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Psychiatric disorders entail maladaptive processes impairing individuals’ ability to
appropriately interface with environment. Among them, depression is characterized
by diverse debilitating symptoms including hopelessness and anhedonia, dramatically
impacting the propensity to live a social and active life and seriously affecting
working capability. Relevantly, besides genetic predisposition, foremost risk factors are
stress-related, such as experiencing chronic psychosocial stress—including bullying,
mobbing and abuse—, and undergoing economic crisis or chronic illnesses. In the
last few years the field of epigenetics promised to understand core mechanisms of
gene-environment crosstalk, contributing to get into pathogenic processes of many
disorders highly influenced by stressful life conditions. However, still very little is known
about mechanisms that tune gene expression to adapt to the external milieu. In this
Perspective article, we discuss a set of protective, functionally convergent epigenetic
processes induced by acute stress in the rodent hippocampus and devoted to the
negative modulation of stress-induced immediate early genes (IEGs) transcription,
hindering stress-driven morphostructural modifications of corticolimbic circuitry. We
also suggest that chronic stress damaging protective epigenetic mechanisms, could
bias the functional trajectory of stress-induced neuronal morphostructural modification
from adaptive to maladaptive, contributing to the onset of depression in vulnerable
individuals. A better understanding of the epigenetic response to stress will be pivotal to
new avenues of therapeutic intervention to treat depression, especially in light of limited
efficacy of available antidepressant drugs.
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INTRODUCTION

Molecular psychiatry mainly recognizes three typologies of stressful events, namely positive
stress, tolerable stress and toxic stress (McEwen, 2017). ‘‘Positive’’ stress (also known as eustress;
Selye, 1998) entails reward-associated paradigms including whatever hard paths to meet our life
expectations (job promotions and achievements in general). On the other hand, we can recognize
two typologies of negative stress (also known as distress; Selye, 1998), namely ‘‘tolerable’’ and
‘‘toxic’’ stress. ‘‘Tolerable’’ stress has to do with negative experiences, prototypically represented
by loss of beloved persons, but also related to personal, economic or health crisis (McEwen,
2017). Regardless how hard this kind of stress can be, it is identified by those experiences that
most people have the mental instruments to cope with, also thanks to supportive relationships
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(McEwen et al., 2015). However, behavioral outcome of
negative contingencies can vary in an individual-specific
manner accordingly to the set of previous life experiences
and with respect to genetic background in the frame of
genotype × environment interactions (GxE; de Kloet et al.,
2005; Caspi and Moffitt, 2006; Joëls and Baram, 2009; McEwen,
2012; Sun et al., 2013; Calhoon and Tye, 2015). Indeed,
also a negative stress theoretically predictable as tolerable
could lead to psychiatric issues in a subset of the general
population referred to as stress-vulnerable individuals. Beside
the intensity and aversiveness of the stressful stimuli, chronic
reiteration or duration of a negative experience can change
their outcome often leaving long-term mood effects (McEwen,
2003; Cohen et al., 2007). ‘‘Toxic’’ stress is represented by those
experiences featuring recurrent parameters of unpredictability
and inescapability (terrorist attacks, earthquake, military
operations; McEwen, 2017). This form of stress is considered
detrimental for the majority of population and can lead to post
traumatic stress disorder (PTSD) and other neuropsychiatric
issues (McEwen, 2005; Nagy et al., 2017). Nonetheless, also in
case of toxic stress, there are individuals displaying resiliency
(McEwen et al., 2015). Consistently, a relevant open question
in neurobiology of stress response is related to molecular
underpinnings of vulnerability or resiliency. Tolerable stress
with a positive behavioral outcome can be modeled in rodents
using a single acute stressful paradigm experienced by naïve
mice or rats, since such a challenge does not elicit long-term
behavioral effects on a cognitive or emotional point of view. On
the contrary, chronic administration of the same forms of stress
can precipitate mood and cognition-related issues in a subset
of susceptible individuals (Golden et al., 2011; McEwen et al.,
2015).

PATHWAYS OF STRESS RESPONSE

The most studied pathway of stress response is referred to as the
hypothalamic-pituitary-adrenal (HPA) axis. This system allows
environmental adaptation via a complex interplay between two
sets of processes acting at the molecular and cellular level
and influencing behavioral responses. The first set underlies
the arousal phase of stress response (primary response), which
includes reactions leading to the required wakefulness to respond
to threat, invigorating physical strength and cognitive acuity
(Davis et al., 2003). The second set is related to stress termination
and more in general to homeostatic processes in the body
aimed at restraining excessive reactions (secondary response).
Glucocorticoid hormone is an important final effector of stress
signals mainly involved in HPA axis homeostasis and feedback
(Cohen et al., 2012). Stress termination is largely operated at
the hippocampal level, brain area that is involved in stress-
response, and that expresses a high level of glucocorticoid
receptors. Besides HPA axis, a core process selected by evolution
to survive to environmental changes, other systems contribute
to cope with stress through a fine-tuning of glutamate response.
A well-known pathway that helps responding to stress via
glutamate signaling regulation is the endocannabinoid system
(ECS). In this case, the primary response is represented by

stress-induced glutamate release in brain areas that are activated
by stress, which in turn promotes through ECS, depolarization-
induced suppression of excitation (DSE) as the secondary
response. ECS is highly effective in restraining the excitotoxic
consequences of stress-induced glutamate, contrasting toxic
behavioral correlates of environmental stress (Lutz et al., 2015;
Morena et al., 2016).

A single stress event induces temporary activation of the
stress-response machinery, and since they are not associated
to long-lasting behavioral alterations, related modifications on
neuronal physiology can be defined as adaptive (Hunter et al.,
2009, 2012; Rusconi et al., 2016; Saunderson et al., 2016;McEwen,
2017). Interestingly, it is generally accepted that psychopathology
must result from a failure in a correct functionality of HPA
axis and ECS (McEwen, 2003; Weaver et al., 2004; Lutz et al.,
2015; McEwen et al., 2015; Morena et al., 2016). In particular,
excessive or reiterated engagement of stress-coping molecular
mechanisms (including but not limited to the action of stress
hormones) in a chronic manner, could lead to allostatic overload
via desensitization of stress response pathways (Joëls and Baram,
2009; McEwen, 2017).

In this Perspective article, we shed new light on a further
mechanism of stress-response based on epigenetic modifications
of gene expression that cooperates at the nuclear level with
HPA axis and ECS. We further emphasize the relevance of
these adaptive mechanisms in response to acute stress as their
impairment might represent a proxy for the onset of stress-
related psychopathology (Borrelli et al., 2008; McEwen, 2012;
Nestler, 2014; Nagy et al., 2017).

STRESS IMPACTS NEURONAL
CONNECTIVITY AND PLASTICITY

Stress induces specific brain plasticity-modifying transcriptional
programs in corticolimbic circuitry including the medial
prefrontal cortex (mPFC), the ventral hippocampus (vHIP)
and the amygdala (Felix-Ortiz et al., 2013; Janak and Tye,
2015; Laine et al., 2017). In these areas, behavioral stress
has been recognized as a powerful modifier of neuronal
structural plasticity (McEwen et al., 2012; Chattarji et al.,
2015). Either acute or chronic stress can transiently or stably
modify dendritic spine density and arborization (Golden et al.,
2013; Maras et al., 2014; Chattarji et al., 2015; Janak and Tye,
2015), suggesting that adaptive structural modification of
corticolimbic areas can also correspond to a neutral behavioral
response. The magnitude and direction of stress-mediated
neuroplastic remodeling vary according to the peculiar structure
observed, generally increasing amygdalar neuroplasticity
(enhancing fear reactions) and decreasing hippocampal and
prefrontal cortex functionality (leading to impaired control over
affective manifestation; McEwen et al., 2012; Felix-Ortiz et al.,
2013; Chattarji et al., 2015). This bidirectional corticolimbic
unbalance underlies aberrant top-down inhibition of the
limbic system, a core symptom of neuropsychiatric disorders
(Martin et al., 2009; Franklin et al., 2012; Calhoon and Tye,
2015).
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FIGURE 1 | Epigenetic mechanisms of acute stress allostasis. Tolerable stress with a positive behavioral outcome elicits plasticity-gene transcription in the
hippocampus instrumental to memorizing threat-related aspects of the negative experience with a protective valence. Meanwhile a set of epigenetic mechanisms
buffer stress-induced transcription retaining its functional outcome within adaptive range. These mechanisms include global increase of H3K9me3 repressive histone
mark, increased levels of DNA methyltransferase Dnmt3a as well as its association to the Immediate Early Genes (IEGs) promoters and increased
Lysine-Specific Demethylase 1 (LSD1)-related repressive potential towards the same gene targets. This set of acute stress-induced epigenetic modifications
contribute to counteract long-term behavioral effects on a cognitive or emotional point of view.

ACUTE STRESS ELICITS ADAPTIVE
STRESS-COPING EPIGENETIC
MECHANISMS IN THE HIPPOCAMPUS

Neurons are able to modify synaptic activity in response to
environmental inputs—including stress—through epigenetic
modifications allowing to finely and steadily perturb gene
expression (Borrelli et al., 2008). Stress can engrave chromatin
with a peculiar alphabet, made up of histone post-translational
modifications (PTMs) and DNA methylation (Tsankova
et al., 2006; Borrelli et al., 2008). The study of epigenetic
modifications—ultimately shaping the intimacy of DNA-histone
interactions regulating the accessibility and processivity of basal
transcription machinery—operated by different sources of stress
in the brain has just begun, and much more work is required to
clarify the typology and relative behavioral relevance of specific
epigenetic modulations.

We here describe different examples of epigenetic processes
that occur in response to acute ‘‘negative stress.’’ Immediate
response to stress has been widely reported to induce glutamate-
driven MAPK kinase pathway activation and consequent
transient wave of plasticity-gene transcription including the
immediate early genes (IEGs; primary response, Chwang

et al., 2006; Gutièrrez-Mecinas et al., 2011; Figure 1).
IEGs transcription should be instrumental to the balanced
memorization of stressful event aimed at engaging a protective
behavioral response against similar threatening situations, a
response that however, does not have to excessively invigorate
fear and anxiety. This can be achieved thanks to a delayed set of
stress response mechanisms (secondary responses) that has to do
with: (1) switching off immediate early transcriptional induction;
and (2) increasing the threshold of IEGs transcriptional
activation in the same circuitry for a limited time window
(Figure 1). This second point, albeit observed, has never been
clearly formalized on a functional point of view. Here, we will
discuss examples of stress-induced secondary responses sharing a
common epigenetic nature and predicted to be instrumental to
adaptive molecular stress response.

Global Increase of H3K9me3 and Suv39h2
It has been shown that acute restraint stress elicits significant
global increase of repressive histone mark H3K9me3, together
with increased levels of specific methyltransferase Suv39h2
(Hunter et al., 2009, 2012). These modulations represent
hippocampus-specific secondary response at the level of CA1 and
DG sub area, witnessing interplay between stress and gene
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expression. It is worth noting that chronic restraint stress
administered for 7 days does not entail any modification of
H3K9me3 levels in the same areas (Hunter et al., 2009). These
data suggest that H3K9me3 global increase after acute stress
might represent an allostatic mechanism that can be triggered
only by a limited number of stressful events of the same
nature. It is conceivable to hypothesize that globally increased
gene repression (H3K9me3, heterochromatin formation) is
related to adaptive acute stress-coping strategies aimed at
pausing gene transcription to buffer acquired neuroplasticity.
Moreover, this secondary response may be diminished or
degraded by chronic stressful experiences (Hunter et al., 2009).
Interestingly fluoxetine—a selective serotonin reuptake inhibitor
(SSRI) commonly used as antidepressant—is highly effective
in restoring global H3K9me3 increase during chronic stress.
Relevantly, fluoxetine has also been reportedly shown to interfere
with chronic stress-induced structural and behavioral correlates
(Magariños et al., 1999; Czéh et al., 2007; Bessa et al., 2009).
Hence, it is plausible that H3K9me3 increase upon SSRI
treatment is related to the antidepressant potential of this drug.
In other words, one of the effects of fluoxetine is to reinstate an
allostatic process in response to chronic stress that is normally
restricted to acute stress. Thus, to restore the chronic stress
corrupted epigenetic-based secondary response, could represent a
strategy to counteract toxic behavioral effects of repeated sessions
of environmental stress.

IEGs-Specific Increase of H3K9me2 and
DNA Methylation
The foot shock paradigm, widely used to assess associative
memory in rodents, also represents a highly negative experience
scored as able to strongly induce molecular mechanisms of
stress response in the hippocampus (Schöner et al., 2017).
This paradigm can reproduce some of the core symptoms
of PTSD including avoidance and anxiety behavior (Schöner
et al., 2017). Interestingly, foot shock paradigm induces in
the hippocampus of stressed animals IEGs transcription as
primary response, which is supported by increased levels of
the euchromatin-associated histone mark H3K4me3 at the
level of the IEG egr1 (Gupta et al., 2010). Such an activity-
dependent transcription is instrumental to promote stress-
plasticity as a form of fear-related memory of the negative
experience. Meanwhile, a seemingly concomitant secondary
response triggers increased H3K9me2 levels, a chromatin
modification related to gene silencing. Moreover, also increased
methylation at multiple CpGs at the level of egr1 promoter
region (Gupta et al., 2010) can be scored. Interestingly, treating
mice with the HDAC inhibitor sodium butyrate before the
stressful paradigm, along with significantly decreasing the global
level of H3K9me2 methylation, also worsen the phenotypic
read-out of foot shock, increasing the freezing behavior (Gupta
et al., 2010). A possible interpretation of these evidences can
be related to adaptive stress-coping strategies. In particular,
concomitant induction of permissive (H3K4me3) and inhibitory
(H3K9me2 and DNA methylation) chromatin modifications
in the frame of a tight egr1 transcriptional control can allow
the perfect expression balance of plasticity genes, leading to a

correct and protective memorization of the dangerous context,
preventing in the meantime exaggerated behavioral arousals to
future homotypic stressful experiences.

IEGs-Specific Increase of DNA Methylation
and Dnmt3a
We learned from the previous example that not only histone, but
also DNA methylation at specific CpGs plays an important role
in the behavioral responses to stressful situations. Recently, it has
been shown that promoting DNA methylation of c-fos and egr1
promoters via S-adenosyl methionine (SAM) administration,
the endogenous methyl-donor for DNA methylation, it is
possible to significantly hamper the consolidation of immobility
behavior after forced swim (FS) paradigm in rats (Saunderson
et al., 2016). Immobility behavior represents a phenotypical
read-out of stress response whose interpretation is debated,
being reported as either adaptive (Trollope et al., 2012), i.e., to
conserve energies to survive, or depressive (Ramaker and
Dulawa, 2017), in the sense that the animal refuses to make
all possible attempts to exit the water. A first FS training
induces IEG transcriptional activation as a primary response
to stress, together with a permissive DNA demethylation
at specific CpGs in c-fos and egr1 promoters (Saunderson
et al., 2016). These pro-transcriptional epigenetic modifications
again are devoted to memorization of the stressful experience.
Interestingly, in the same time window, the authors also
observed an apparently paradoxical increase of DNA Methyl
Transferase 3a (Dnmt3a) at both the transcriptional level and
in terms of chromatin association to IEGs promoters. As
expected, in a second FS test (re-test) animals significantly
increase their immobility time, representing this phenotype
a modified behavioral readout (cognitive and emotional),
which depends on the first stress exposure in the frame
of a behavioral sensitization. Interestingly, administration of
SAM before the first stressful paradigm, blocks the behavioral
outcome of the re-test, leaving immobility time unaltered.
This is due to the fact that SAM, favoring the activity
of physiologically increased Dnmt3a via increased substrate
concentration, counteracts IEG transactivation in response to
the first FS test, thus blocking consolidation of stress-induced
plasticity, and reflecting on a decreased behavioral arousal
in response to the second homotypic stress. In other words,
stress-increased Dnmt3a repressive activity towards IEGs should
represent another example of adaptive acute stress-coping
process based on transcriptional constrain of plasticity genes in
the hippocampus.

Increase of LSD1 H3K4me1/2 Demethylase
Activity
Another example of epigenetic modification elicited by
acute stress involves the chromatin modifier Lysine-
Specific Demethylase 1 (LSD1), also known as KDM1A, a
transcriptional corepressor responsible for demethylation of
histone H3K4me1/2 (Shi et al., 2004). Recently it has been
reported that in the hippocampus, in response to a psychosocial
stress paradigm, the social defeat stress (SDS), LSD1 repressive
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potential is increased following a single session of stress. In
particular it was unveiled that LSD1 increase is the results
of a transient reduction of neuroLSD1, a dominant negative
LSD1 isoform unable to repress transcription, via neuro-specific
alternative splicing mechanism (Wang et al., 2015; Rusconi
et al., 2016). LSD1 and neuroLSD1, in association with the
transcription factor SRF, control transcriptional proneness of
the IEGs (Toffolo et al., 2014; Wang et al., 2015; Rusconi et al.,
2016). Therefore, reported modification of the balance between
the two isoforms in response to an acute stress, should negatively
impact IEG transcription. Consistently, in a genetic model of
neuroLSD1 haploinsufficiency (neuroLSD1HET)—mimicking
the above described stress-induced neuroLSD1 decrease and
increase of LSD1—stress-evoked transactivation of c-fos and
egr1 genes in the hippocampus is impaired (Rusconi et al.,
2016). Interestingly, neuroLSD1KO and heterozygous mice
are also characterized by a very peculiar phenotype, a low
anxiety-like behavior (Rusconi et al., 2016). Given that stress is
highly effective in increasing the level of anxiety, the research
group proposed that LSD1 mediated occlusion of stress-induced
IEG transcription, must represent a secondary epigenetic

response with adaptive meaning aimed at buffering excessive
consolidation of stress plasticity in terms of anxiety (Rusconi
et al., 2016, 2017). Relevantly, low anxiety of neuroLSD1 mutant
mice can be restored to wild type levels enhancing IEG
expression through administration of class I HDAC inhibitor
suberoylanilide hydroxamic acid (SAHA; Rusconi et al., 2016).
These results indicate a role for LSD1 in controlling IEGs
expression in response to acute stress, participating together
with the other epigenetic modifiers to homeostatic control of
stress-response.

It is worth mentioning that although many brain areas
participate to stress response (as described above) to the best
of our knowledge, all the examples of epigenetic modulation
following acute stress focused on the hippocampus as the brain
area of interest. This does not mean that similar mechanisms
cannot be triggered in other areas. However, described data
further support an important role for hippocampus in stress
adaptation.

The four above described examples can be clustered into
a new category of protective stress response mechanisms
collectively referred to as epigenetic stress response (ESR).

FIGURE 2 | Corruption of epigenetic coping strategies (allostatic epigenetic overload) upon chronic stress reiteration might represent a cue to the onset of
stress-related psychopathology. Consequential administration of homotypic stressful events (from stress 1 to n) induces plasticity-related transcription indicated by
black arrows of different thickness depending on the transcription rate. Each stress event engages epigenetic allostatic mechanisms aimed at buffering
stress-induced transcription and participating to stress habituation in resilient individuals. Stress habituation consists in a progressive reduction of the transcriptional
response to stress (green box). However (red box), in vulnerable individuals, after a number of stressful events (n episode), chronic overuse of this protection system
can lead to disruption of allostatic epigenetic processes. Loss of adaptive stress-coping mechanisms entails increasing stress-evoked transcription and consequent
neuroplastic modifications precipitating psychopathology.
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DISCUSSION

The cases described above shed new light on the existence of
a previously unrecognized layer of stress response mechanisms
the ESR. We retrieved and conceptually linked from the
literature a set of epigenetic modifications occurring to control
stress-induced transcription, representing novel examples of
homeostatic processes elicited in rodent models by different
environmental stressful events. Interestingly, in three out of four
sets of data described, the IEGs were included among those
genes that show negative epigenetic transcriptional modulation
as a secondary response to environmental stress. Increase of
DNMT3a (Saunderson et al., 2016), LSD1 (Rusconi et al., 2016)
and Suv39H2 (Hunter et al., 2012), together with global increase
of H3K9me2/3 (Hunter et al., 2009; Gupta et al., 2010) in the
hippocampus in response to a single stress could represent
concerted and functionally converging mechanisms aimed at
decreasing IEGs stimulus-induced expression in response to a
further homotypic stress. Given IEGs involvement in memory
trace formation, reducing their transcriptional responsiveness
via modification of promoters’ chromatin structure might
associatively influence the emotional response to another
similar experience, possibly participating to stress habituation
(Figure 2). Epigenetic modifications have the intrinsic feature
to last longer than a given stimulus per se, representing initial,
chromatin encoded early step of memorization also in case of
stressful events (Sweatt, 2016). However, this form of chromatin-
based memory has to be transient, likewise all other circuitry
modulations that concur to allostatic stress-response.

Acute stress is able to induce molecular modifications at
the chromatin, transcriptional, structural and circuitry levels
(Sun et al., 2013). However, acute stressful insults do not
usually lead to long-term issues on a behavioral point of view
(except for what concerns PTSD-inducing stimuli; Shvil et al.,
2013). Therefore, it should be possible to hypothesize that,
when the stress is tolerable, all different stress response-related
allostatic mechanisms (HPA axis, ECS and ESR) represent
important examples of adaptive molecular processes aimed at
a correct interpretation and balanced memorization of stressful
experiences (Lupien et al., 2009; Lutz et al., 2015; Rusconi et al.,
2017).

On the other hand, excessive exposure to stress such as
in case of chronic stress can cause desensitization and/or
deterioration of the same allostatic pathways engaged by acute
stress contributing to psychopatology (de Kloet et al., 2005).
For instance, it is well known how chronic activation of the
HPA axis leads to a deregulation of inflammation control
in chronically stressed individuals (Cohen et al., 2012). A
similar deterioration occurs at the level of the ECS, where
CB1 desensitization blocking ECS-mediated buffering of stress-
induced glutamate release and fosters the negative behavioral

effects of stress (Lutz et al., 2015; Morena et al., 2016). In
this Perspective article, we propose that chronic stress fosters
the pathogenesis of stress-related depression also via disruption
of epigenetic mechanisms of stress response. Consistently, in
the first example reported above, chronic stress—contrary to
acute—does not elicit protective epigenetic processes such as
global increase of H3K9me3 levels in the hippocampus (Hunter
et al., 2009, 2012). It would be interesting to understand whether
also the acute stress-related molecular mechanisms underlying:
(i) increase of LSD1-mediated H3K4me1/2 demethylase activity;
and (ii) Dnmt3a upregulation and recruitment to IEG promoters,
can be similarly less efficiently engaged upon chronic stress
(Figure 2). In particular, we support the hypothesis that loss of
epigenetic control over IEGs transcription in the hippocampus
along with chronic stress, allowing exaggerated plasticity-
related transcription, leads to vulnerability-associated corruption
of corticolimbic circuitry. This hypothesis is supported by
a further set of data demonstrating that IEGs increase in
the vHIP, is related to chronic stress vulnerability (Bagot
et al., 2015). Relevantly, in the same stress vulnerable mice,
optogenetically reducing neuroplasticity by inducing LTD in the
vHIP-NAc circuit, represents an effective treatment against the
pro-depressive traits induced by chronic SDS (Bagot et al., 2015).

In conclusion, the novel described mechanisms of ESR that
we propose to be protective against depression via tight control
towards stress-induced IEGs transcription, together with the
notion that in models of stress vulnerability IEGs are stably
overexpressed (Bagot et al., 2015), clearly indicates an urgency
to further elucidate ESR with the ultimate goal to understand
the molecular basis of stress-induced depression, opening new
avenues of interventions.
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