
can be linked to the activation of a chloride channel such
as CLCN3 and CLCNS5 remains elusive. One possibility could
be the directly or indirectly regulated trafficking of the
channel towards the plasma membrane by Rho, a mechanism
which has been demonstrated for CLIC4 and K,1.2 channels
(Ponsioen et al., 2009; Stirling et al, 2009). On the other
hand, chloride channel activity could be increased after, e.g.,
phosphorylation by Rho downstream signaling factors other
than ROCK. Several phosphorylation sites have been identified
in CLCN3 channel and its channel activity is dramatically
potentiated after phosphorylation (Robinson et al., 2004;
Cuddapah and Sontheimer, 2010; Ma et al., 2016). In addition, we
have previously shown that p38/MAPK signal pathway is linked
to the potentiation of TRPV1 activity by S1P (Langeslag et al.,
2014), and in a recent report Rho can act as an upstream regulator
of p38/MAPK (Shatanawi et al., 2011), thus p38/MAPK signaling
may have a possibility of regulating the activation of CI~ current
induced by S1P. Further work is needed to elucidate molecular
mechanisms underlying activation of CLCN channels by S1P.

Rho protein is not only a necessary factor for S1P-induced
activation of a CI™ current, but our study also showed
that Rho signaling is required for S1P-induced potentiation
of Ieps in sensory neurons, because inhibition of Rho
by C3 toxin significantly reduced the potentiating effect
of SIP on the TRPVI-mediated capsaicin response. Since
the C3 toxin dampens the S1P-induced Cl~ current in
capsaicin-responsive neurons, the question arises whether the
S1P-induced potentiation of Icps is dependent on or amplified
by the S1P-induced CI~ current. The signaling pathway that
activates Is;p and the signaling for S1P-induced potentiation
of TRPV1 function both require Rho activation. However,
the ROCK-independence of Igjp activation and the absence
of a significant correlation between Is;p and SIP-induced
potentiation of I..ps suggest that the signaling pathways may
diverge after Rho activation. Unlike TMEM16a (ANO1), which
can physically interact with TRPV1 and modulate each other’s
activity (Takayama et al., 2015), there is no evidence showing
a mutual functional interaction of TRPV1 with CLCN3 or
CLCNS5 in sensory neurons. However, CLCN3 and CLCN5 may

modulate Ca?"-dependent ANOI activity indirectly through
activation of voltage-gated Ca?* channels by S1P-induced
membrane potential depolarization. Although the Rho GTPase
effector ROCK has been suggested to be involved in heat shock-
regulated TRPV 1 activation (Iftinca et al., 2016), our data suggest
that the S1P-evoked potentiation of I¢sps like the activation of Is;p
in DRG neurons is independent of ROCK activity.

After tissue injury, high level of free SI1P arises at local
inflammation sites (Mitra et al., 2006; Hammad et al., 2008).
S1P signaling has been known to be involved in many types
of pain, e.g., inflammatory pain (Lai et al., 2008; Mair et al,
2011), postsurgical pain (Camprubi-Robles et al., 2013), cancer-
induced bone pain (Grenald et al., 2017) and chemotherapy-
induced neuropathic pain (Janes et al., 2014). However, to date,
only few studies address the involvement of CLCN channels
in pain initiation/modulation (Poét et al., 2006; Bali et al,
2013; Pang et al., 2016). The present study links the chloride
channels CLCN3 and CLCNS5 with the excitatory role of S1P on
sensory neurons and for the first time positions CLCN5 channel,
which has been well studied in Dent’s disease, an inherited
renal disorder characterized by hyperphosphaturia, proteinuria,
hypercalciuria and the development of kidney stones, which is
often associated with mutations in the CLCN5 gene (Gunther
et al.,, 2003), in the field of nociception and the pain pathway.

In conclusion, the present study demonstrates to our
knowledge for the first time that chloride channels CLCN3 and
CLCNS5 are necessary components for S1P-induced chloride
currents in sensory neurons. Furthermore, S1P induced the
activation of Is;p and potentiation of I ,ps in a Rho-dependent
manner, but S1P-induced potentiation of Icps is independent
of the S1P-induced Cl- current. Thus, novel mechanistic insight
is provided into the regulation of sensory neuron function by
bioactive sphingolipids.
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