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The role of phagocytosis in the neuroprotective function of microglia has been
appreciated for a long time, but only more recently a dysregulation of this process has
been recognized in Parkinson’s disease (PD). Indeed, microglia play several critical roles
in central nervous system (CNS), such as clearance of dying neurons and pathogens
as well as immunomodulation, and to fulfill these complex tasks they engage distinct
phenotypes. Regulation of phenotypic plasticity and phagocytosis in microglia can be
impaired by defects in molecular machinery regulating critical homeostatic mechanisms,
including autophagy. Here, we briefly summarize current knowledge on molecular
mechanisms of microglia phagocytosis, and the neuro-pathological role of microglia
in PD. Then we focus more in detail on the possible functional role of microglial
phagocytosis in the pathogenesis and progression of PD. Evidence in support of either a
beneficial or deleterious role of phagocytosis in dopaminergic degeneration is reported.
Altered expression of target-recognizing receptors and lysosomal receptor CD68, as
well as the emerging determinant role of α-synuclein (α-SYN) in phagocytic function
is discussed. We finally discuss the rationale to consider phagocytic processes as a
therapeutic target to prevent or slow down dopaminergic degeneration.
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INTRODUCTION

Microglia are brain professional phagocytes mainly finalized to clearance of apoptotic or
necrotic cells (Green et al., 2016) and removal of unfolded proteins such as amyloid
beta (Aβ) or neuromelanin. Moreover, microglia participate in remodeling of neuronal
connectivity by engulfment of synapses, axonal and myelin debris (Paolicelli et al., 2011)
and combat central infections by direct phagocytosis of bacteria and viruses (Nau et al.,
2014). These functions are carried by both unchallenged microglia in the developing
brain and reactive microglia in pathological conditions (Sierra et al., 2010, 2013).
Phagocytosis is part of the innate immune response of microglia, but also it mediates
the adaptive responses by contributing to antigen presentation (Litman et al., 2005).

Abbreviations: α-SYN, α-synuclein; 6-OHDA, 6-hydroxydopamine; Aβ, amyloid beta; AD, Alzheimer disease;
CNS, central nervous system; CPu, Caudate putamen; CX3CL, fracktaline receptor ligand; CX3CR1, fracktaline
receptor; HSP60, Heat shock protein 60; MHC, Major Histocompatibily Complex; MPTP, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine; PD, Parkinson disease; PI3P, phosphatidylinositol 3-phosphate; PPARγ, peroxisome proliferator
activated receptor gamma; RNS, reactive nitrogen species; ROS, reactive oxygen species; SN, Substantia Nigra;
TH-IR, tyrosine hydroxilase-immunoreactive; TREM-2, microglial triggering receptor expressed on myeloid cells-2;
Wt, wild type.
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Phagocytosis is traditionally regarded as beneficial for
tissue homeostasis by rapidly clearing dying cells, preventing
the spillover of proinflammatory and neurotoxic molecules
(Green et al., 2016; Wolf et al., 2017). In this context, an
increased phagocytic activity was correlated with enhanced
production of anti-inflammatory and decreased production
of pro-inflammatory cytokines in microglia (Fadok et al.,
1998; Wolf et al., 2017). However, the current view is that
different targets and related receptors finely tune microglia
responses, which appear as a continuum of multiple
activation states (Hanisch and Kettenmann, 2007; Sierra
et al., 2013; Wolf et al., 2017). For instance, phagocytosis
of apoptotic neurons mediated by microglial triggering
receptor expressed on myeloid cells-2 (TREM-2) was
associated with decreased production of pro-inflammatory
cytokines (Takahashi et al., 2005), while myelin debris
phagocytosis enhanced the pro-inflammatory and dampened
the anti-inflammatory profile in microglia (Siddiqui et al.,
2016).

Microglia phagocytosis is still poorly explored in terms of
functional consequences and intracellular machinery involved,
but recent findings indicate that phagocytosis is defective in
Alzheimer’s disease (AD; Lucin et al., 2013; Han et al., 2017;
Krasemann et al., 2017) and might be dysregulated in other
neurodegenerative disorders by genetic defects. Accordingly,
p.R47H variant of TREM-2 is associated with Parkinson’s disease
(PD; Rayaprolu et al., 2013).

This mini-review will focus on current understanding of
the role of phagocytosis in PD, and how it is regulated at the
physiological and molecular level and it will discuss whether
phagocytotic activity might be considered a target for therapeutic
intervention in PD.

MOLECULAR MECHANISMS OF
PHAGOCYTOSIS

The most important functional similarity between microglia
and macrophages is their ability to perform phagocytosis,
involving the three main steps ‘‘find-me’’, ‘‘eat-me’’ and ‘‘digest-
me’’ (Sierra et al., 2013; Wolf et al., 2017). The process is
initiated by the activation of several membrane receptors,
which directly recognize the target to engulf. Target-recognizing
receptors show a certain degree of specificity toward signaling
molecules exposed on the surface of their targets (pathogens,
dead cells or protein aggregates) such as phosphatidylserine,
oligosaccharides or heat-shock proteins (HSPs). Accordingly, the
toll-like receptors (TLRs) in complex with scavenger receptors
such as CD14, have been related to pathogen recognition, but
are also involved in α-synuclein (α-SYN) uptake (Stefanova
et al., 2011; Venezia et al., 2017). TAM (Tyro3, Axl and
Mer) receptors recognize mainly apoptotic cells and virus-
infected cells exposing phosphatidylserine (Fourgeaud et al.,
2016; Tufail et al., 2017). TREM-2 signals the internalization
of both dead cells and protein aggregates such as Aβ (Cho
et al., 2014; Han et al., 2017; Krasemann et al., 2017). In
addition, many other known and unknown receptors participate

in target internalization and help to elaborate both effector and
immunomodulatory responses (Litman et al., 2005). Different
receptors trigger different signaling pathways that stimulate
F-actin polymerization and phagosome formation (Arcuri et al.,
2017).

The mechanistic features of macrophage phagocytosis have
been extensively studied in past years (Green et al., 2016), but the
molecular machinery that coordinate engulfment and digestion
of dead cells and protein aggregates by microglia, relevant
for neurodegenerative diseases, only recently have become an
area of growing interest (Plaza-Zabala et al., 2017). Due to
poor understanding of molecular mechanisms of microglial
phagocytosis, it is assumed that they are similar, if not identical
among phagocytes of myeloid linage (Plaza-Zabala et al.,
2017). Based on how the phagosomes are formed, we can
distinguish three main types of phagocytosis: LC3 (microtubule-
associated protein 1A/1B-light chain 3)-dependent (LAP),
LC3-independent phagocytosis and xenophagy, a specialized
type of autophagy.

LAP is triggered when a pathogen or dead cell, engaged
by target recognizing receptors during phagocytosis, induces
the translocation of autophagy machinery to the cargo-
containing single-membrane phagosome (Martinez et al., 2015;
Green et al., 2016). Three major signaling complexes are
activated during LAP (see Figure 1). The aim of the first
pathway is to ensure the production of lipidated-LC3 family
proteins, which can embed in phagosomes, allowing their
fusion with lysosomes (Martinez et al., 2015). The second
pathway is Beclin-1 (BECN1) complex operating in association
with Rubicon, Vps34 (Phosphatidylinositol 3-kinase class III),
UV resistance-associated gene (UVRAG) and other enzymes,
which are involved in the production of phosphatidylinositol
3-phosphate (PI3P), required for phagosome maturation (Wong
et al., 2017). The third well-described protein complex
activated by target-recognizing receptors is NADPH-oxidase
type 2 (NOX2) module ensuring the superoxide production,
required both for the cargo digestion and for stimulation
of phagocytosis/autophagy machinery (Dodson et al., 2013;
Martinez et al., 2015).

So far, LAP has not been characterized in microglia as
such, but increasing evidence suggest that it may play a role
in microglial phagocytosis. First, LC3 and autophagy have
been recently implicated in α-SYN uptake and degradation,
together with DJ-1, which is a product of PARK7 gene and
an autophagy regulator (Janda et al., 2012; Nash et al., 2017).
Processing and lipidation of LC3 into LC3-II is mediated
by ATGs (AuTophagy-related Gene products) proteins, which
is negatively regulated presumably by mammalian target of
rapamycin complex 1 (mTORC1) in microglia. Recently,
mTORC1 has been shown to play a role in the regulation of
autophagy (and possibly phagocytosis) mediated by TREM-2
(Ulland et al., 2017). Second, BECN1 was shown to be required
for efficient microglial phagocytosis in vitro and in mouse brains
and to be downregulated in brains of AD patients (Lucin et al.,
2013). Finally, NOX2 is expressed in microglia and plays an
established role in phagocytosis (Roepstorff et al., 2008; Rocha
et al., 2016).
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FIGURE 1 | Possible mechanisms of α-synuclein (α-SYN) oligomers phagocytosis in microglia. It is assumed that microglial phagocytosis is run by the same
molecular machinery as in macrophages, partially overlapping with autophagy machinery. Proteins in red: documented evidence for an involvement in microglial
phagocytosis, proteins in gray: possible role, not yet documented. Phagocytosis is initiated by the recognition of a cargo by specific phagocytosis receptors (TLRs,
TREMs, TAMs or others). In case of α-SYN oligomers TLR2 and TLR4 are engaged. These receptors trigger at least three distinct molecular pathways leading to the
production of: (1) lipidated-LC3 family proteins; (2) phospholipids (Phosphatidylinositol 3-phosphate, PI3P); and (3) second messengers (ROS), necessary for the
delivery and fusion of phagosomes with lysosomes and degradation of the cargo. Lipidated-LC3 family proteins are produced by a cascade of events starting from
unknown upstream events (likely mammalian target of rapamycin complex 1 (mTORC1) inhibition, not shown), leading to the activation of Atg3/Atg7 complex and
Atg4 involved in the cleavage and lipidation of LC3 family precursors. BECN-1/Beclin-1 complex, in association with Rubicon is involved in PI3P production. ROS are
produced by the activation of NOX complex, composed of PHOX subunits (p40, p47 and p67) and NOX2 and Rubicon. Beside activation of phagocytosis,
TLR2/4 receptors lead to the activation to other biological responses, like indicated at the end of arrow 4. See text for details.

The alternative mechanisms of phagocytosis, either
independent of LC3 and ATGs 5 and 7 (Cemma et al., 2016) or
totally autophagy-dependent (xenophagy; Plaza-Zabala et al.,
2017), have been described so far only in macrophages.

MICROGLIA: EMERGING ROLES IN PD

After the first report of persistent microgliosis in post-mortem
PD brain, a large amount of literature was produced
in the attempt to elucidate the phenotype acquired by
chronically reactive microglia (Gerhard, 2016; Joers
et al., 2017). Microglia in PD maintain an uncontrolled
pro-inflammatory phenotype, responsible for the progression
of neurodegeneration. Pro-inflammatory cytokines together
with iNOS induction, reactive oxygen species (ROS) and
reactive nitrogen species (RNS) production, have been found

in brain, cerebrospinal fluid and blood of PD patients and
in experimental PD (Sawada et al., 2006; Mogi et al., 2007;
López González et al., 2016; Joers et al., 2017). In addition,
microglia in PD brains and rat Substantia Nigra (SN)
overexpressing α-SYN showed a significant increase of IgG
immunostaining (He et al., 2002; Orr et al., 2005; Theodore et al.,
2008).

Furthermore, several studies have suggested that microglia
may dynamically change phenotype in PD depending on
disease-stage, which may account for the coexistence of
pro- and anti-inflammatory molecules described in PD
(Sawada et al., 2006; Mogi et al., 2007; Pisanu et al., 2014;
Joers et al., 2017). Moreover, gene expression of cytokines
and mediators of the immune response are region and
stage-dependent in PD (López González et al., 2016). In the
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
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progressive model of PD, pro-inflammatory microglia gradually
increase and prevail over anti-inflammatory microglia in
presence of massive dopaminergic degeneration (Pisanu
et al., 2014). Therefore, in the early PD stage both pro-
and anti-inflammatory microglia may coexist, while in
late stages they lose their capability to assume repair
functions and unremitting pro-inflammatory microglia
prevail.

Finally, the interaction of α-SYN with microglia represent
a key event that leads to the unremitting shift of microglia to
pro-inflammatory phenotypes (Austin et al., 2006; Theodore
et al., 2008; Roodveldt et al., 2010; Ingelsson, 2016). α-SYN
is prevalently expressed physiologically as a monomeric form,
while in PD it aggregates in oligomers which are converted
into mature amyloid fibrils, main components of Lewy bodies
and neuritis (Ingelsson, 2016). α-SYN aggregates are also
present in the extracellular biological fluids in PD patients
(Spillantini et al., 1997; Tokuda et al., 2010; Majbour et al.,
2016; Vivacqua et al., 2016; Visanji et al., 2017). Importantly,
exposure to human α-SYN directly activates microglia, and
the PD-relevant mutations of α-SYN A30P, E46K and A53T
are more potent than wild type (Wt) α-SYN in triggering
inflammatory responses (Klegeris et al., 2008). Transgenic
mice overexpressing human A53T α-SYN develop chronic
neuroinflammation and progressive degeneration together with
microglia-derived oxidative stress (Gao et al., 2011). Thus,
extracellular α-SYN is clearly involved in microglia activation
and it has a profound impact on phagocytosis as discussed below.

A determining role in shaping microglia in PD is
played by TREM-2, selectively expressed by microglia and
involved in modulating inflammatory responses and in
the phagocytosis of apoptotic neurons (Jay et al., 2017).
Stimulation or overexpression of TREM-2 increases, while
knockdown inhibits phagocytosis of apoptotic neurons and
increases pro-inflammatory gene transcription (Takahashi
et al., 2005). Overexpression of TREM-2 is neuroprotective
and reduces inflammation in MPTP-intoxicated mice
through inhibition of the TLR4-mediated activation of
nuclear factor (NF)-κB signaling (Ren et al., 2018). The
fractalkine receptor CX3CR1, specifically expressed in
microglia, is also involved in PD neuropathology. Through
binding to neuronal CX3CL, CX3CR1 plays a fundamental
role in the microglia-neurons communication (Harrison
et al., 1998), being involved in homeostatic maintenance
of microglia in the quiescent state, regulation of chemo-
attraction and synaptic pruning/maturation (Paolicelli
et al., 2011; Mecca et al., 2018). Therefore, CXCL-CX3CR1
profoundly affects microglial-mediated inflammatory responses
and neurotoxicity (Sheridan and Murphy, 2013). In PD
models, MPTP-intoxicated mice with CX3CR1 deficiency
displayed aggravated pathology and greater loss of tyrosine
hydroxilase-immunoreactive (THIR) neurons in the SNc
(Cardona et al., 2006). Moreover, in the intrastriatal
6-hydroxydopamine (6-OHDA) rat model of PD, the
continuous delivery of recombinant CX3CL1 suppressed
microglia activation and reduced neuronal loss (Pabon et al.,
2011).

MICROGLIA PHAGOCYTIC FUNCTION IN
PD

Several studies described an altered phagocytic function of
microglia in PD (Table 1). Pro-inflammatory and phagocytic
microglia with increased Major Histocompatibily Complex
(MHC) II expression was described in MPTP-treated monkeys
and mice (Barcia et al., 2011, 2013; Depboylu et al., 2012).
Upon MPTP administration, mouse microglia polarize to
contact and phagocytose damaged dopaminergic neurons
(Barcia et al., 2012). The increased engulfment and phagocytosis
were suggested to contribute to degenerative processes (Barcia
et al., 2013). Accordingly, blocking phagocytosis preserved live
neurons from inflammation-induced cell death (Fricker et al.,
2012). In contrast, we recently found that MPTP-induced
neurodegeneration in mice was associated with decreased
expression of scavenger receptor Mannose Receptor C-Type
1 (MRC1), while peroxisome proliferator activated receptor
gamma (PPARγ)-mediated neuroprotection was associated with
increased MRC1 expression and phagocytosis, suggesting a
beneficial role of phagocytosis (Lecca et al., 2018).

Few studies focused on the immunohistochemical evaluation
of CD68, a macrophagic protein and suggested marker of
phagocytosis. Increased CD68 expression was described in the
parkinsonian SN (Croisier et al., 2005; Doorn et al., 2014), and
confirmed in the α-SYN overexpressing rat model (Table 1).
In one study CD68 increased early prior to neurodegeneration
(Theodore et al., 2008), while in another study correlated with
dopamine neurons death (Sanchez-Guajardo et al., 2010). The
upregulation of Axl TAM phagocytic receptor was reported in
the spinal cord microglia of A53T α-SYN mouse, and loss of
this receptor slightly extended survival (Fourgeaud et al., 2016),
suggesting that microglia phagocytosis of motor neurons may
hasten death of mice.

Different conclusions were reached by studies addressing
microglial phagocytic function via functional assays, such as
phagocytosis of beads or apoptotic cells (Table 1). Microglial
phagocytosis but not inflammation was induced by rotenone and
rotenone-induced neurotoxicity was prevented by phagocytosis
inhibitors (Emmrich et al., 2013). Similarly, anti-inflammatory
drug ibuprofen inhibited phagocytosis of dead neurons and NO
production by microglia (Scheiblich and Bicker, 2017). However,
a significant defect in phagocytic function was observed in
fibroblasts and in monocytes of PD patients (Salman et al., 1999;
Gardai et al., 2013).

Since phagocytosis has been traditionally regarded as
a beneficial event associated with the anti-inflammatory
phenotype of microglia, this evidence queries how relevant this
assumption is in neurodegenerative diseases, where microglia
display an abnormal inflammatory profile.

Studies dissecting the interaction of different α-SYN forms
with microglia strongly implicate α-SYN in altered phagocytosis.
These studies have highlighted the role of α-SYN variants
on the induction of microglial phenotypes with abnormal
phagocytic function. Microglia incubated with A53T α-SYN
displayed a pro-inflammatory profile and impaired phagocytosis
(Rojanathammanee et al., 2011). In contrast, Roodveldt et al.
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TABLE 1 | Current evidence of altered phagocytosis in PD and experimental PD models.

Model Alterations of phagocytosis Reference

Human studies
Post-mortem brain tissue Increased expression of microglial CD68 in SN Croisier et al. (2005) and Doorn

et al. (2014)

Peripheral immune cells Defective phagocytosis of beads in monocytes
and fibroblasts

Salman et al. (1999) and Gardai
et al. (2013)

Animal models
Microglia from α-SYN knock-out mice Increased expression of CD68, impaired

phagocytic function
Austin et al. (2006)

MPTP-treated monkeys and mice Microglia with phagocytic features in SN Barcia et al. (2011, 2013) and
Depboylu et al. (2012)

A53T α-SYN overexpressing mice Increased expression of Ax1 TAM in spinal cord
microglia

Fourgeaud et al. (2016)

MPTP-treated mice Increased expression of MRC1 Lecca et al. (2018)

BV-2 cells, rat primary microglia Monomeric α-SYN increases phagocytosis of
microspheres
Oligomeric α-SYN decreases phagocytosis of
microspheres

Park et al. (2008)

Primary microglia WT and A53T α-SYN increase phagocytosis of
microspheres
A30P and E46K α-SYN decrease phagocytosis
of microspheres

Roodveldt et al. (2010)

BV-2 cells A53T α-SYN decreases phagocytosis of
bioparticles

Rojanathammanee et al. (2011)

Primary microglia Soluble or fibrillar α-SYN increases phagocytosis
of microspheres

Fellner et al. (2013)

Primary microglia Adult microglia phagocytoses oligomeric α-SYN
less efficiently than young microglia

Bliederhaeuser et al. (2016)

Primary microglia Rotenone increases phagocytosis of
microspheres

Emmrich et al. (2013)

LPS-treated MMGT12 cells PPAR-γ agonist increases the expression of
CD68 and the phagocytosis of beads or
6-OHDA-necrotic SH-SY5Y cells

Lecca et al. (2018)

(2010) showed that both Wt and A53T α-SYN promoted
phagocytosis in microglial cells, while the A30P and E46K
α-SYN induced opposite effect. Interestingly, Wt α-SYN
was also associated with moderate inflammatory response,
indicating the coexistence of pro-inflammatory and phagocytic
profiles, and suggesting that a combination of alternative and
classical activation states may occur in microglia (Roodveldt
et al., 2010). However, microglia from α-SYN knock-out mice
displayed increased basal and LPS-stimulated production of
pro-inflammatory cytokines and expression of CD68, but
impaired phagocytosis, suggesting that physiological levels
of α-SYN prevent inflammation and promote phagocytosis
(Austin et al., 2006). α-SYN conformation impacts microglial
phagocytosis, with monomeric α-SYN stimulating, while
oligomeric α-SYN inhibiting both basal and LPS-stimulated
phagocytosis (Park et al., 2008). In addition, microglia
phagocytosis was augmented, together with production of ROS
and pro-inflammatory cytokines after treatment with soluble or
fibrillar α-SYN, confirming the occurrence of mixed phenotypes
in pathological conditions (Fellner et al., 2013). Finally,
nitrated α-SYN increased both pro-inflammatory cytokines
and the anti-inflammatory cytokine IL-10 in primary microglia
(Reynolds et al., 2009). Importantly, age is a crucial factor for
microglial phagocytosis, since microglia from adult mice was
less efficient to engulf oligomeric α-SYN than young mice, while

responding with higher TNFα release (Bliederhaeuser et al.,
2016). Therefore, studies indicate a functional specificity for
α-SYN conformational variants. In this regard it is important to
note that in extracellular fluids of PD patients, the coexistence
of multiple α-SYN conformations has been reported, with
prevalence of pathological oligomeric α-SYN (Tokuda et al.,
2010; Majbour et al., 2016).

The role of TLRs as mediators of α-SYN-effects on microglia
is emerging, indicating a role in both inflammatory responses
and phagocytosis. Aggregated but not fibrillar or monomeric
α-SYN directly activated microglia through TLR2, leading to
production of inflammatory mediators (Kim et al., 2013). The
TLR4 was also suggested to mediate microglia phagocytosis of
β-SYN (Stefanova et al., 2011). Both the TLR2 and TLR4 were
elevated in peripheral immune cells and in PD brain, where
TLR2 colocalized with microglia (Doorn et al., 2014; Drouin-
Ouellet et al., 2014). The coexistence of α-SYN conformations
and TLRs stimulation may lead to a microglia phenotype with
inflammatory and phagocytic functions, which may be harmful
for neurons.

A role of TREM-2 in promoting phagocytosis has been
well characterized for in vitro clearance of Aβ and in vivo
models of AD (Taylor et al., 2017). In contrast, the role of
TREM-2 in PD-associated dysfunctional phagocytosis has not
been investigated. Defective function of TREM-2 in PD may
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lead to incomplete removal of apoptotic cells and debris and
accumulation of toxic products that may chronically stimulate
microglia to release cytotoxic species. Whether TREM-2 is
affected by α-SYN accumulation is unknown.

Recent studies suggested that the CXCL-CX3CR1 axis
modulates the inflammatory response induced by α-SYN
overexpression. CX3CR1−/− mice displayed a reduced
α-SYN-mediated inflammatory response, with reducedmicroglia
phagocytosis (Thome et al., 2015).

Therefore, while studies point to a dysregulation (either up-
or downregulation) of phagocytosis in microglia as a prominent
event in the PD neuropathology, quantitative and qualitative
α-SYN abnormalities emerge as the underpinning mechanisms.

CURRENT GAPS AND FUTURE
PERSPECTIVES

While it is clear that the shift to pro-inflammatory phenotypes
contributes to neurodegeneration, there is no consensus on the
role of phagocytosis in PD and research in this field presents
several gaps.

An important gap is related to its molecular mechanisms.
Since microglia and macrophages share several functional and
surface-receptor similarities, it has been assumed that the
mechanistic features of phagocytosis should be the same in
both cell types (Plaza-Zabala et al., 2017). However, beside
some progress in our understanding of phagocytosis machinery
involved in Aβ clearance (Krasemann et al., 2017; Sarlus and
Heneka, 2017), it is unknown what types of phagocytosis can
be activated in microglia, whether other microglia-specific types
of phagocytosis exist, and what is the role of autophagy in this
process. All these issues are heavily investigated in macrophages,
but not yet in microglia, and future efforts will clarify which are
the common mechanisms and targetable differences.

Most important, it is still unclear whether phagocytosis
is pathologically activated or rather defective in PD. The
answer to this question might be hampered by our incomplete
understanding of microglial plasticity and its regulation,
especially in the context of progressing PD. The current literature

strongly suggests that microglia acquire mixed phenotypes in
PD displaying an altered phagocytic activity, which escape
from traditional classification in pro- and anti-inflammatory
phenotypes. Recent innovative studies support a beneficial effect
of phagocytosis stimulation in PD (Venezia et al., 2017; Lecca
et al., 2018). Additional studies are needed to understandwhether
we can pharmacologically restore phagocytosis homeostatic
levels. Considering that a prompt clearance of dead cellular
bodies and protein aggregates should be beneficial in PD, we
expect that this concept may prevail.

The current debate on phagocytosis in PD resembles
a long-lasting debate about a role of autophagy in this
pathology. Despite genetic evidence pointed toward a positive
function of autophagy, experimental evidence often indicated
a hyperactivation of autophagy in PD (Banerjee et al., 2010;
Janda et al., 2012; Dagda et al., 2013). We understood now that
conflicting results were often caused by technical limitations
and misleading interpretation (Janda et al., 2012), and current
view favors a beneficial role of autophagy in PD, while its
pharmacological stimulation has become an achievable goal
(Janda et al., 2015; Moors et al., 2017). Considering many
functional and mechanistic similarities between autophagy and
phagocytosis, it is safe to speculate that concomitant stimulation
of both pathways in different cellular compartments, will became
a therapeutic target in the future.
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