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Interactions among endothelial cells (EC) forming blood vessels and their surrounding
cell types are essential to establish the blood-brain barrier (BBB), an integral part of
the neurovascular unit (NVU). Research on the NVU has recently seen a renaissance
to especially understand the neurobiology of vascular and brain pathologies and
their frequently occurring comorbidities. Diverse signaling molecules activated in the
near proximity of blood vessels trigger paracellular pathways which regulate the
formation and stabilization of tight junctions (TJ) between EC and thereby influence BBB
permeability. Among regulatory molecules, the erythropoietin-producing-hepatocellular
carcinoma receptors (EphR) and their Eph receptor-interacting signals (ephrins) play a
pivotal role in EC differentiation, angiogenesis and BBB integrity. Multiple EphR-ligand
interactions between EC and other cell types influence different aspects of angiogenesis
and BBB formation. Such interactions additionally control BBB sealing properties
and thus the penetration of substances into the brain parenchyma. Thus, they play
critical roles in the healthy brain and during the pathogenesis of brain disorders. In
this mini-review article, we aim at integrating the constantly growing literature about
the functional roles of the EphR/ephrin system for the development of the vascular
system and the BBB and in the pathogenesis of neurovascular and neuropsychiatric
disorders. We suggest the hypothesis that a disrupted EphR/ephrin signaling at the BBB
might represent an underappreciated molecular hub of disease comorbidity. Finally, we
propose the possibility that the EphR/ephrin system bears the potential of becoming a
novel target for the development of alternative therapeutic treatments, focusing on such
comorbidities.

Keywords: blood-brain barrier, EphR/ephrin, endothelial cells, astrocytes, neurovascular disorders,
neuropsychiatric disorders

INTRODUCTION

Structural integrity of the blood-brain barrier (BBB) is essential for the establishment and
maintenance of brain homeostasis. Any disruption in its cellular or structural components may
exert devastating effects on mental health. During the past couple of years, research on the
neurovascular unit (NVU) has experienced a second revival. This highlighted the BBB as a
potential novel target for the development of alternative treatment strategies for brain and vascular
pathologies.
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Structural Components and Function of
the BBB
The BBB is a multicellular vascular structure separating the
central nervous system from peripheral blood circulation
(Obermeier et al., 2013). It is composed of cerebrovascular
endothelial cells (EC) forming brain vessels, astrocytes and
extracellular matrix (ECM) components providing structural
support (Abbott et al., 2006). Pericytes are also relevant to form
the BBB and their functional roles have been fully described
elsewhere (Cabezas et al., 2014; Figure 1). Together, all these
elements exert their functions as a selective physical (Abbott
et al., 2006), transport (Begley and Brightman, 2003) and
metabolic (Pardridge, 2003, 2016) barrier, tightly controlling
the passage of molecules in and out of brain parenchyma and
preventing the penetration of toxins or pathogens (Obermeier
et al., 2013).

Endothelial Cells
Cerebral EC have a unique characteristic in comparison
to peripheral EC: they are interconnected by continuous
intracellular multiprotein complexes called tight junctions (TJs),
which lack fenestrations and undergo extremely low rates of
transcytosis (Figure 1). This limits paracellular passage of
substances and directs molecular trafficking to take a rigorously
controlled transcellular route across the BBB (Abbott et al., 2006).
Such a strong physical barrier allows only small gaseous and
lipophilic molecules to diffuse freely in and out of the brain,
whereas bigger molecules need to be actively transferred via
transporter/carrier systems, such as the glucose transporter-1
(GLUT-1) or the large neutral amino acid transporter-1
(LAT-1) located on the luminal (blood facing) or abluminal
(brain facing) EC sites (Borst and Schinkel, 2013). Potentially
harmful compounds like glutamate are actively cleared from
the brain even against a concentration gradient requiring ATP
as energy source (e.g., via excitatory amino acid transporter
1/2; EAAT1/2 (Hawkins and Viña, 2016). Generally, large
hydrophilic molecules cannot be transferred across the BBB
unless by specific receptor- or adsorptive-mediated transcytosis
(Pardridge, 2003, 2016; Strazielle and Ghersi-Egea, 2016).

The TJ are key regulators of paracellular permeability
and transendothelial electrical resistance. Major constituents
of the TJ are transmembrane molecules like occludin (Yu
et al., 2005), which links to the cytoskeleton via the accessory
proteins zonula occludens (ZO-1/2) and claudins (Piehl
et al., 2010), and junctional adhesion molecules (JAM-A,
-B, -C, Mandel et al., 2012). During early embryogenesis,
pre-existing vessels sprout and undergo angiogenesis
(Obermeier et al., 2013). Sealing properties, including
refinement of the protein complexes, establishment of
efflux transporters and limitation of transcytosis, seems
to only mature when sprouting vessels come in close
contact with pericytes and astrocytes (Daneman et al., 2010;
Obermeier et al., 2013). However, the role of astrocytes
in this process is still a matter of controversy (see below).
Afterwards, matured TJ are fixed and need to be maintained
throughout life.

Astrocytes
Astrocytes regulate features of the BBB through the tips of
their processes, called astrocytic endfeet, which surround and
contact brain micro-vessels (Kettenmann and Verkhratsky,
2008). Among other functions, they regulate the ion balance
around the BBB and secrete and recycle neurotrophic factors
necessary to control TJ (Gee and Keller, 2005). A very elegant
example of how astrocytes maintain the ionic homeostasis
is represented by their synchronized spatial K+ buffering at
synaptic and BBB locations mediated by their perivascular
and perisynaptic endfeet (Olsen and Sontheimer, 2008). This
controls ion concentrations during normal brain activity and
can thereby link and adapt responses of blood vessels to
synaptic neuronal activity to guarantee the appropriate supply
of oxygen and nutrients (Wolburg et al., 2011). Additionally,
astrocytes secret several molecules such as the glia cell-derived
neurotrophic factor (GDNF; Igarashi et al., 1999), transforming
growth factor β (TGF-β; Dobolyi et al., 2012), angiopoietin
1 (ANG1; Easton, 2012), fibroblast growth factor 2 (FGF2;
Reuss et al., 2003) and vascular endothelial growth factor
(VEGF; Rosenstein et al., 2010) which act on EC to either
promote TJ formation and/or regulate BBB permeability
(Figure 1).

At present, it is still controversial whether astrocytes
are necessary for the induction of TJ, because of the
temporal shift between EC differentiation/maturation and
astrocyte development. Recent work suggests that astrocytes are
dispensable for the induction of TJ (Saunders et al., 2016), but
are necessary for their further strengthening and maintenance
throughout life (Alvarez et al., 2011, 2013). However, meningeal
blood vessels which lack contacts with astrocytes display higher
vascular permeability than EC-BBB, supporting indeed the
necessity of astrocytes to induce BBB properties (Lécuyer et al.,
2016).

Basement Membrane
The non-cellular component of the NVU is the basement
membrane, which is composed of structural proteins such as
collagen-IV, laminin and fibronectin, among others (Cardoso
et al., 2010; Figure 1). The main function of the basement
membrane is to provide stability to the other members of
the NVU and regulate their crosstalk enabled by matrix
transmembrane receptors like integrins and dystroglycans
(Baeten and Akassoglou, 2011).

THE ERYTHROPOIETIN-PRODUCING-
HEPATOCELLULAR CARCINOMA
RECEPTORS (EphR) AND Eph
RECEPTOR-INTERACTING SIGNALS
(EPHRINS) SYSTEM

The erythropoietin-producing-hepatocellular carcinoma
receptors (EphR)/Eph receptor-interacting signals (ephrin)
system was first discovered in 1990, when ephrinA1 was
characterized as a tumor necrosis factor (TNF)-inducible
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FIGURE 1 | Cellular and signaling components of the blood-brain barrier (BBB) in health conditions. Astrocyte-derived signaling molecules influence the
development and/or maintenance of BBB properties. Additionally, various members of both “A” and “B” classes of the ephrin family of ligands located on either
astrocyte and/or pericytes do activate EphA and EphB receptors on endothelial cells (EC) to influence EC differentiation during angiogenesis and the development of
tight junctions (TJ) during barriergenesis.

protein in human umbilical vein EC (HUVEC; Holzman et al.,
1990). EphRs/ephrins typically mediate contact-dependent
communication between cells to control cell fates. During
development, this system plays an important role in spatial
organization, axon guidance, formation of synaptic connections
and blood vessel remodeling. In the adulthood, it mostly
regulates synaptic remodeling, epithelial differentiation, bone
remodeling, immune function, insulin secretion and stem
cell self-renewal (Kullander and Klein, 2002; Yamaguchi and
Pasquale, 2004; Pasquale, 2005, 2008).

Eph receptors comprise the largest family of receptor tyrosine
kinases (RTK). Eph receptors and ephrins can be divided
into subclasses A and B. In humans, nine EphA and five
EphB receptors are known. They consist of an extracellular
part including a globular ligand-binding domain, a cysteine
rich region two fibronectin type 3 repeats and a cytoplasmic
domain comprised of a short juxtamembrane region with
several conserved tyrosine residues, a sterile alpha motive
protein-protein interaction domain and a C-terminal PDZ
binding motif. Additionally, several alternatively spliced forms
have been identified with distinct functions (Pasquale, 2010).
Ephrins, on the other hand, can be further distinguished
by their membrane attachment: ephrinAs are anchored via a
glycosylphosphatidylinositol (GPI) linkage, whereas ephrinBs
are attached via a single transmembrane domain containing a

short cytoplasmic PDZ-binding motif. EphRs and ephrins can
be expressed on the same cell, in mutually exclusive expression
patterns or in complementary gradients, establishing a highly
dynamic signaling system (Lisabeth et al., 2013).

The EphR/Ephrin System: Signaling
Mechanisms
Besides the well-known bidirectional signaling activated
upon cell-cell interactions, which is described in detail in
some excellent reviews (Pasquale, 2008; Murai and Pasquale,
2011; Klein, 2012; Lisabeth et al., 2013), several alternative
signaling mechanisms have been proposed for the EphR/ephrin
system.

Upon receptor/ligand interaction, several downstream
signaling cascades are activated to mediate cell adhesion
or repulsion, depending on the type and abundance of
ligands and receptors present on cell surfaces (Janes et al.,
2012). These signaling pathways include, among others, the
Src kinase family, mitogen-activated protein kinase, and
integrin mediated pathways (Lackmann and Boyd, 2008;
Pasquale, 2008; Pitulescu and Adams, 2010). Their activity
is dependent on Rho family GTPases, including RhoA,
Rac1, Cdc42 and a variety of guanine nucleotide exchange
factors (GEF), like ephexins (Cowan et al., 2005; Pasquale,
2008). After the initial receptor/ligand interaction, intact
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EphR/ephrin complexes together with potentially associated
cytoplasmic proteins and the surrounding membrane are
internalized in either cell. This Rac1-dependent mechanism
is termed trans-endocytosis and provides a mechanism
to switch between cell adhesion and retraction fates and
to terminate receptor signaling activity (Lisabeth et al.,
2013).

Besides trans-endocytosis, the activation of enzymes which
initiate proteolytic cleavage represents another alternative
signaling mechanism (Atapattu et al., 2014). Among such
enzymes, A disintegrin and metalloproteases (ADAM) and
matrix metalloproteases (MMP) are implicated in signal
termination (Atapattu et al., 2014).

In mammalian tissues, members of the ADAMs family
are transmembrane metalloproteases able to process and shed
ectodomains of membrane bound receptors (Klein and Bischoff,
2011). They play crucial roles in pathological conditions
such as inflammation or stress-mediated angiogenic responses
(Weber and Saftig, 2012). Several EphRs/ephrins of both A
and B subclasses can associate with ADAMs resulting in their
own cleavage. Cleavage of the ligand-bound receptor leads
to a breakdown of the molecular tethers between interacting
cells, thereby favoring the internalization of receptor/ligand
complexes, as exemplified by ADAM10 initiated cleavage
of the EphA3/ephrinA2 complex during axon detachment
(Hattori et al., 2000; Mancia and Shapiro, 2005) or of the
EphA2/ephrinA1 complex (Salaita et al., 2010).

MMPs cleave proteins located either on membranes or
in extracellular spaces (Miller et al., 2008). Their main
function is to degrade structural components of the ECM
to facilitate cell migration (Streuli, 1999), especially during
angiogenesis and inflammatory processes (Kessenbrock
et al., 2010; Palmisano and Itoh, 2010). Recently, it has
been shown that MMPs cleave ephrinA1 and ephrinA2 from
their GPI-anchor, leading to the release of functional soluble
monomers which can act on distant Eph receptors (Beauchamp
and Debinski, 2012). Followed by an initial shedding step
mediated by ADAMs or MMPs, EphRs/ephrins can further
be processed by intramembrane cleaving proteases such as
γ-secretase (Bergmans and De Strooper, 2010) or neuropsin
(Attwood et al., 2011; Morohashi and Tomita, 2013). This
events generates cytoplasmic active fragments (Litterst et al.,
2007; Xu and Henkemeyer, 2009) which may i.e., regulate
behavioral responses such as anxiety (Attwood et al.,
2011).

The signaling cluster propagation represents another
noteworthy alternative signaling mechanism to be mentioned.
This type of signaling, originally initiated by receptor/ligand
interactions in trans, causes the formation of lateral clusters
through receptor-receptor interactions in cis. These receptor
clusters do no longer rely on ephrin interaction to get activated,
enabling the strong amplification of an originally small signal
generated by a first short cell-cell contact (e.g., EphA3/ephrinA5;
Wimmer-Kleikamp et al., 2004).

Such signaling effectors of the Eph/ephrin system might
become relevant in brain disorders to identify alternative targets
for drug discovery.

The Role of the EphR/Ephrin System for
the Development and Function of the
Vasculature and the BBB
The interaction of specific cell types to properly develop
the vascular system and a functional BBB is an essential
process which requires the appropriate temporally- and spatially-
regulated expression of distinct guidance cues. Among them, the
EphR/ephrin system represents an ideal candidate to exert those
functions.

During vasculogenesis, VEGF induces ephrinA1 expression
which activates EphA2 on neighboring EC, thus exerting
angiogenic effects—in vitro and in vivo (Cheng et al., 2002;
Brantley-Sieders et al., 2004). Despite the previously mentioned
controversy, astrocytes release VEGF during embryonic
development and might therefore contribute to the early TJ
formation. Later on in development, however, for the further
differentiation of EC and formation of an efficient BBB, the
inhibition of EphA2 activity in human brain micro-vessel EC
(HBMEC) is instrumental to promote TJ strengthening (Zhou
et al., 2011; Figure 1). These different functions mediated by
the tightly controlled expression levels of EphA2 suggest that
the regulation of EphA2 dosages may underlie the ‘‘switch’’
between early/angiogenic and late/barriergenic effects of
EphA2 in EC. Moreover, they suggest that putative interactions
between EphA2-expressing EC with ephrinA1-expressing
perivascular astrocytes or pericytes may also control TJ
formation in physiological conditions or their disruption during
pathogenic processes (Lécuyer et al., 2016). In a different
system, the pulmonary system, stimulation of arterial EC
with ephrinA1 also increases their permeability (Larson et al.,
2008), further supporting that the overexpression of certain
EphR/ephrin interactions might influence barrier integrity,
ultimately impacting brain homeostasis. Astrocytes express
several other members of the EphR/ephrin system (Nestor
et al., 2007) which may be relevant during both vasculogenesis
and/or barriergenesis. For example, the proper interaction
between EphA4/ephrinA5 located on EC and astrocyte endfeet,
respectively, is necessary for the development of a normal
vascular system in the hippocampus of adult mice (Hara
et al., 2010). Additionally, radial glia cells provide a physical
scaffold and chemical signals to support the very early stages of
angiogenesis (Cheslow and Alvarez, 2016). Among such signals,
EphA4 expressed on EC has been indicated to guide the invasion
of the developing brain by newly forming micro-vessels in
response to glial-dependent stimulation (Goldshmit et al., 2006).

With regard to the ‘‘B’’ types, ephrinB2 controls VEGF
receptor (VEGFR)-2 internalization, which is necessary for
receptor activation and VEGF-induced filopodial extension in
EC during angiogenesis (Bochenek et al., 2010; Sawamiphak
et al., 2010; Pitulescu and Adams, 2014). During these events,
the role of the EphB2/ephrinB2 interaction is essential for
blood vessel assembly (Foo et al., 2006). During cardiovascular
development, EphB4/ephrinB2 signaling in EC is additionally
activated to properly specify arterial vs. venous identity (Wang
et al., 1998; Adams et al., 1999; Gerety et al., 1999; Gale et al.,
2001; Augustin and Reiss, 2003).
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DISRUPTED INTEGRITY OF THE BBB AND
THE Eph/EPHRIN SYSTEM—THE
“MISSING LINK” BETWEEN
NEUROVASCULAR AND
NEUROPSYCHIATRIC PATHOLOGIES?

BBB leakiness is a hallmark of neurovascular pathologies
comorbid with neuroinflammatory processes (Lee et al., 2009;
Abbott and Friedman, 2012). Recent work has also evidenced
signs of BBB leakiness in neuropsychiatric disorders, which
are also accompanied by elevated levels of blood-circulating
pro-inflammatory cytokines and TNF (Miller et al., 2009;
Janelidze et al., 2011; Liu et al., 2012; Salim et al., 2012;
Najjar et al., 2013). Furthermore, preclinical and clinical
studies have evidenced a wide range of comorbidity between
neurovascular and neuropsychiatric disorders with concurrent
neuroinflammation (Dantzer et al., 2008; Wood, 2014; Hodes
et al., 2015; Patel and Frey, 2015; Seligman and Nemeroff,
2015; Miller and Raison, 2016; Barnes et al., 2017; Menard
et al., 2017), thereby suggesting that common neurobiological
substrates may underlie such high degrees of comorbidities. In
view of the regulatory roles of the EphR/ephrin system during the
development and maturation of a proper BBB sealing properties,

it appears evident how this system might be considered a hub of
brain disorders associated with BBB disruption.

Preclinical studies indicated that, among ‘‘A’’ members
of the EphR/ephrin system, especially the EphA2 receptor
mediates inflammation during injury, ischemia and other
chronic inflammatory conditions in various murine models of
neurovascular disorders (Jellinghaus et al., 2013; Thundyil et al.,
2013; Ende et al., 2014). Specifically, EphA2 receptor activation
occurs after brain injury and contributes to inflammation
by promoting BBB permeability (Thundyil et al., 2013).
Interestingly, the promoter of ephrinA1, the highest affinity
ligand for EphA2, is a target of the pro-inflammatory
marker TNF (Ende et al., 2014). Furthermore, whereas
TNF has angiogenic properties during early embryogenesis
(Cheng and Chen, 2001; Munthe and Aasheim, 2002), it
triggers BBB hyperpermeability in adult epithelial tissues
via the activation of both EphA2 and EphA4 in EC, with
induction or exacerbation of neurovascular disorders
(Jellinghaus et al., 2013; Thundyil et al., 2013; Ende et al.,
2014; Figures 1, 2). These evidences suggest that investigating
the EphA2/ephrinA1 bidirectional signaling between interacting
cellular partners at the BBB may reveal novel molecular
triggers of comorbidity between inflammatory/neurovascular/
neuropsychiatric disorders and indicate alternative targets of

FIGURE 2 | Cellular and signaling components of the BBB in pathological conditions. In diseased brains, the overactivation of astrocyte- or pericyte-dependent
ephrin signaling may affect TJ via an increased activity of Eph receptors, with consequent increased barrier permeability to blood circulating inflammatory factors
such as tumor necrosis factor (TNF). Increased stress has also been shown to correlate with a compromised barrier functionality and impaired TJ which might further
induce the onset of neurological and neuropsychiatric disorders. However, specific molecular mediators of such effects are yet to be identified.
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therapeutic interventions. Among other candidates, although
in a specific subset of neuropsychiatric disorders, it was shown
that the binding between ephrinA5 expressed on astrocytes
and its corresponding EphA4 receptor on EC is increased
in the hippocampus of a mouse model of temporal lobe
epilepsy, which shows an increased development of micro-
vessels with detrimental consequences on brain homeostasis
(Shu et al., 2016). Interestingly, the selective blockade of
the EphA4/epHRin interaction is sufficient to attenuate
the disease phenotype, further supporting the therapeutic
relevance of a selective targeting of the EphR/ephrin system for
neurovascular/psychiatric disorders.

Regarding the ‘‘B’’ members, a link between TNF and
EphB2 has also been suggested to be relevant to induce
inflammatory pathways (Pozniak et al., 2014; Figure 2). It
has also been shown that EphB2 activity regulates cognitive
functions and resilience or vulnerability to stress (Yuferov et al.,
2013; Zhang et al., 2016). Among triggers of neuropsychiatric
disorders, stress is one of the most detrimental (Charney and
Manji, 2004). In line with this, as little as 2 days of stress provokes
morphological changes in EC, accompanied by dysregulation of
claudin-5 and occludin expression (Figure 2). These changes
are paralleled by a decreased expression of GFAP, indicating an
additional negative impact on astrocytes (Sántha et al., 2016).
A clinical and a preclinical study also confirmed an astrocyte
impaired phenotype, with reduced coverage of blood vessels by
AQP-4-enriched astrocyte endfeet, in the prefrontal cortex of
depressive patients and of a validated animal model of depression
(Rajkowska et al., 2013; Di Benedetto et al., 2016). Moreover,
a new study has clearly demonstrated the detrimental effects
of stress on the permeability of BBB, with a reduction in its
sealing properties (Menard et al., 2017). It would be interesting
to investigate whether EphB2 might represent a molecular
link between the above-mentioned stress-dependent changes in
specific cellular components of the BBB, in its sealing properties
and the modulatory effects on behavioral phenotypes.

A proof-of-principle that the EphR/ephrin system might
represent a highly relevant therapeutic target for comorbid
neurovascular and neuropsychiatric disorders has been
provided by the controlled reactivation of EphB4/ephrinB2 in
cardiovascular disorders, which enhanced BBB repair

mechanisms (Ghori et al., 2017). This approach sounds
promising to rescue BBB deficits andmay putatively be beneficial
to reverse comorbid maladaptive behavioral phenotypes.

CONCLUSION

Although several studies provide evidence for a compromised
BBB integrity in a broad variety of psychopathologies, it is
still unknown whether the BBB disruption is a cause or a
consequence of the disease. Depending on the circumstances,
a transient opening of the BBB might even be beneficial, e.g.,
during inflammation, it may allow the passage of growth factors
or antibodies to hinder the inflammatory process. On the other
hand, tightening of the BBB appears necessary during periods of
stress or hypoxia (Abbott et al., 2006).

Investigating the expression of EphR/ephrin system in the
single components of the BBB during vasculogenesis and
barriergenesis as well as their interplays in health and in the
pathogenesis of brain and neurovascular disorders might open
new avenues to understand neurobiological underpinnings of
pathological comorbidities. This may help to identify novel
therapeutic targets especially beneficial for comorbid patients.
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