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Postmortem studies reveal structural and molecular alterations of astrocytes and
oligodendrocytes in both the gray and white matter (GM and WM) of the prefrontal
cortex (PFC) in human subjects with chronic alcohol abuse or dependence. These glial
cellular changes appear to parallel and may largely explain structural and functional
alterations detected using neuroimaging techniques in subjects with alcohol use
disorders (AUDs). Moreover, due to the crucial roles of astrocytes and oligodendrocytes
in neurotransmission and signal conduction, these cells are very likely major players in
the molecular mechanisms underpinning alcoholism-related connectivity disturbances
between the PFC and relevant interconnecting brain regions. The glia-mediated etiology
of alcohol-related brain damage is likely multifactorial since metabolic, hormonal, hepatic
and hemodynamic factors as well as direct actions of ethanol or its metabolites have
the potential to disrupt distinct aspects of glial neurobiology. Studies in animal models
of alcoholism and postmortem human brains have identified astrocyte markers altered
in response to significant exposures to ethanol or during alcohol withdrawal, such
as gap-junction proteins, glutamate transporters or enzymes related to glutamate
and gamma-aminobutyric acid (GABA) metabolism. Changes in these proteins and
their regulatory pathways would not only cause GM neuronal dysfunction, but also
disturbances in the ability of WM axons to convey impulses. In addition, alcoholism alters
the expression of astrocyte and myelin proteins and of oligodendrocyte transcription
factors important for the maintenance and plasticity of myelin sheaths in WM and
GM. These changes are concomitant with epigenetic DNA and histone modifications
as well as alterations in regulatory microRNAs (miRNAs) that likely cause profound
disturbances of gene expression and protein translation. Knowledge is also available
about interactions between astrocytes and oligodendrocytes not only at the Nodes
of Ranvier (NR), but also in gap junction-based astrocyte-oligodendrocyte contacts
and other forms of cell-to-cell communication now understood to be critical for the
maintenance and formation of myelin. Close interactions between astrocytes and
oligodendrocytes also suggest that therapies for alcoholism based on a specific glial
cell type pathology will require a better understanding of molecular interactions between
different cell types, as well as considering the possibility of using combined molecular
approaches for more effective therapies.
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INTRODUCTION

Alcohol use disorder (AUD) is defined in the webpage of the
National Institute of Alcohol Abuse and Alcoholism as a chronic
relapsing brain disease involving compulsive alcohol use, loss
of control over alcohol intake, and a negative emotional state
when not using. This disorder results in severe behavioral,
neurological and other medical pathologies that eventually
depend on disturbances of cellular function and metabolism
(Abrahao et al., 2017). In the nervous system, these disturbances
cause abnormal exchanges of information between brain centers,
including cortical and subcortical regions that control the intake
of rewarding substances such as alcohol itself, or regions involved
in emotional and cognitive regulation (Moselhy et al., 2001;
Schulte et al., 2010). In many AUD patients, alcohol-induced
brain alterations are also reflected in structural damage in the
gray and white matter (GM and WM; Rosenbloom et al., 2003;
Zahr and Pfefferbaum, 2017).

It is well known that a large proportion of alcoholics, despite
serious behavioral and emotional pathology, show only minor
or inconspicuous neurological deficits of the kind mentioned
above, and thus these subjects are dubbed as ‘‘uncomplicated’’
alcoholics. In these subjects, AUDs do not necessarily result in
catastrophic or global loss of brain tissue of neuronal or glial cell
numbers (Jensen and Pakkenberg, 1993). However, application
of conventional MRI imaging techniques has shown that even
in these AUD subjects atrophy of the cerebral GM volume
at relatively younger ages, while later in life the reduction in
volume extends to the WM and cerebral ventricles (Pfefferbaum
et al., 1988, 1992). This progressive decline in GM volume
was first described as affecting the brain globally, but further
neuroimaging investigations have demonstrated that significant
age-dependent volume reduction is particularly noticeable in the
prefrontal cortex (PFC; Pfefferbaum et al., 1997). Furthermore,
while only macroscopic volumetric variations can be safely
assessed in brain tissue with conventional MRI, diffusion
tensor imaging (DTI) studies, a more recent development
of MRI with increased resolution to visualize fiber bundle
structure in WM, have shown that WM volume changes
parallel structural alterations in specific WM axon bundles
connecting PFC to brain circuits involved in reward and
emotion regulation (Schulte et al., 2010) or that, even when
macrostructural changes are not patent, there could be significant
microstructural disturbances of axon bundles (Pfefferbaum and
Sullivan, 2002). MRI- and DTI-based detection of volumetric
and fiber bundle alterations most likely betray disturbed signal
processing in specific brain regions such as the PFC and the
hippocampus and anomalous connectivity between those brain
regions. In fact, uncomplicated subjects are not entirely free of
neuropathological alterations at the cellular level either because
they show regionally selective degeneration of pyramidal neurons
or their dendrites in some brain regions such as the PFC (Kril
et al., 1997).

Role of Glial Cells in AUDs
Since neurons are the main conveyors of information between
brain regions, much attention has been placed on the role of

neuronal pathology in the various disorders caused by AUDs
in human subjects and experimental animals (Abrahao et al.,
2017). However, it is well-known that maintenance, survival and
normal activity of neurons are fully dependent on the interaction
with several types of glial cells (Barres, 2008). These cells assist
critically in the support of neurotransmission, propagation of
action potentials, survival (of neurons and other glial cells),
supply of metabolites, brain injury repair, neuroprotection and
synapse formation and removal. In the central nervous system,
the main classes of glial cells are astrocytes, oligodendrocytes,
NG2 cells and microglia. Each of these cell types identifies
mainly with one or two of the support functions mentioned
(for instance, astrocytes with neurotransmitter reuptake and
metabolic support, oligodendrocytes with myelin formation
around axons, microglia with responses to injury and repair), but
some functions are performed cooperatively by two or more cell
types. Thus, if prolonged alcohol exposure damages glial cells or
disrupts their activity, grave disturbances of neuronal function
are to be expected. Conversely, due to the existence of neuronal
signals that regulate glial physiology (Haydon, 2000; Simons
and Trajkovic, 2006), indirect actions of alcohol, mediated by
neuronal pathology, are to be expected on the structural and
functional integrity of glial cells. Many studies have shown that
alcohol exposure in vivo and in vitro profoundly affects the
development, morphology, physiology and gene expression of
astrocytes, oligodendrocytes, microglia andNG2 cells. The effects
of AUDs on oligodendrocytes were some of the first to receive
attention from clinicians and investigators because alcoholism
leads to severe neurological and cognitive disorders associated
with myelin pathology (Sun et al., 1979; Gallucci et al., 1989;
Harper, 2009). Later developments have also shown that the
development, physiology, gene expression and morphology of
astrocytes are profoundly affected by alcohol abuse (Kennedy
and Mukerji, 1986; Renau-Piqueras et al., 1989; Cullen and
Halliday, 1994; Franke, 1995).

Many reviews and original research articles have dealt with
specific morphology, molecular markers and functions that
characterize classes and types of astrocytes (Rajan and McKay,
1998; Laming et al., 2000; Nedergaard et al., 2003; Oberheim
et al., 2006; Takano et al., 2006; Zhang and Barres, 2010; Lovatt
et al., 2012; Parpura et al., 2012; Kettenmann et al., 2013),
oligodendrocytes (Cahoy et al., 2008; Wegner, 2008; Emery and
Lu, 2015; Fitzpatrick et al., 2015; Simons and Nave, 2015; Purger
et al., 2016; Snaidero and Simons, 2017) and the other glial cell
classes in the brain of vertebrates, including the human brain. In
this review, I will concentrate on astrocytes and oligodendrocytes
in the brain WM and cortical GM mainly because they
are the primary glial cell types implicated in the integration
(astrocytes) and propagation (oligodendrocytes) of neural signals
originating from and arriving in the cortex and the most
extensively studied regarding AUDs. I refer to the cited reviews
and original articles for more detailed information on normal
development, structure, molecular biology and physiology of
astrocytes, oligodendrocytes and related cell subtypes. Likewise,
the present review is about the glial molecular pathology in
AUDs in the context of postmortem and neuroimaging studies,
and does not include a detailed discussion of glial pathology
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in fetal alcohol spectrum disorders (FASD), although occasional
reference to FASD is made to illustrate some general points about
the pathology of astrocytes or oligodendrocytes in alcohol abuse
disorders.

ASTROCYTES

Diversity of Astrocytes
Since the earliest structural and developmental studies astrocytes
and related cells have been classified into several subtypes
according to their localization and morphology (Reichenbach
and Wolburg, 2012). In fact, astrocytes that reside in specific
neural niches tend to substantially differ from those in other
niches. For instance, astrocytes in WM are considered to be
mostly of the fibrillary type while most astrocytes in GM display
a distinctive morphology and are classified as protoplasmic
astrocytes (Reichenbach and Wolburg, 2012). In turn, in some
WM tracts, such as the optic nerve, astrocytes are further
subdivided into type 1 and type 2 astrocytes, while GM astrocytes
in contact with the meningeal pia mater or those adjacent to
the ventricular surfaces are also morphologically distinct from
the protoplasmic astrocytes (Reichenbach and Wolburg, 2012).
In the cerebellum, astrocytes take on a distinctive morphology
that parallels the structure of Purkinje cell’s dendrites and are
identified as Bergman glia, while retinal astrocytes radially span
across the retinal layers and are called Mueller cells (Kettenmann
et al., 2013).

In recent years, it has become evident that the morphological
variety is matched by an even richer molecular differentiation
of astrocytes (Verkhratsky and Nedergaard, 2018), and that
even astrocytes considered as a morphologically homogenous
type (Cui et al., 2001; Oberheim et al., 2006; Khakh and
Sofroniew, 2015; Hu et al., 2016), for example, cerebral cortex
and WM astrocytes, can be further subdivided according to their
molecular markers or their ability to divide (Zhang and Barres,
2010). These subtype-specific molecular markers ultimately
betray a significant degree of physiological differentiation among
astrocytes as they adapt to specific neural niches and functions.

Roles of Astrocytes in Gray and White
Matter
The differential features of astrocytes in the cortical GM reflect
a multitude of regulatory roles in support of cortical neuronal
function (Verkhratsky and Nedergaard, 2018). These roles can
be significantly disturbed either by direct actions of ethanol
on receptors, transporters or metabolic enzymes of astrocytes,
or through indirect actions mediated by the effects of ethanol
on neurotransmission and neuronal metabolism (Verkhratsky
and Parpura, 2010; Adermark and Bowers, 2016). Prominent
among the critical roles of astrocytes are the exchange with
blood vessels of energy-rich metabolites to support neuronal
metabolism, the buffering of extracellular ions exchanged during
synaptic neurotransmission/propagation of action potentials,
the reuptake of synaptically-released glutamate and gamma-
aminobutyric acid (GABA), the recycling of these and other
transmitters for reutilization or metabolism, the release of

small molecular cofactors, such as serine or glycine required
for activation of the N-methyl-D-aspartate-type (NMDA-
type) glutamate receptors, the release of gliotransmitters or
cytokine-like molecules to communicate with other neural cells,
and the expression of immune-like activities within the nervous
system (Cali et al., 2008). This variety of neurophysiological roles
is made possible by abundant expression of specific proteins
and molecules and their associated intracellular pathways, which
are in many cases exclusive to or predominantly expressed in
astrocytes (Verkhratsky and Nedergaard, 2018).

Many of their characteristic intracellular pathways are found
in all astrocyte subtypes. However, a division of labor also exists
among astrocytes such that, for instance, some astrocytes express
high levels of excitatory amino acid transporter 1 (EAAT1), other
astrocytes are richer in EAAT2, or others, such as Bergmann glia
express EAAT5. Most WM astrocytes and those adjacent to the
pia mater express high amounts of the cytoskeletal protein glial
fibrillary acidic protein (GFAP). In contrast, astrocytes in the
middle layers of the cortex, while rich in glutamate transporters
have very low levels of GFAP, even if dramatic increases of GFAP
can occur in astrocytes after brain injury, toxicity or ischemia.

In addition to their distinctive morphology, WM astrocytes
constitutionally express high levels of GFAP (levels that are
significantly lower in many GM astrocytes). Even if neuron to
neuron synapses are very low in WM, WM astrocytes express
glutamate and glutamine transporters (Banner et al., 2002;
Miguel-Hidalgo et al., 2010; Roberts et al., 2014). Unlike most
GM astrocytes, WM astrocytes and astrocytes in myelinated
parts of the GM, are in close contact with oligodendrocyte
processes and the outermost layer of myelin, and often
form gap junctions with oligodendrocyte cell membranes
to allow for direct communication between the astrocyte
and oligodendrocyte cytoplasms (Nualart-Marti et al., 2013).
The molecular composition of these junctions is connexin
subtype-specific, because connexin 43 (Cx43) and Cx30, which
are contained on the astrocyte side of the gap junction,
are respectively matched with Cx47 and Cx32 contained in
the oligodendrocyte cell membrane to form Cx43–Cx47 and
Cx30–Cx32 gap junctions (Nagy and Rash, 2000; Orthmann-
Murphy et al., 2008). The importance of these astrocyte-
oligodendrocyte gap junctions to establishment of myelin has
been confirmed in recent studies showing that absence or
downregulation of astrocytic Cx43 and Cx30 (or oligodendrocyte
Cx47 and Cx32) in transgenic mice models results in major
disruption of myelin formation and maintenance, as well as
behavioral deficits (Lutz et al., 2009; Magnotti et al., 2011;
Wasseff and Scherer, 2011). In addition, the end-feet of some
processes of astrocytes reach to most of the nodes of Ranvier
(NR) in the CNS. Despite the close and frequent association
of these processes with NR, their function is still unknown,
although some researchers have proposed that astrocytes and
their perinodal processes play an important role in potassium
buffering or in the stabilization and organization of myelin
formation at the nodes (Black and Waxman, 1988; Kalsi et al.,
2004; Serwanski et al., 2017).

End-feet of astrocytic processes also closely abut the basal
lamina surrounding endothelial cells of small blood vessels.
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These contacts around blood vessels are important in the
regulation of water movements from the blood circulation
and the maintenance and function of the brain blood barrier
(Paemeleire, 2002; Simard et al., 2003; Abbott et al., 2006).

MOLECULAR PATHOLOGY OF
ASTROCYTES IN ALCOHOL USE
DISORDERS

Alcohol-Related Neuropathology of
Astrocytes
Chronic alcohol exposure induces atrophic features in glial
cells, including astrocytes and their precursors in GM (Miguel-
Hidalgo and Rajkowska, 2003). Furthermore, alcoholism
associates with downregulation of astrocyte specific genes,
particularly in subjects with hepatic pathology (Liu et al., 2006).
The atrophic changes in astrocytes appear to preferentially occur
in certain brain regions, such as PFC and the hippocampus,
where alcohol exposure results in reduced numbers or packing
density in the general population of glial cells and in astrocytes
(as identified by morphological features or GFAP labeling;
Korbo, 1999; Miguel-Hidalgo et al., 2002, 2006). In addition,
the expression of astrocyte-related genes is significantly
downregulated (Liu et al., 2006). In some subjects, chronic
AUDs are associated with persistent nutritional deficiencies
or hepatic damage, resulting in serious neurological disorders
such as Wernicke’s encephalopathy, hepatic encephalopathy
or the demyelinating disorders central pontine myelinolysis
and Marchiafava-Bignami syndrome (de la Monte and
Kril, 2014; Verkhratsky et al., 2014). In these cases, severe
neurological symptoms correlate with macroscopically apparent,
substantial degeneration of GM or WM in cerebellum,
thalamus, mammillary bodies or cerebral cortex (Phillips
et al., 1990; Kril and Harper, 2012). Interestingly, although
neurons and oligodendrocytes are considered major targets
of nutritional and metabolic disturbances, such as thiamine
deficiency, astrocytes can be also critically affected by the
same disturbances (Hazell, 2009). In addition, acute ethanol
exposure of cultured astrocytes causes extensive gene expression
changes that resemble the heat shock response (Pignataro et al.,
2013).

As it could be expected, the response of astrocytes to
pathogenic alcohol exposure is not limited to alterations in
their number, morphology or development, but affects many
of the roles played by astrocytes in the nervous system.
These roles include the regulation of neuroinflammatory
processes, calcium signaling, balance of excitatory and inhibitory
neurotransmission, water balance/cell volume regulation, as well
as the regulation of dopamine-dependent behavioral processes
in brain reward circuits (Adermark and Bowers, 2016). In
addition, acute or prolonged exposure of astrocytes to alcohol
may substantially modify the efficacy of connections between
brain areas by disturbing the maintenance of myelin (Hazell,
2009) and the buffering of ions in the proximity of nodes
Ranvier. Altering ion buffering and the osmotic regulation that
results from astrocyte interactions with oligodendrocytes around

NR causes abnormal action potential propagation in WM and
myelinated portions of GM (Gankam Kengne et al., 2011).

The alcoholism-related changes in astrocyte numbers and
their markers may be due, at least partly, to direct inhibitory
effects of ethanol on astrocyte proliferation or turnover. Both
in astrocytes cultured from neonatal rodents (Davies and
Cox, 1991; Guerri and Renau-Piqueras, 1997; Guerri, 1998)
or from postmortem human brain tissue autopsies (Kane
et al., 1996) ethanol exposure causes substantial inhibition
of astrocyte proliferation and synthesis of DNA and protein,
including reduced expression of the major astrocyte marker
GFAP. After prolonged exposure, this inhibition may lead
to decreased astrocyte numbers, as well as impaired ability
to perform the critical functions enumerated earlier in this
review. The responses of astrocytes to chronic alcohol, although
mostly inhibitory, may also lead to secondary activation of
gliosis-like astrocyte responses when AUDs prolong sufficiently
into senescence (Miguel-Hidalgo and Rajkowska, 2003; Miguel-
Hidalgo, 2009). In approaching late-age, accumulation of
ethanol-related deficits in astrocyte structure and function may
contribute to neuronal degeneration, and this degeneration
would trigger a secondary activation of astrocyte reactivity or
gliosis, which would be reflected in increased GFAP production
and other gliotic changes, although it is still unclear how other
markers of astrocytes respond to aging-associated neuronal
degeneration.

Alcohol Effects on Glutamate Receptors
and Astrocyte Components of the Cycle
for Release and Reuptake of Glutamate
NMDA-Type Glutamate Receptors in AUDs
In patients with AUDs there is evidence, some of it controversial,
of alcohol-related dysfunction in some aspects of glutamatergic
neurotransmission such as an increase in the expression of
NMDA-type glutamate receptors and a decrease in GABA
receptors, particularly in chronic alcoholism (Davis and Wu,
2001). Ethanol acts antagonistically at NMDA receptors by
reducing their activation by glutamate. In animalmodels, chronic
alcohol consumption increases expression of the NR2A, NR2B
and NR1 subunits of NMDA receptors in the neocortex and the
hippocampus (Gass and Olive, 2008), and the increases would
appear to explain the neuronal hyperexcitability found in animal
models after alcohol withdrawal. Although less consistently,
human studies in chronic alcoholics also show increases in ligand
binding to NMDA receptors (Tsai, 1998; Tsai et al., 1998) mainly
in the PFC, but not in other cortical or brain regions such as
the cingulate cortex, hippocampus or cerebellar vermis (Freund
and Anderson, 1996, 1999). mRNA levels for the same NMDAR
subunits as above do not differ in uncomplicated alcoholics as
compared to controls, but are reduced in cirrhotic alcoholics
(Ridge et al., 2008).

Involvement of Astrocyte Glutamate Transporters
and Glutamine Synthetase in AUDs
Regardless of how persistent glutamate receptor changes are in
human chronic alcoholism, the antagonism of NMDA receptors
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and the potentiation of GABA receptors by ethanol are likely to
alter glutamate release and the concentrations of glutamate in
the extracellular space. These neurotransmitter alterations would
cause the involvement of glutamate transporters, glutamate
converting enzymes and glutamate receptors, which are highly
expressed by astrocytes. In the cerebral cortex, the glutamate
transporters of astrocytes are crucial to the synaptic reuptake
of glutamate. In addition, astrocytic GABA transporters make
a very important contribution to GABA reuptake. These
transporters, together with the enzyme glutamine synthetase
(GS) in astrocytes, are essential components of the cycle that
terminates the actions of released glutamate or GABA at many
synapses, and allows for further recycling and synaptic release
of glutamate and GABA. Thus, some studies have determined
the cortical expression of astrocytic glutamate transporter as
well as GS mRNA and protein in AUD subjects (Miguel-
Hidalgo et al., 2010; Ayers-Ringler et al., 2016). Interestingly,
these studies have not detected significant variations in the
protein levels of either EAAT1, EAAT2 or GS in alcohol
dependence, and some studies in vitro actually show that
ethanol exposure may cause an increase in the rate of glutamate
transport per astrocyte (Smith and Zsigo, 1996; Smith, 1997;
Zink et al., 2004), although in some rat brain areas such the
nucleus accumbens there appears to be an ethanol-induced
decrease in glutamate transport that still is not linked to a
reduced expression of glutamate transporters (Melendez et al.,
2005).

It is possible that homeostatic mechanisms result in unaltered
or increased expression of glutamate receptors or transporters
in many brain regions of human alcoholics. However, it must
be kept in mind that the unchanged transporter levels we
found in the orbitofrontal cortex in alcohol-dependent subjects
occurred only in uncomplicated alcoholism, while in subjects
with comorbid major depression there were reduced levels of
glutamate transporters and GS, raising the possibility that the
severity of alcohol-related pathology resulting in depression
involves a decrease in the astrocytic components of the glutamate
cycle (Miguel-Hidalgo et al., 2010). The loss of glutamate
transporters in subjects with Wernicke’s encephalopathy, often
associated with severe cases of chronic alcoholism (Hazell et al.,
2010) may be considered further evidence for the view that
the severity of pathology in some brain areas may depend
on profound changes in the glutamate cycle components of
astrocytes.

Animal studies have shown that different regimes of chronic
alcohol intake, withdrawal, and reinstatement have diverse
effects on the expression of glutamate cycle components. This
diversity raises the possibility that different trajectories in
the timing, length and frequency of withdrawal periods, or
the comorbidity with other disorders cause ample variation
in glutamate-related mRNA and protein markers in human
alcoholics at the time of death. This variety would prevent
finding statistically significant differences in AUD patients as
compared to non-alcoholic subjects. In fact, as mentioned
above, we found that among subjects with alcohol-dependence
only those with a comorbid diagnosis of depression had
significantly lower levels of glutamate transporters EAAT1

(and a tendency for lower EAAT2 transporters) than controls,
while in alcoholics without other psychiatric diagnoses (Miguel-
Hidalgo et al., 2010) there was no change, suggesting that
uncomplicated AUDs may involve compensatory regulation of
glutamate transport. In line with this suggestion, some animal
models of alcoholism show increase in astrocytic glutamate
transporter levels (Wu et al., 2011), even if alcohol itself can
disrupt the function of those transporters (Mulholland et al.,
2009). Interestingly, restoration of EAAT2-based glutamate
transport with ceftriaxone actually reduces alcohol drinking (Lee
et al., 2013), while the reduction of astrocytic EAAT1 resulting
from deletion of the circadian period gene (Per2) in mice
is accompanied by increased alcohol intake (Spanagel et al.,
2005).

Astrocyte-Released NMDA Receptor Co-Agonists in
AUDs
Regulation of glutamatergic transmission at NMDA receptors
is also dependent on glycine, which acts as co-agonist at those
receptors. At the same binding-site, astrocyte-released D-serine
is also an active co-agonist. Both glycine and D-serine have a
permissive role in NMDA receptor activation when binding to
the glycine-binding site. Ethanol can compete with D-serine for
the occupancy of that site, although the dependence of behavioral
sensitivity on ethanol binding is related to the exact subunit
composition of the NMDA receptors and thus differs across
brain regions (Tsai, 1998). On the other hand, reduced affinity for
glycine at the glycine site is positively associated with attenuated
sensitivity to the behavioral effects of alcohol (Kiefer et al., 2003)
in mice, while tolerance to partial agonists of that site appears
to develop in alcohol dependent subjects (Krystal et al., 2011),
pointing to an important role of astrocyte-produced D-serine in
the effects of ethanol in chronic AUD patients.

Astrocyte Thrombospondin in
AUD-Related Synaptic Alterations
Alcohol-related neuronal dysfunction may also depend on
regressive changes at synaptic contacts that result from
intermittent or prolonged alcohol exposure. Those changes
may be due, at least partly, to impairments in the ability of
astrocytes to provide factors involved in synapse maintenance
such as thrombospondins and their receptors (Ullian et al.,
2004). In animal models, alcohol exposure results in significant
reduction of thrombospondin release that can persist for
24 days, in parallel with disturbed matching of presynaptic and
postsynaptic structures (Risher et al., 2015). Hepatic damage
caused by alcoholism in some subjects may also result in
synaptic dysfunction indirectly mediated by astrocytes, because
increased ammonia levels that follow liver dysfunction diminish
thrombospondin secretion by astrocytes and reduce the levels
of synaptic proteins (Jayakumar et al., 2014). Alcohol exposure
during early or prenatal stages of development, and maybe later
too, may cause persistent changes in synapse formation involving
thrombospondin as well (Trindade et al., 2016). These changes
are further accompanied by marked reductions in astrocyte-
secreted extracellular matrix (ECM) proteins, such as laminin or
heparan-sulfate proteoglycan (Lasek, 2016; Trindade et al., 2016).
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Thus, repeated alcohol exposure at different stages of prenatal
and postnatal development would result in abnormal regulation
of astrocyte-derived factors involved in synaptogenesis.

Astrocyte Processes at the Blood-Brain
Barrier and the Involvement of Aquaporins
in AUD-Related Neuropathology
Astrocytes processes abut the basal lamina surrounding the
endothelial cells of small blood vessels, where they contribute
to blood-brain barrier (BBB) maintenance (Prat et al., 2001).
In addition, those processes are essential to the exchange
of metabolic substrates with the blood circulation, and to
the regulation of blood flow (Koehler et al., 2009). Chronic
alcoholism disturbs components of the BBB at endothelial
cells (Haorah et al., 2005; Rubio-Araiz et al., 2017), impairing
to varying degrees the exchange of energy and neurotrophic
metabolites such as glucose, that directly impinge on neuronal
and glial function (Abdul Muneer et al., 2011a). In addition,
alcohol causes direct inhibitory effects on glucose uptake by
astrocytes processes (Abdul Muneer et al., 2011b).

Effects of alcohol mediated by astrocytes very likely
involve changes in aquaporins as well (Kong et al., 2013),
in particular aquaporin 4 (AQ4), a membrane protein
highly expressed in astrocytes processes at the BBB that
allows effective passage of water through the cell membrane
(Badaut et al., 2002; Rajkowska et al., 2013). Repeated alcohol
intake in binging rat models results in significant increases
in aquaporin, astrocyte swelling (linked to brain edema)
and activation of neuroinflammatory cascades (Collins and
Neafsey, 2012; Collins et al., 2013). Anti-inflammatory
treatments can prevent the effects of the AQ4 elevation
that is concomitant with increases in neuroinflammatory
markers (Tajuddin et al., 2014). On the other hand, serious
consequences of alcoholism, such as the loss of myelin in
central pontine myelinolysis, might be associated with reduction
in astrocytic aquaporins, although more research seems to
be needed to fully ascertain this possibility (Popescu et al.,
2013).

In summary, multifaceted actions of ethanol on astrocytic
markers involved in the formation and regulation of the BBB,
amplified by their reciprocal interactions with the BBB, may be
important determinants of the cellular and functional pathology
of alcoholism.

OLIGODENDROCYTES

Role of Oligodendrocytes in Gray and
White Matter
The main function of oligodendrocytes is the formation and
maintenance of myelin, which consists of tightly piled layers
of oligodendrocyte cell membrane wrapped around the axons
of neurons (Baumann and Pham-Dinh, 2001; Butt, 2005). The
layers of myelin act as insulation against the dissipation of
ionic gradients, allowing for fast, self-regenerating saltatory
conduction of action potentials between consecutive NR along
the axons to reach synaptic terminals, and thus for efficient

exchange of neural impulses between brain centers (Nave
and Werner, 2014). Despite this unity of purpose, most
oligodendrocytes and their myelin sheaths are finely tuned
and sensitive to the physiological and gene expression changes
in the neurons whose axons they wrap and the astrocytes
that surround them (Simons and Trajkovic, 2006; Nave and
Werner, 2014). Conversely, oligodendrocytes produce signals
and growth factors that support the axons they enwrap and
the neurons and astrocytes in their vicinity (Du and Dreyfus,
2002; Nave and Trapp, 2008; Simons and Nave, 2015). Some
oligodendrocytes in GM regions are intimately associated
with neuronal cell bodies, but their functions remain so far
unclear.

MOLECULAR PATHOLOGY OF
OLIGODENDROCYTES IN ALCOHOL USE
DISORDERS

Myelin Components
Postmortem cellular and in vivo neuroimaging studies in human
subjects have revealed that prolonged and repeated alcohol
intake results in various degrees of damage or adaptations in
the myelin that sheaths axons in the WM and GM, as well
as in the oligodendrocytes that form the myelin. In some
subjects, macroscopic damage to the WM caused by alcoholism
is apparent, and can be identified with loss of myelin both
in neuroimaging and postmortem histochemical studies. WM
and GM damage produces different neurological syndromes
that can be distinguished according to the specific anatomical
location and the nature of the neurological disturbances. Myelin
disorders such as Marchiafava-Bignami disease, Wernicke-
Korsakoff syndrome, hepatic encephalopathy, central pontine
myelinolysis or alcohol cerebellar degeneration involve myelin
losses in WM and GM of cortical and subcortical brain
regions (Zahr and Pfefferbaum, 2017). In these disorders, BBB
disruption or nutritional deficits, such as thiamine deficiency,
alone or most likely in interaction with direct effects of
alcohol on oligodendrocytes, are considered main culprits for
myelin disturbances in chronic alcoholism (Lewohl et al., 2005;
Alexander-Kaufman et al., 2007; He et al., 2007). On the other
hand, given the frequent co-abuse of ethanol and tobacco, part
of the deleterious effects of ethanol on myelin proteins might
result from an interaction of ethanol with specific components
of tobacco, such as nicotine-specific nitrosamine ketone (NNK;
Tong et al., 2015; Zabala et al., 2015; Papp-Peka et al., 2017).
However, even in subjects without such obvious neurological
and anatomical complications (the ‘‘uncomplicated cases’’), the
expression of myelin and oligodendrocyte-related proteins, or
their mRNAs, can be significantly altered in various brain
regions, being particularly prominent in the PFC (Mayfield
et al., 2002; Alexander-Kaufman et al., 2006; Liu et al., 2006),
which are reflected in low levels of the main structural myelin
proteins such as myelin basic protein (MBP) and possibly
proteolipid protein (PLP), their companions, myelin associated-
glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein
(Omgp; Okamoto et al., 2006), and related transcription factors
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(Miguel-Hidalgo et al., 2017). Reduced expression of major
myelin proteins such as MBP has been detected in models of
prenatal alcohol exposure (Ozer et al., 2000; Bichenkov and
Ellingson, 2001), while in vitro studies have shown that the
effects of ethanol on the expression of myelin components could
be mediated by direct regulation of PKC-like enzymes rather
than by altering their expression (Bichenkov and Ellingson,
2002).

Beside disturbing the expression of myelin proteins,
alcohol can induce oligodendrocyte apoptosis during prenatal
development in primates such as the macaque (Creeley et al.,
2013), while during early postnatal mice development (roughly
equivalent to the human third gestation trimester) there is
a dramatic reduction in differentiated oligodendrocytes and
oligodendrocyte progenitor cells in the corpus callosum. These
cell populations recover after ceasing alcohol exposure, but
deficits in MBP levels or in the structure of corpus callosum
fibers persist in young adult mice (Saito et al., 2016; Newville
et al., 2017). In adult mice, chronic intermittent ethanol (CIE)
exposure causes also significant reduction in the levels of
MBP, PLP and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase
(CNPase) in several brain regions (Samantaray et al., 2015).
These degenerative effects appear to be mediated by the calcium-
activated protease calpain, because calpain inhibitors prevent
the reductions of myelin-related proteins in the mice CIE model
(Samantaray et al., 2015).

Gene Expression in Oligodendrocytes
In human postmortem brain, gene-expression studies of chronic
alcoholism that involve the aggregate of GM and WM from
frontal cerebral regions, have found significantly decreased
mRNAs of myelin-related proteins in chronic alcoholics (Lewohl
et al., 2000, 2001; Liu et al., 2006; Farris et al., 2015a). Low
myelin-related mRNAs include those of the major structural
myelin proteins MBP, PLP, myelin oligodendrocyte glycoprotein
(MOG) and MAG. These reductions are particularly significant
in chronic alcoholics with cirrhosis as compared to non-alcoholic
controls or to non-cirrhotic alcoholics (Lewohl et al., 2005),
suggesting that nutritional deficiencies or metabolic toxicity,
possibly interacting with direct ethanol effects, strongly deplete
the expression of myelin components in alcoholics, at least as
assessed in studies that include GM in the probed tissue. In
contrast, in a recent study from our laboratory, we used samples
only from the WM adjacent to cortical area 47 (orbitofrontal
cortex) in chronic alcoholics, and observed that mRNA levels for
myelin proteins PLP, MAG andMOG and other oligodendrocyte
markers were markedly lower than in controls, although the
levels of MBP mRNA were not changed (Miguel-Hidalgo et al.,
2017). Since cirrhosis had not been diagnosed in most subjects
of our study, these results suggest that the effects of prolonged
alcohol abuse in some regions of WM may occur without
cirrhosis and be different from those when GM is included.
However, the degree of hepatic compromise was not exactly
quantified in our samples, so that it was not yet possible to
separately assess indirect from direct effects of ethanol on the
strong decreases in the expression of mRNAs for some myelin
proteins. Despite the highly localized nature of our WM study

(all samples were from WM adjacent to Brodmann’s cortical
area 47), it is also important to note that factors related to
hepatic pathology, GM contamination of samples, or RNA
quality may influence changes detected in previous studies
of myelin-related markers in alcoholism (Sutherland et al.,
2014) and thus replication studies with well-defined locales,
or in other brain areas, appear to be necessary to draw the
right conclusions regarding effects of chronic alcoholism on
gene expression of glial cells in the human brain. A recent
study in the hippocampus of human chronic alcoholics has in
fact revealed significant decreases in several genes related to
myelination in addition to alterations in specific proteins of
stress-related pathways that operate in astrocytes (McClintick
et al., 2013).

Studies with oligodendrocyte cultures indicate that ethanol-
induced degeneration or impairment of myelin maintenance
may be mediated by the ethanol metabolite acetaldehyde (Coutts
and Harrison, 2015), suggesting that the ability to degrade or
eliminate this metabolite may influence the effects of alcohol on
myelin composition. Moreover, human subjects with alcoholism
most probably differ in their drinking schedules and exposure
to binge or withdrawal periods. These periods, according
to the results of animal experiments, can significantly alter
myelin protein expression (for example causing a recovery of
MBP expression; Kipp et al., 2012; Navarro and Mandyam,
2015) and strongly influence mRNA levels at the time of
death. Summarizing, despite complex interactions that probably
determine the individual levels of myelin-related mRNAs
and proteins at the time of death, the available animal
experimentation and human postmortem evidence indicates
significant effects of ethanol abuse on the expression of myelin
components, and the plasticity of myelin itself. These changes
would significantly affect the role of myelin maintenance in
action potential propagation.

Oligodendrocyte Survival and Proliferation
In addition to the effects on myelin components and structure,
ethanol exposure very likely causes damage to oligodendrocyte
precursors by reducing their proliferation (Newville et al.,
2017) or disrupting the expression of transcription factors, such
as c-fos (Bichenkov and Ellingson, 2009), that regulate the
differentiation of those precursors into mature, myelin-forming
oligodendrocytes. The effects on differentiation may also
include abnormal acceleration of oligodendrocyte differentiation
(Aspberg and Tottmar, 1994). However, at a difference
with animal models of prolonged alcohol exposure, chronic
alcoholism in humans may not necessarily cause an overall
reduction in neuro- or glio-genesis in well-known neurogenic
niches (Sutherland et al., 2013). On the other hand, a direct role
of ethanol in promoting myelin pathology and the possibility
of recovery from that pathology are strongly suggested by
increased MBP levels in the medial PFC of rats after prolonged
periods of abstinence from ethanol (Navarro and Mandyam,
2015). Potential for recovery appears to be a consequence of the
involvement of oligodendrocyte precursor cells in remyelination
processes (Mi et al., 2009) during abstinence from alcohol
drinking.

Frontiers in Molecular Neuroscience | www.frontiersin.org 7 March 2018 | Volume 11 | Article 78

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Miguel-Hidalgo Astrocytes and Oligodendrocytes in Alcohol Use Disorders

GLIA-RELATED EXTRACELLULAR MATRIX
COMPONENTS IN AUDs

In WM, several proteoglycans and other ECM proteins are
produced by astrocytes, oligodendrocytes and neurons to form
adhesion complexes at the NR and axon initial segments,
where they are implicated in the aggregation of voltage-
gated sodium channels and other components involved in
action potential generation and propagation (Zimmermann and
Dours-Zimmermann, 2008; Nelson and Jenkins, 2017). Those
complexes include brevican, versicans, neurocan, tenascins and
neurofascins, among others, form mutual attachments involving
interactions between specific protein domains. Interestingly,
repetitive binge alcohol intake in adolescent rats significantly
increases the levels of several of those proteins in the WM of
brain areas such as the orbitofrontal cortex that participate in the
pathophysiology of addictive behaviors (Coleman et al., 2014).
Alcohol exposure also significantly alters the production by
astrocytes and oligodendrocytes of some ECM proteins involved
in the formation of perineuronal nets and synapses in the GM,
and in the assembly of the basal lamina around blood vessels
(Lasek, 2016), although the exact role of those changes in the
mechanisms leading to behavioral and functional disturbances in
AUDs is not fully understood. The importance of an involvement
of ECM components in the mechanisms of alcohol addiction is
suggested by the ability of ECM disturbances to modulate the
seeking for alcohol and other drugs in knock-out mice lacking
matrix metalloproteinase 9 (MMP-9), a protease that regulates
the integrity of the ECM (Smith, 2017). These mice have reduced
motivation for alcohol drinking, but rescuing MMP-9 activity in
the brain’s amygdala restores normal alcohol-seeking behavior
(Stefaniuk et al., 2017).

EPIGENETIC CHANGES IN
OLIGODENDROCYTES AND ASTROCYTES
IN AUDs

Regulation of DNA transcription into mRNA is greatly
dependent on epigenetic mechanisms such as DNA methylation
and acetylation, and methylation of chromatin histones (Gräff
et al., 2011). In addition, at the translational level, gene expression
is regulated by the activity of microRNAs (miRNAs), small forms
of non-coding RNA (about 22 nucleotides long) that interfere
with translation into proteins by binding to specific sequences of
coding mRNA (Liu and Casaccia, 2010; Li and Yao, 2012; Emery
and Lu, 2015).

In recent years, several reviews have compiled studies showing
that the development of astrocytes, oligodendrocytes as well
as plastic changes in myelin maintenance involve complex
epigenetic pathways (MacDonald and Roskams, 2009; Kim and
Rosenfeld, 2010; Yu et al., 2010; Bian et al., 2013; Namihira
and Nakashima, 2013; Emery and Lu, 2015). These pathways
can be significantly altered by prolonged exposure to alcohol
(Aspberg and Tottmar, 1994; Bichenkov and Ellingson, 2009;
Alfonso-Loeches et al., 2012; Creeley et al., 2013; Coutts and
Harrison, 2015; Newville et al., 2017). Methylation of DNA

at specific nucleotides, and acetylation and methylation of
DNA-associated histones are known to critically determine the
fate and differentiation of precursors into mature astrocytes and
oligodendrocytes as well as the formation of myelin (Moyon
et al., 2016).

Epigenetic and miRNA-mediated mechanisms in the central
nervous system play also relevant roles in the pathophysiology
of neurological, neurodegenerative and psychiatric disorders
(Meza-Sosa et al., 2012). The clinical relevance of increasing our
knowledge about epigenetic disturbances in oligodendrocytes
and astrocytes stems from the demonstration of significant
epigenetic anomalies in demyelinating disorders, and the
possibility of reversing them with experimental treatments
targeted to epigenetic alterations (Li and Yao, 2012; Liu
et al., 2016). In addition, several miRNAs have been found to
regulate directly (by impairing translation) or indirectly (through
other miRNAs or transcription factors suppressed by miRNAs)
the production of transcription factors and proteins during
development (Bian et al., 2013).

Glial Epigenetic Markers
AUDs are associated with profound brain alterations in
epigenetic markers (Zhou et al., 2011; Farris et al., 2015b; Weng
et al., 2015; Legastelois et al., 2017) and significant increases in
miRNAs regulating the expression of many proteins (Lewohl
et al., 2011). Alcohol-related epigenetic changes have been
found in DNA methylation patterns and in methylation and
acetylation of histones in the human PFC, hippocampus and
amygdala (Ponomarev, 2013; Farris et al., 2015b) as well as in
cultured astrocytes (Zhang et al., 2014). Some studies suggest
that acute alcohol intake leads to histone deacetylase (HDAC)
inhibition in the amygdala that would be the basis for increased
histone acetylation and anxiolysis, while withdrawal, anxiety
or adolescent alcohol exposure seems to be associated with
increased HDAC activity (Pandey et al., 2017) and decreased
acetylation (Pandey et al., 2008). This HDAC increase would lead
to reduced expression of genes involved in synaptic plasticity,
and, consequently, HDAC inhibitors have been suggested as
a therapeutic option to reduce anxiety and alcohol intake
(Pandey et al., 2017). Other researchers have demonstrated DNA
methylation disturbances, mostly reductions, in humans with
AUDs, although a more recent study with different methodology
points to a relatively higher percentage of hypermethylated
methylation sites in brain DNA of subjects with alcoholism
(Tulisiak et al., 2017).

Methylation changes in the human brain appear to be
accompanied by reduction in the mRNA expression of DNA
methyltransferases (DNMTs), while in animal models repeated
alcohol exposure results in DNMT upregulation (Tulisiak et al.,
2017). Actually, the effects of alcoholism on DNA methylation
patterns involve both hypo- and hypermethylation in promoters
for specific genes, producing a rather complex picture of
methylation effects (Tulisiak et al., 2017). However, given
that alcohol exposure in animal models increases DNMTs’
levels some researchers have explored DNMT inhibition as
a therapeutic approach against excessive alcohol drinking,
finding that 5-aza or decitabine, both DNMT inhibitors, acutely
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reduce excessive alcohol drinking in rats or mice under certain
conditions (Ponomarev et al., 2017; Tulisiak et al., 2017).
Likewise, developmental models of alcoholism in rodents show
disruption of DNA methylation and other epigenetic markers in
various regions of the central nervous system (Laufer et al., 2017;
Mahnke et al., 2017; Öztürk et al., 2017).

Recent studies on the effects of HDAC and DNMT inhibitors
in AUD mouse models have shown that treatment with the
DNMT inhibitor decitabine results in decreased ethanol drinking
and upregulated expression of genes highly represented in
oligodendrocytes and astrocytes in the ventral tegmental area,
key region in the brain reward pathways (Ponomarev et al.,
2017). In addition, exposure of cultured astrocytes to ethanol
results in decreased methylation of the tissue plasminogen
activator (TPA) gene promoter (Tulisiak et al., 2017). TPA is
involved in ECM degradation, and has been reported to be
increased in animal models of AUDs (Zhang et al., 2014). In
rats, prenatal ethanol exposure leads to hypermethylation of the
promoter for the astrocyte GFAP gene and to reduction in GFAP
expression during early postnatal development (Vallés et al.,
1997). These findings suggest that alteration of DNA or histone
epigenetic markers in astrocytes and oligodendrocytes may play
an important role inmediating behavioral disturbances in AUDs.

Glial miRNA Expression Changes
Some studies have also targeted putative miRNA changes
in oligodendrocytes following repeated or prolonged alcohol
exposure and the possibility that such alterations may bring
about disturbances in myelination. In fact, alcoholism has
been found associated with upregulation in the expression of

miRNAs from a gene cluster in chromosome 14q32 that have for
targets the mRNAs of several proteins involved in processes of
oligodendrocyte proliferation and myelination (Manzardo et al.,
2013). It is also unsurprising that genome-wide examination
of miRNA-protein gene co-expression networks in the brain
of alcohol-dependent human subjects has identified abundant
epigenetic modifications in molecular networks that operate
within oligodendrocytes and astrocytes (Ponomarev et al., 2012).

Studies have also shown significant increases of PFC miRNAs
in subjects with AUDs (Lewohl et al., 2011), although in WM
some miRNAs would be decreased (Miguel-Hidalgo et al.,
2017). Increased miRNAs include some targeting major myelin
proteins such as PLP1 and CNPase as well as transcription factor
C11ORF9, a regulator of myelin formation. In our recent work,
we found that miR-21, high in oligodendrocytes, was strongly
and positively correlated with decreased PLP1 miRNA (which
is not a direct target of miR-21; Miguel-Hidalgo et al., 2017).
The networks and pathways regulated by differentially expressed
miRNAs in human alcoholics and mice are very highly enriched
in oligodendrocytes and astrocytes, some of them exclusively for
each cell type (Nunez et al., 2013). Thus, miRNA increases are
consistent with downregulated expression of myelin components
and other oligodendrocyte pathology in AUD patients.

CONCLUDING REMARKS

Ethanol exposure in AUDs results in disturbances in the
structure of astrocytes and oligodendrocytes as well as
in the expression and function of specific astrocytes and
myelin proteins. The disturbances are likely to impair diverse

FIGURE 1 | The cartoon illustrates that chronic alcohol exposure results in a variety of molecular disturbances that affect the reciprocal interactions between
astrocytes and oligodendrocytes (for example, through reduction of connexin levels), as well as between these glial cells and neurons at synapses, NR or in the
wrapping of axons by myelin. Alcohol exposure also results in pathological alterations of astrocyte-derived components at the blood brain barrier (BBB) and the
ECM. More recent research work has revealed epigenetic abnormalities or changed levels of specific non-coding RNAs in alcohol use disorders (AUDs).
Nevertheless, further research is needed to understand the mechanisms by which alcohol-related functional pathology at the cell and protein expression levels is
linked to epigenetic and non-coding RNA markers. Abbreviations: A, astrocytes; ECM, Extracellular matrix; GFAP, glial fibrillary acidic protein; NR, node of Ranvier; O,
Oligodendrocyte; T, Thrombospondin; ↓, Down-regulation; ↑, Up-regulation.
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aspects of neuronal function including regulation of synaptic
transmission, synapse formation, metabolism, interactions with
the brain blood supply, propagation of action potentials and
neuroprotection. Moreover, the complex interaction between
astrocytes and oligodendrocytes involves proteins that are
affected by ethanol exposure, such as specific connexins at gap
junctions, glutamate transporters, or ECM proteins produced
by astrocytes, oligodendrocytes and neurons that are crucial
for saltatory conduction at NR (Figure 1). However, much
more research is needed to determine the mechanisms by which
AUDs acting on the components that support the interactions
between astrocytes and oligodendrocytes lead to failures in
connectivity between brain regions, either by affecting myelin
structure or the ability to regenerate action potentials between
NR. In addition, chronic alcoholism causes disturbances in
the expression of miRNAs and other epigenetic markers that
directly influence protein expression. These regulatory changes
very likely underpin alterations of proteins and functional
pathways in astrocytes and oligodendrocytes observed in earlier
studies. However, with a few exceptions, it is still unclear how
protein expression changes and the functional pathways they

serve in astrocytes and oligodendrocytes depend on non-coding
RNA and epigenetic alterations and what is the contribution
of these glial processes to the neuronal pathophysiology of
alcoholism. In conclusion, much additional work is needed
to understand at molecular and neurophysiological levels the
mechanisms of alcohol-related neural damage that depend on
the molecular pathology of astrocytes, oligodendrocytes and
their interactions.
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