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Evidence indicates that long-term memory formation involves alterations in synaptic

efficacy produced by modifications in neural transmission and morphology. However,

it is not clear how such alterations induced by learning, that encode memory, are

maintained over long period of time to preserve long-term memory. This is especially

intriguing as the half-life of most of the proteins that underlie such changes is usually in

the range of hours to days and these proteins may change their location over time.

In this review we describe studies that indicate the involvement of dendritic spines

in memory formation and its maintenance. These studies show that learning leads to

changes in the number and morphology of spines. Disruption in spines morphology or

manipulations that lead to alteration in their number after consolidation are associated

with impairment in memory maintenance. We further ask how changes in dendritic spines

morphology, induced by learning and reputed to encode memory, are maintained to

preserve long-term memory. We propose a mechanism, based on studies described in

the review, whereby the actin cytoskeleton and its regulatory proteins involved in the initial

alteration in spine morphology induced by learning are also essential for spine structural

stabilization that maintains long-term memory. In this model glutamate receptors and

other synaptic receptors activation during learning leads to the creation of new actin

cytoskeletal scaffold leading to changes in spines morphology and memory formation.

This new actin cytoskeletal scaffold is preserved beyond actin and its regulatory proteins

turnover and dynamics by active stabilization of the level and activity of actin regulatory

proteins within these memory spines.

Keywords: actin cytoskeleton, dendritic spines, long term memory, memory maintenance, structural plasticity,

neuronal morphology

Evidence suggests that long-term memory is formed by enduring alterations in synaptic
efficacy and connectivity between neurons (Konorski, 1948; Hebb, 1949; Dudai, 1989; Bliss and
Collingridge, 1993; Martin et al., 2000; Tsien, 2000; Kandel, 2001; Lamprecht and LeDoux,
2004; Caroni et al., 2012; Bailey et al., 2015). However, it is not clear how such changes
induced by learning that encode memory are maintained over long period of time to preserve
long-term memory especially since the half-life of the proteins that underlie such changes
is relatively short (Hanus and Schuman, 2013; Alvarez-Castelao and Schuman, 2015) and
these proteins may change their location over time. In this review we will explore the
roles of dendritic spines in long-term memory maintenance and examine the possibility
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that morphological changes that are induced by learning and
that are hypothesized to encode memory are maintained to
preserve long-term memory without significant decay. We will
further describe how the actin cytoskeleton may be involved in
preserving the morphology of dendritic spines after learning to
maintain long-term memory.

SPINE MORPHOLOGY AFFECTS
NEURONAL FUNCTION

Dendritic spines receive excitatory synaptic inputs and confine
local synaptic signaling and the diffusion of postsynaptic
molecules (Nimchinsky et al., 2002; Lamprecht and LeDoux,
2004; Newpher and Ehlers, 2009; Nishiyama and Yasuda, 2015).
Alterations in spine morphology may be involved in neuronal
functions that subserve memory formation. For example, it was
revealed that spines with large postsynaptic densities (PSDs)
tend to have a higher level of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs) than spines with
smaller PSDs (e.g., Takumi et al., 1999). Since the area of
PSDs is correlated with that of the dimensions of the spine
head (Harris and Stevens, 1989), it is implied that spines with
larger head express more glutamate receptors than spines with
smaller head. In addition, a study found a correlation between
the amplitudes of currents in the spine and the spine head
volume showing that the distribution of functional AMPARs is
approximately proportional to the spine head volume (Noguchi
et al., 2011). Thus, synaptic efficacy mediated by AMPA receptors
is correlated with spine head volume from silent synapses in
small spines to highly responsive larger spines. AMPA receptors
trafficking into the synapse is involved in memory formation. For
example, fear conditioning drives glutamate receptor 1 (GluA1)-
containing AMPARs into synapses in lateral amygdala (LA)
neurons (Rumpel et al., 2005; Yeh et al., 2006; Nedelescu et al.,
2010; Ota et al., 2010). Moreover, fear memory is impaired if
GluA1-AMPAR insertion is blocked (Rumpel et al., 2005).

The geometry of the spine neck may also affect synaptic
efficacy. Spine neck plasticity appears to mainly affect
local voltage amplification in spines and biochemical
compartmentalization, such as of Ca2+, within the spine
head (Noguchi et al., 2005) that may affect signal transduction
and bidirectional diffusion of material from dendrite to spines
(Bloodgood and Sabatini, 2005; Gray et al., 2006; Santamaria
et al., 2006). Spines with longer thinner spine necks confine
more molecules. Thus, changes in spine neck may affect synaptic
efficacy and also neuronal function (Araya et al., 2006, 2014).
For example, spines with long neck have small somatic voltage
contributions. Synaptic stimulation paired with postsynaptic
activity can lead to shortening of spines necks and to change in
the input/output gain of pyramidal neurons and to increase in
synaptic efficacy (Araya et al., 2014).

LEARNING LEADS TO SPINES
MORPHOGENESIS

It has been shown that changes in dendritic spines morphology
and number are associated with memory formation (Lamprecht

and LeDoux, 2004; Bailey et al., 2015). For example, contextual
fear conditioning leads to an increase in the density of
dendritic spines in hippocampal CA1 and the anterior cingulate
cortex (Restivo et al., 2009; Vetere et al., 2011). Auditory fear
conditioning increases the rate of spines elimination in layer-
V pyramidal neurons in the mouse frontal association cortex
whereas fear extinction induces spines formation in this brain
region (Lai et al., 2012). Fear conditioning leads to an increase
in postsynaptic density (PSD) area in smooth endoplasmic
reticulum (sER)-free spines and to decrease in spines head
volume in LA (Ostroff et al., 2010). Intense training with high
footshock during inhibitory avoidance, that induced higher
resistance to extinction and thus suggests an enhanced learning,
led to an increase in mushroom shaped spines along with a
decrease in thin spines in the dorsomedial striatum (Bello-
Medina et al., 2016). Auditory fear conditioning leads to increase
in pathway-specific formation of LA axons boutons in auditory
cortex (ACx), dendritic spines of pyramidal cells in layer 5 of
ACx, and putative LA–ACx synaptic pairs (Yang et al., 2016).

SPINES STABILITY AND LONG-TERM
MEMORY

A key question that arises from the above observations is whether
spines formation and morphogenesis induced by learning are
stable for a long period of time to maintain long-term memory.
Evidence indicates that this may be the case. First, there are ample
observations showing that spines are stable for days to years.
For example, the structure of dendritic spines is stable for days
in cultured hippocampal slices (De Roo et al., 2008) and for
years in the cortex in vivo (Grutzendler et al., 2002; Trachtenberg
et al., 2002; Zuo et al., 2005). Second, spine stability is associated
with long-term memory persistence. For example, a fraction
of newly formed spines persist over weeks and the amount of
stable spines correlates with performance after learning (Yang
et al., 2009). New dendritic spines are grown following training
for a forelimb reaching task and are preferentially stabilized by
subsequent training sessions (Xu et al., 2009). Acquired motor
task is disrupted by post learning optical activation of Rac1
GTPase and shrinkage of the learning-potentiated spines a day
after training indicating that preserving the spines morphology
is necessary for memory maintenance and that their shrinkage
leads tomemory erasure (Hayashi-Takagi et al., 2015). Interfering
with actin cytoskeleton polymerization in basolateral amygdala
complex (BLC) during the maintenance phase of conditioned
place preference (CPP) memory led to the impairment in
maintenance of CPP memory and to decrease in spines density
in BLC suggesting that dendritic spines persistence supports the
maintenance of the memory trace (Young et al., 2014).

The above observations show that spines are formed by
learning and last for days to weeks and potentially more after
behavioral training and that disruption in spines morphology
after memory consolidation is associated with impairment
in memory maintenance suggesting that spines persistence is
essential for memory maintenance. However, it is not clear
how these spines are stabilized in the face of the short life
and dynamics of the molecules that build them. Below we
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suggest that the actin cytoskeleton which is intimately involved
in spine formation andmorphogenesis also stabilizes its structure
under certain conditions, a stabilization that is necessary for
maintaining long-term memory.

ACTIN CYTOSKELETON IS INVOLVED IN
SPINE MORPHOGENESIS AND MEMORY
FORMATION

Actin and Spine Morphology
Actin cytoskeleton is involved in the morphogenesis of dendritic
spines. Mature spines contain a mixture of branched and linear
actin filaments at their base, neck, and head. The spine neck
contains both linear and branched filaments whereas branched
actin filament network is a dominant feature of the spine
head (Korobova and Svitkina, 2010). The actin cytoskeleton is
intimately involved in the formation and elimination, stability,
motility, and morphology of dendritic spines (Halpain et al.,
1998; Matus, 2000; Schubert and Dotti, 2007; Honkura et al.,
2008; Hotulainen and Hoogenraad, 2010; Chazeau et al., 2014).
The shape and dynamics of mature spines are regulated by two
distinct pools of actin filaments (Honkura et al., 2008). The stable
pool of F-actin has a turnover rate of minutes and is mainly
found at the base of the spine head whereas the dynamic pool
has a turnover rate of seconds. It is suggested that the volume
of spines is maintained actively and continuously by an exact
balance between the pressure generated by the surrounding tissue
and the expansive force created by the dynamic F-actin pool.
Changes in spine structure depend on actin polymerization. For
example, spine head enlargement by glutamate stimulation is
dependent on actin polymerization (Matsuzaki et al., 2004).

In addition to stabilization of spine head morphology actin
may be involved also in spine neck stabilization. A biophysical
model suggests that constriction of the spine neck assists in the
stabilization of spines, thus pointing to a role in stabilization and
maintenance of ring-like F-actin structures that are consistently
found in spine neck (Miermans et al., 2017).

Actin cytoskeleton polymerization, depolymerization and
branching leading to changes in spine morphology are closely
controlled by small GTPases Rac1, Cdc42 and Rho GTPases and
their downstream effectors such as Arp2/3 and formins (e.g.,
Luo, 2000;Woolfrey and Srivastava, 2016). These actin regulatory
proteins are functionally linked with synaptic receptors, such as
glutamate receptors, Eph receptors, and adhesionmolecules (e.g.,
cadherin), that participate in spine morphogenesis and memory
formation (e.g., Woolfrey and Srivastava, 2016). In addition,
actin filaments dynamics may be also coupled with microtubules
dynamics for temporal and local regulation of dendritic spines
(Shirao and González-Billault, 2013).

Actin and Memory
It has been shown that actin cytoskeleton is essential for
memory formation. Interfering with proper actin cytoskeleton
polymerization impairs the formation of long-termmemory (e.g.,
Mantzur et al., 2009; Rehberg et al., 2010; Gavin et al., 2011).
Moreover, regulation of actin polymerization is important for

spine morphology andmemory formation. For example, deletion
of the actin filament depolymerizing protein n-cofilin or its
regulator LIM kinase (LIMK-1) leads to alterations in spines
morphology, synaptic plasticity and learning andmemory (Meng
et al., 2002; Rust et al., 2010). In addition, interfering with cofilin
function impaired spines shrinkage induced by LTD andmemory
extinction (Zhou et al., 2004; Wang et al., 2013). In addition,
actin-regulatory proteins that control actin filaments network
and affect spine morphology are also involved in memory
formation. For example, the WAVE isoforms (WAVE-1, WAVE-
2, and WAVE-3) allow the assembly of multiprotein complexes
that include regulatory proteins that affect actin structure and
branching (e.g., Arp2/3) (Pollard, 2007; Takenawa and Suetsugu,
2007; Pollitt and Insall, 2009). This Wave Regulatory Complex
(WRC) is functionally linked to synaptic receptors to affect
actin cytoskeleton and spine morphology. For example, BDNF
signaling may activate Rac1, that in turn leads to relocation
of CYFIP1 (cytoplasmic FMRP-interacting protein 1) to affect
the WRC, actin cytoskeleton and spine morphology (De Rubeis
et al., 2013). Loss of WAVE-1 reduces spines density and leads to
impairment in Morris water maze memory retention (Soderling
et al., 2007). Arp2/3 is concentrated in spines and is needed for
spine head growth and for activity-dependent spine enlargement
(Kim et al., 2006, 2013; Rácz and Weinberg, 2008; Wegner
et al., 2008; Hotulainen et al., 2009). Deletion of ArpC3, an
essential Arp2/3 subunit, leads to defects in actin turnover in
spine and spine formation and morphology (Kim et al., 2013).
ArpC3f/f:CamKllα-Cre mice are impaired in Y-maze (working
memory) and novel object recognition (episodic memory) tests.
Inhibition of Arp2/3, in LA during auditory fear conditioning
impaired the formation of long-term, but not short-term, fear
memory (Basu et al., 2016).

Thus, actin cytoskeleton and its regulatory proteins are
involved in spine morphogenesis and memory formation.
However, for memory to persist these structural changes need to
be maintained over long-period of time. Can actin cytoskeleton
maintain long-lasting changes in spine morphogenesis observed
after learning?

EVIDENCE FOR A ROLE FOR ACTIN
CYTOSKELETON AND ITS REGULATORY
PROTEINS IN MAINTAINING SPINE
MORPHOLOGY AND MEMORY

There are several observations that show that actin and
its regulatory proteins are involved in maintaining spines
morphology and the persistence of long–term memory. The
maintenances of long-term conditioned place preference (CPP)
memory, formed through association with methamphetamine
(METH), is impaired by infusion of Latrunculin A (LatA),
into basolateral amygdala complex (BLC) 2 days after training
(Young et al., 2014) (LatA prevents the incorporation of G-
actin into dynamic F-actin, Morton et al., 2000). Inhibition of
non-muscle myosin II also impaired CPP memory maintenance.
The investigators further revealed that spines density in BLC
increased with CPP training and that LatA infusion into BLC
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2 days following training reduced spines density in CPP-paired
animals, with no effect on spines in control animals. Thus,
the study implies that maintenance of memories is supported
by a constitutive cycling of filament actin that maintains spine
stability.

Actin regulatory proteins are also involved in maintaining
long-term memory. Activation of Rac1, a GTPase that affects
actin regulatory proteins, in activated synapses in motor cortex
leads to spine shrinkage (Hayashi-Takagi et al., 2015). Activation
of Rac1 a day after training also impaired motor task memory.
Since activation of Rac1 leads to disruption of actin cytoskeleton
and spine shrinkage (Hayashi-Takagi et al., 2015) the study
indicates that the integrity of spines structure is important for
maintaining motor task memory. In this context it is worth
noting that loss of Rac1 leads to increase in mean PSD length
and mean spine head area and impairment in working/episodic-
like memory in the delayed matching-to-place (DMP) task
(Haditsch et al., 2009). Thus, alteration in Rac1 activity leads to
abnormal spine morphology and affects memory formation and
maintenance.

Rac1 is also involved in forgetting. Inhibition of Rac1 activity
in hippocampal neurons form extended object recognition
memory and impairs the forgetting of contextual fear memory
(Jiang et al., 2016; Liu et al., 2016). Rac1 activation on the
other hand accelerated memory decay within 24 h. Moreover,
expression of active Rac1 produced more lamellipodia-like
synapses with a large spine head and overexpression of Rac1-DN
led to a reduced spine density, with more long and thin filopodia-
like spines. Activation of Rac1 in LA impaired long- but not
short-term memory formation (Das et al., 2017). In Drosophila,
Rac1 also mediates forgetting (Shuai et al., 2010; Dong et al.,
2016).

Cdc42 is also involved in synaptic and structural plasticity of
spines and in memory formation (Kim et al., 2014; Hedrick et al.,
2016). Cdc42 cKO affects spine morphology, synaptic plasticity,
and remote memory in mice (Kim et al., 2014). Cdc42 is also
implicated in forgetting. Single-session training of Drosophila
leads to anesthesia-resistant memory (ARM) formation and
Cdc42 activation. Repeated learning extends ARM by inhibition
of Cdc42-mediated forgetting. Inhibition of Cdc42 prolongs
ARM retention and increased Cdc42 activity abolishes repetition-
induced ARM extension (Zhang et al., 2016).

Forgetting is also regulated by Arp2/3 complex in C. elegans
(Hadziselimovic et al., 2014). Upregulation of the Arp2/3
complex in AVA interneuron prevents forgetting. In contrast,
downregulation of the Arp2/3 complex accelerates forgetting.
Interestingly, it was shown that ArpC3 is needed for maintaining
normal spine morphology in mice as ArpC3 deletion has no
effect on spines morphology 1–2 weeks after ArpC3 knock down
but at the 4 and 8 weeks time points the fraction of mushroom
type spines decreased while filopodia-like spines increased in
dendrites fromArpC3KO compared to control (Kim et al., 2013).

Profilin is an actin regulatory protein that can mediate
stabilization of spine morphology (Ackermann and Matus, 2003;
Michaelsen et al., 2010; Michaelsen-Preusse et al., 2016). Profilin
is translocated into dendritic spines after various stimulation
such as stimuli leading to LTP or LTD and NMDA receptors

stimulation (Ackermann and Matus, 2003; Michaelsen et al.,
2010; Bosch et al., 2014; Michaelsen-Preusse et al., 2016).
Profilin translocation into spines starts minutes after stimulation
and lasted for many hours leading to suppression of actin
dynamics and stabilization of spine morphology. Profilin–G-
actin complex binds to VASP through its poly-proline segment
(G(GP5)3) (Reinhard et al., 1995; Ferron et al., 2007) and
such binding is needed for glutamate-induced translocation
of profilin into spines and for consolidation and stabilization
of spine morphology (Ackermann and Matus, 2003). It has
been shown that fear conditioning leads to the translocation
of profilin into dendritic spines in LA (Lamprecht et al., 2006)
and that these profilin-containing spines in LA are larger
than spines that do not contain profilin. Microinjection of
G(GP5)3, that binds profilin and thus competes with its binding
to VASP, but not the control peptide G(GA5)3, impaired the
formation of long- but not short-term fear memory in LA
(Basu et al., 2016). These results indicate that VASP-profilin
binding in LA is essential for the formation of long-term
fear memory. Moreover, it suggests that profilin translocation
into spines, that leads to suppression of actin dynamics and
stabilization of spine structure (Ackermann and Matus, 2003),
is essential for the formation of long-term fear memory in
LA.

The above observations indicate that the actin cytoskeleton
and its regulatory proteins are involved in spine stabilization
and in the maintenance of long-term memory. However, it
is not clear how actin preserves spine stability that may
mediate the maintenance of long-termmemory. This is especially
puzzling in light of the relatively short half-life of actin and
its regulatory proteins and in the fast dynamic of the actin
cytoskeleton and associated proteins network that support spine
morphology.

A MODEL FOR ACTIN CYTOSKELETON
MAINTENANCE OF SPINE STRUCTURE
AND LONG-TERM MEMORY

The above observations indicate that spines morphogenesis
followed by their stabilization are involved in long-term
memory formation and maintenances, respectively. Moreover,
the actin cytoskeleton and its regulatory proteins are involved
in spine morphogenesis and stabilization and in memory
consolidation and maintenances. However, these observations
beg the question: How spine structure stability involved in
memory maintenance last beyond actin and its regulatory
proteins turnover and dynamics to preserve enduring memories?
Below are observations that collectively form a model to describe
the function of actin cytoskeleton in spine stabilization and
memory endurance.

The model includes two aspects that interact with each other-
the spontaneous activation of glutamate receptor during the
maintenance phase of memory to reduce actin dynamic and to
tag the memory trace spines for delivery of proteins and mRNAs
into spines and the maintenance of the actin network in spines in
a steady state structure to preserve spines morphology.
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Spontaneous Glutamate Activity Maintains
Actin Structure, Spine Morphology and
Memory
It has been shown that actin dynamics in spines and actin-
based protrusive activity from the spine head are potently
inhibited by activation of either AMPA or NMDA receptors
(Fischer et al., 2000). This blockade of motility causes spines
to round up and to be more stable and regular. The authors
further show results suggesting that low-voltage-activated Ca2+

channels mediate the inhibitory effects of AMPARs on actin
dynamics in spine. The effect on reduction of actin dynamics
could be mediated by Ca2+-responsive actin binding proteins.
The authors suggest two distinct types of morphological plasticity
in spines, the first leading to formation of new spines by
stimulation such as LTP operating through NMDA receptors,
and a second where AMPAR activation at established synapses
stabilizes spine morphology. The differential involvement of
glutamate in various stages of synapse formation may be related
to the different conditions appropriate for spine formation and
morphogenesis and for those required for spines maintenance.
For example, newly formed synapses may exhibit only NMDA
receptor-mediated currents followed by insertion of AMPA
receptors (Liao et al., 1999; Petralia et al., 1999). As mentioned
above learning leads to the insertion of AMPA receptors
into synapses (e.g., Rumpel et al., 2005). Maintenance of
established spine structure is suggested to require continual
activation of AMPA receptors involving miniature synaptic
events resulting from spontaneous vesicle fusion to prevent
spine loss in the absence of action potentials (McKinney
et al., 1999). Thus, miniature synaptic events at specific
spines where responses to glutamate is enhanced during
learning (e.g., by insertion of AMPA receptors) may lead to
the maintenance of dendritic spines and their morphology
needed for the persistence of long-term memory. Indeed,
increase in miniature synaptic events is detected following
learning during memory maintenance period (e.g., Ghosh
et al., 2015). Thus, it could be that larger spines that
contain more AMPA receptors are more sensitive to release
of glutamate, and thus more stable, than smaller spines that
are less sensitive and more dynamic. Indeed, larger spines
are resistant to LTP and suggested to form the physical trace
of long-term memory (Matsuzaki et al., 2004). Thus, the
aforementioned observations suggest that glutamate receptors
and calcium channels activation during learning leads to changes
in actin structure and neuronal morphogenesis in specific
activated spines. Subsequently, AMPA receptors activation by
spontaneous release of glutamate in these synapses is involved
in suppressing actin dynamic and preserving the new actin
structure.

Activation of glutamate receptors can also lead to recruitment
of actin capping proteins, known to stabilize F-actin, into
spine head and can serve to stabilize spine morphology.
Selective activation of synaptic glutamate receptors can lead to
translocation of the actin filament barbed-end capping proteins
Eps8, that stabilizes F-actin (Disanza et al., 2004), to the spine
head (Menna et al., 2013). Eps8 is needed for proper spine

morphology (Menna et al., 2013) and mice lacking Eps8 exhibit
immature spines. These Eps8 KO mice are also impaired in
passive avoidance long-term memory (Menna et al., 2013).

Reduction in actin dynamics induced by glutamate can
support the stabilization of spines but it does not solve
the problem of how actin cytoskeleton structure in spine,
that mediates spine morphology, is preserved for long
time despite actin protein turnover and dynamics. A self-
perpetuating mechanism that maintains the structure of actin
in spines is required to preserve spine morphology after
learning.

Learning Leads to the Formation of New
Scaffold of Actin Cytoskeletal Structure
That Is Preserved to Maintain Spine
Structure and Long-Term Memory
As described above the structure of dendritic spines may be stable
after learning for months or years. However, the actin filaments
that support spines structure turn over in minutes to hours. Over
80% of F-actin in spines turns over every minute (e.g., Star et al.,
2002). How therefore does the spine structure remain stable in
light of the rapid turnover of actin cytoskeleton that supports its
structure?

It is possible that the altered actin cytoskeleton that supports
the newly shaped spines after learning serves as a blueprint
where the newly actin monomers and nucleation proteins
replenish the network continuously keeping the general structure
intact based on the initial (post-learning) structure. In that
manner the rapid turnover of F-actin does not affect the
general structure of actin filaments in spine and therefore spine
structure remains stable. Mature spines consist of a mixture
of branched and linear actin filaments in their base, neck,
and head that determines their structure. Thus, the length
and network structure of the actin filaments should be in a
steady state to maintain spines morphology. In this model
(Figure 1) we suggest several conditions that can contribute to
the maintenance of the actin network structure and consequently
to preserving the stability of spine morphology: (1) Actin
filaments length stays intact after learning by balancing the
rate of actin polymerization and depolymerization. This could
be achieved by controlling the activity of actin polymerization
(e.g., formins) and depolymerization (e.g., cofilin) regulatory
proteins as well as of capping proteins. (2) The branching of
actin by Arp2/3, localized in spines (Kim et al., 2006, 2013;
Rácz and Weinberg, 2008; Wegner et al., 2008; Hotulainen et al.,
2009), is on these preexisting F-actins (F-actin in condition #1)
keeping the actin network structure. This requires that Arp2/3
will recognize the targeted filament to be branched and that
Wasp will be activated during the maintenance phase so that
Arp2/3 can be assembled. (3) Alternatively, the structure of
the actin network may be maintained en masse by keeping the
concentration of actin regulatory proteins in stable balance. For
example, the structure of the actin network is determined by
the ratio between capping proteins and Arp2/3. Increasing the
concentration of the capping proteins leads to an increase in the
Arp2/3 mediated branching of the actin cytoskeleton network
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FIGURE 1 | Glutamate receptors and other synaptic receptors (e.g., Eph receptor) activation during learning leads to build up of new actin cytoskeletal scaffold leading

to changes in spines morphology and memory formation. This new actin cytoskeletal scaffold is preserved in the memory spines to maintain spine morphology and

long-term memory. This actin cytoskeleton structure lasts beyond actin and its regulatory proteins turnover and dynamics by several molecular activities (see numbers

in figure): (1) Continued synaptic receptors (e.g., AMPA receptor) and channels activation during memory maintenance in the memory spines to regulate molecules

that control actin dynamics and branching. (2) Stable actin polymerization and depolymerization ratio by actin regulatory proteins. (3) Capping proteins contribute to

reduction in actin dynamics. In addition, a steady balance between capping and Arp2/3 proteins concentrations preserves a steady state structure of the branched

network by controlling the number of branch points. (4) The balanced activation of actin regulatory proteins is kept steady by the receptors activation-mediated

stabilization of actin regulatory proteins activity and levels in spines. The level of the proteins can be controlled by regulating trafficking and in situ proteins synthesis.

(Akin and Mullins, 2008). Such a balance may be achieved
by a molecular mechanism that keeps the concentrations
of the various actin regulatory proteins in spines constant.
Keeping a stable concentration of a protein in spines could be
achieved by: (1) In situ constant synthesis or suppression of
synthesis of specific proteins in spines. The protein synthesis
machinery exists in spines (e.g., Pierce et al., 2000; Ostroff et al.,
2002) and active synapses may attract mRNAs (Kosik, 2016).
Active suppression of dendritic protein synthesis is involved
in miniature synaptic transmission induced stabilization of
synaptic function (Sutton et al., 2006). (2) Actively controlling
the translocation of specific proteins into specific spines. For
example, myosin can deliver proteins into spines and may
distribute distinct cargoes by using specific receptors (Kneussel
and Wagner, 2013). Moreover, it has been shown that proteins
can be translocated into specific spines after synaptic activation
or learning (Matsuo et al., 2008; Bosch et al., 2014). Thus,
learning induced continuous activation of specific spines (see
above) can contribute to delivery of specific proteins and mRNAs
into these spines keeping the concentrations of actin regulatory
proteins in spines at steady state and thus preserving the actin
cytoskeleton structure. Indeed, altering the concentration or
activity of actin regulatory proteins can affect spines stability. For
example, the stability of mature dendritic spines is controlled by
cofilin activity and affecting this activity disrupts spines stability
(e.g., Shi et al., 2009). Deletion of ArpC3 leads to a loss of
large mushroom-shaped spines and an increase in filopodial-
like spines indicating that conserved level of Arp2/3 may be
crucial for long-term stabilization of spines in vivo (Kim et al.,
2013).

Spines may also shrink after stimulation leading to long-term
depression (LTD) that may be involved in experience-based
neuronal network refinement (Nägerl et al., 2004; Zhou et al.,
2004). LTD induced shrinkage of spines may lead to a new steady
state with less complexed branched F-actin network and less F-
actin (Okamoto et al., 2004). This may also be accompanied
by reduction of AMPA receptors in synapse (Shepherd and
Huganir, 2007). The stabilization of thinner spines may still
be dependent on glutamate receptors or/and other synaptic
receptors activities such as Eph receptors (e.g., Shi et al., 2009)
balancing the new actin dynamics and branching by maintaining
the concentrations and activities of actin regulatory proteins in
the spine. Since there might be a decrease in calcium influx in
response to synaptic stimulation, stabilizing the structure of actin
cytoskeleton network may be dependent on maintaining actin
regulatory proteins concentrations and activities using other
signaling pathways.

SUMMARY AND CONCLUSIONS

Long-term memories last for years. The neuronal processes that
encode memories last as long as memory exists. Alterations
in neuronal morphology especially of dendritic spines have
been suggested to underlie the formation of memory and their
stabilization the maintenance of memory. In this review we show
evidence indicating that changes in actin cytoskeleton subserves
spine morphogenesis induced by learning and that preserving
these actin cytoskeleton alterations is involved in maintaining
spine morphology and memory for a long period of time. We
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suggest mechanisms that include reduction in actin dynamics
and the formation of a stable blue print of actin cytoskeleton
structure in spines to preserve actin cytoskeleton scaffold, spine
morphology and memory.
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