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Action potential (AP) induces presynaptic membrane depolarization and subsequent
opening of Ca2+ channels, and then triggers neurotransmitter release at the active
zone of presynaptic terminal. Presynaptic Ca2+ channels and SNARE proteins (SNAREs)
interactions form a large signal transfer complex, which are core components for
exocytosis. Ca2+ channels serve to regulate the activity of Ca2+ channels through direct
binding and indirect activation of active zone proteins and SNAREs. The activation
of Ca2+ channels promotes synaptic vesicle recruitment, docking, priming, fusion and
neurotransmission release. Intracellular calcium increase is a key step for the initiation of
vesicle fusion. Various voltage-gated calcium channel (VGCC) subtypes exert different
physiological functions. Until now, it has not been clear how different subtypes of
calcium channels integrally regulate the release of neurotransmitters within 200 µs of
the AP arriving at the active zone of synaptic terminal. In this mini review, we provide
a brief overview of the structure and physiological function of Ca2+ channel subtypes,
interactions of Ca2+ channels and SNAREs in neurotransmitter release, and dynamic
fine-tune Ca2+ channel activities by G proteins (Gβγ), multiple protein kinases and Ca2+

sensor (CaS) proteins.
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INTRODUCTION

Influx of Ca2+ through presynaptic calcium channels into presynaptic terminals at active zone
is a crucial step in synaptic vesicle exocytosis and rapid neurotransmitter release (Catterall,
2011). Interactions of Ca2+ channel and soluble N-ethyl-maleimide-sensitive factor attachment
protein receptor (SNAREs) complex contribute to reduce the distance between vesicles and
the presynaptic membrane (Catterall and Few, 2008). The close distance provides a spatial
structure that can ensure triggering of the fast neurotransmitter release within milliseconds
of the action potential (AP) arriving at the synaptic terminal (Südhof, 2013; Mochida,
2017). Changes in the kinetic properties of Ca2+ channels (such as channels open, close,
inactivate and so on) directly or indirectly induce modulation of the exocytosis of the synaptic
vesicle, and subsequently modulate the release of neurotransmitters in a negative or positive
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way (Atlas, 2013). Multiple subtypes of Ca2+ channels are
present in the nervous system with diverse physiological
functions (Mochida, 2018). Furthermore, a single neuron
also contains different types of Ca2+ channel isoforms.
Thus, the channel isoforms play a key role in integral
regulation of the synaptic vesicle exocytosis. Until now, it has
not been clear how the Ca2+ channel isoforms coordinate
well and accurately regulate fast neurotransmitter release at
synaptic terminals. In this mini review, we focus on the
molecular structures and regulatory mechanisms of multiple
Ca2+ channel isoforms, and the interactions of Ca2+ channels
and SNAREs involving vesicles fusion and neurotransmitter
releases.

DIVERSITY OF Ca2+ CHANNELS IN
NEUROUS SYSTEM

The diverse subtypes of Ca2+ channels display different
biological structures and distribution in the nervous system.
The diversity of channels corroborates its different physiological
functions.

According to the unique electrophysiological and
pharmacological properties, voltage-gated calcium channel
(VGCC) have been classified into N-, P/Q-, R-, L- and T-type
(Ertel et al., 2000). N-, P/Q-, R- and L-type is termed as
high-voltage activated Ca2+ channel, while T-type is low-voltage
activated Ca2+ channel (<−40mV). High-voltage activated Ca2+

channels are composed of the pore-forming Cavα1 and four
auxiliary subunits (Cavα2, Cavβ, Cavγ and Cavδ; Catterall, 2000),
while T-type contains only the Cavα1 subunit (Cavα1G, Cavα1H

and Cavα1I; Figures 1A,B). The neuronal Cavα1 subunit
(190–250 kDa) is the largest and main subunit, which is
composed of about 2000 amino-acid residues. The molecular
weights of α2, β, γ and δ subunits are 143 kDa, 53–70 kDa,
30 kDa and 24–27 kDa, respectively. The Cavα1 contains four
homologous domains (I–IV; Figure 1C), and each domain of
Cavα1 is comprised of six transmembrane α helices (S1–S6).
The transmembrane S5–S6 segments form a p loop, and the
S1–S4 segments serve as the voltage sensor (Yu et al., 2005).
Diversity of Cavα1 isoforms determine the channel subtypes.
Ten different types of Ca2+ channels have been identified (Yu
and Catterall, 2004). The Cavα1 subunit genes are classified
as Cav1.1–1.4 (L-type), Cav2.1–2.3 (P/Q-, N-, and R-type)
and Cav3.1–3.3 (T-type; Figure 1B), each of them belongs to
CACNA1x gene families. N-type and P/Q-type Ca2+ channels
are the main Ca2+ channels in nerve terminals and play an
important role in fine-tuning of rapid neurotransmitter release
at synaptic terminals (Ariel et al., 2012). The R-type (Cav2.3)
Ca2+ channels are present in the peripheral nervous system
(PNS) and central nervous system (CNS). Though R-type
Ca2+ channels are not the main Ca2+ channels, they are also
involved in presynaptic plasticity and neurotransmitter release
(Breustedt et al., 2003; Dietrich et al., 2003; Naidoo et al., 2010).
T-type Ca2+ channel present in peripheral, central synapses
and neuroendocrine cells, play a key role on tuning of basal
neurosecretion near resting potential with a mild stimulation
(Lambert et al., 2014).

The auxiliary subunits of Ca2+ channels include α2, β,
γ and δ subunits (Figure 1A). The α2 and δ subunits are
encoded by the same gene that bind together with disulfide
linkage to form α2-δ subunit complex. α2-δ subunit exerts a

FIGURE 1 | Ca2+ channel structure, organization and interaction with regulatory proteins. (A) Summary of 10 different subtypes of Ca2+ channel. (B) Representation
of subunits composition of Ca2+ channels and auxiliary subunits. (C) The subunit consists of four homologous domains (I–IV), auxiliary subunits and interaction of
Ca2+ channel subunits with regulatory proteins include SNARE proteins, Gβγ, kinase and CaS proteins.
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role of increased calcium current and upregulation of gene
expression. The interactions of α2-δ subunit with extracellular
Cavα1 modulate the binding of divalent cations (Cantí et al.,
2005). α2δ-1 isoform is encoded by the gene Cacna2d1. The
interaction of α2δ-1 and NMDA receptors significantly increased
in neuropathic pain (Dolphin, 2012; Patel et al., 2013). Chen
et al. (2018) demonstrate that gabapentin reduces neuropathic
pain by inhibiting of the interaction between the C terminus
of α2δ-1 and NMDA receptors. The whole β subunit is located
in cytoplasm. The functional role of β subunit is to ensure the
α1 subunit binding to the plasma membrane and prevent it
trafficking to the endoplasmic reticulum. β subunit regulates
membrane protein expression and gating of Ca2+ channels
(Arikkath and Campbell, 2003). The γ subunit comprises of
four transmembrane α helices, that can slightly reduce Ca2+

current density and change kinetic properties by interacting
with the Cavα1 subunit (Osten and Stern-Bach, 2006). The
specific polypeptide toxins from snail and spider venoms, block
multiple Ca2+ channel subtypes. ω-conotoxin GVIA (ω-Cgtx
GVIA) blocks the N-type channels irreversibly in central nervous
system (CNS) and Peripheral nervous system (PNS; Prashanth
et al., 2014). ω-agatoxin IVA (ω-AgaIVA) blocks the Cav2.1
(P-type) and ω-Aga IVA blocks the Cav2.1 (Q-type) with a
lower affinity in CNS (Arranz-Tagarro et al., 2014; Ricoy and
Frerking, 2014). ω-conotox in MVIIC is a toxin from the
venom of marine conus snail, which targets Cav2.1 with high
affinity and targets Cav2.2 with low affinity (Catterall et al.,
2005). α-conotox in Vc1.1 does not affect Cav2.1 but strongly
inhibits Cav2.3 Ca2+ channels through GABAB receptor (Berecki
et al., 2014). Cav2.3 Ca2+ channels were potently blocked by
Zn2+ (IC50 = 0.78 ± 0.07 µmol/L; Traboulsie et al., 2007).
The tetraline derivative of mibefradil and the peptide blocker
of scorpion toxin kurtoxin have been evaluated as potential
Cav3 Ca2+ channel inhibitors in CNS and PNS (Chuang et al.,
1998).

The diversity of Cavα1 and auxiliary subunits confirms
distinct molecular structures, synaptic properties and
distributions that are involved in the regulation of various
physiology functions in neurotransmitter release. P-/Q-
type Ca2+ channels mediated GABA release in the most of
GABA releasing inhibitory neurons (Lonchamp et al., 2009).
Glutamate-release is often mediated by integrated interactions
of P-/Q- and N-type Ca2+ channels in the vast majority of
glutamatergic cortical and cerebellar synapses (Ladera et al.,
2009). Furthermore, P-/Q-type Ca2+ channels decrease fusion
pore stability and trigger vesicle fusion, N-type and L-type Ca2+

channels slow down fusion pore expansion (Ardiles et al., 2007).
In the axon terminal, P-/Q- type Ca2+ channels are close to
the release zone than other Ca2+ channels in various synapses.
As a result, P-/Q- type Ca2+ channels (Cav2.1) may lead to
higher local presynaptic Ca2+ concentrations and frequently
co-localized with synaptotagmin-containing vesicle clusters,
whereas the N-type channel (Cav2.2) and R-type channel
(Cav2.3) are only partially involved in vesicle clusters (Wu et al.,
1999). The significant role of N-type Ca2+ channels is involved in
neurotransmitter release in cortical and hippocampal synapses.
L- and T-type Ca2+ channels are involved in neurotransmission

release in various retinal neurons. T-type Ca2+ channels play
a crucial role in neurotransmitter release and its regulation
in special reciprocal synapses. Functionally, P-/Q-type Ca2+

channels may be mainly related to fast, synchronous exocytosis,
and N-type Ca2+ channels may contribute to exocytosis in
neurons processing information, P-/Q-type Ca2+ channels have
been shown to be more efficient in neurotransmitter release
than N-type Ca2+ channels in most investigated synapses, as in
entorhinal stellate neurons, different inhibitory interneurons,
cerebrocortical synapses or cerebellar parallel fiber terminals
(Ladera et al., 2009).

INTERACTIONS OF Ca2+ MEDIATED
MEMBRANE FUSION BY SNARE
PROTEINS AND ACTIVE ZONE PROTEINS

Ca2+ entry through presynaptic Ca2+ channels can trigger
vesicle fusion by assembly of the SNARE proteins complex [t-
SNARE proteins syntaxin-1 and SNAP-25, v-SNARE protein
synaptobrevin (VAMP)] (Südhof, 2004; Bao et al., 2018;
Figure 2A). SNARE function is widely reported to be associated
with the processing of physiology and pathophysiology. It is
reported that modifying SNARE function through regulating
exocytosis can provoke metabolic diseases such as obesity
(Valladolid-Acebes et al., 2015), which is improved by many
therapies such as exercise training (Ramos-Miguel et al.,
2015; Roh and So, 2017; Roh et al., 2017). The release of
neurotransmitter requires localization of both calcium channels
and synaptic vesicle proteins to the presynaptic active zone
(Südhof, 2012). Rab3 interacting molecules (RIM) localizes in
active zone (Figure 2B), which contain an N-terminal zinc
finger domain, a central PDZ domain, C-terminal C2A and
C2B domain and a conserved sequence between the two
C-terminal domains (Wang and Südhof, 2003). RIM plays
an essential role for synaptic vesicle docking and priming
(Deng et al., 2011; Han et al., 2011). Munc13-1 is a large
multidomain protein in active zone that plays a central role
in synaptic vesicle priming (Brose et al., 1995; Augustin
et al., 1999; Fukuda, 2003). The interaction of SNARE and
SM (sec1/Munc18) proteins control the millisecond timescale
presynaptic fusion after AP. Before priming, the Munc13
C2A-domain forms a constitutive homodimer (inactive state;
Figure 2C). When Munc13 transforms from inactive state
to an active state, Munc13-1 switches from a homodimer
to a heterodimer (Munc13-1-RIM), may regulate synaptic
vesicle priming (Lu et al., 2006). RIM-binding proteins (RIM-
BPs) are also large multidomain proteins (∼200 kDa) in
active zone, that tightly bind to RIM. PDZ-domain of both
RIM and RIM-BPs bind to Ca2+-channels for tethering
Ca2+ channels to an active zone (Han et al., 2011; Kaeser
et al., 2011). Deletion of RIM or RIM-BP (Liu et al., 2011;
Kaeser et al., 2012) causes loss of Ca2+ channels from active
zone and decreases Ca2+ entry. The central PDZ-domain of
RIM can bind directly with N-type and P/Q-type, without
binding with L-type Ca2+ channels (Kaeser et al., 2011).
RIM that lacks the PDZ-domain exhibits loss binding abilities
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FIGURE 2 | Molecular model of synaptic vesicle fusion machinery, interactions of active zone proteins, presynaptic Ca2+ channel and SNAREs. (A) The process of
vesicle fusion: 1. synaptic vesicle recruiting to active zone; 2. synaptic vesicle docking at the presynaptic membrane and with SNAREs complex conformation. 3.
priming of synaptic vesicle on presynaptic membrane; and 4. fusion pore to open and with neurotransmitter release. (B) Direct interaction of Cav2 α1 subunits with
proteins Rab3 interacting molecules (RIM), RIM-binding protein (RIM-BP), Munc-13 and SNAREs (syntaxin, SNAP-25 and synaptobrevin). (C) RIM binding to RIM-BP
induced Munc13 from inactive homodimer to active heterodimer, which promoted Sec1/Munc18-1 (SM) protein dissociated with syntaxin-1. Syntaxin-1 changes
from closed formation to open formation. Syntaxin-1 and SNAP-25 interacted with synaptobrevin to form SNAREs. Ca2+ entry through Ca2+ channel induced
interaction with synaptotagmin, which trigger vesicle fusion.

with Cav channels. Cav channels are recruited to active
zone for synaptic vesicle fusion by a tripartite complex
formation (RIM, RIM-BP and the C-terminal tail of Ca2+

channels) that needs assistance by Munc13-1. Munc13-1-
RIM heterodimer formation is a key component for fusion.
Furthermore, the C2B domain of RIM can modulate Ca2+

channel activation (Kaeser et al., 2012). Recently, it was reported
that Munc13, independent with Munc18, promotes the syntaxin-
1-synaptobrevin complex formation during the assembly of
the triplet SNARE complex. Interaction with Munc18 and
Munc13 contributes to syntaxin/SNAP-25 complex formation
(Lai et al., 2017).

Before forming the SNARE complex (Figure 2A), syntaxin-1
is presented in a closed conformation by interaction with
SM proteins which cannot promote SNARE complex
formation. When the zinc-finger of RIM binds to the C2A
domain of Munc13, Munc13 is activated by homodimer
dissociation. Subsequently, the activation of Munc13 drags
RIM closer to the presynaptic membrane. Ma et al.

(2011) have demonstrated that Munc13 can accelerate the
transfer from the closed syntaxin-1-Munc18-1 heterodimer
to an open syntaxin-1 for promoting SNARE complex
formation. SM proteins are fundamental for synaptic
vesicle trafficking. However, another study reported that
the SM proteins exert no effect on spontaneous fusion
and Ca2+-triggered fusion with SNAREs, complexin-1
and syt-1 (Zhang et al., 2015). Stable SNAREs complex
provide energy for membrane fusion (Weber et al.,
1998).

Complexin is a small soluble protein that controls (activates
or suppresses) the trigger-release and spontaneous release
(Fernández-Chacón et al., 2001; Pang et al., 2006; Mohrmann
et al., 2015; Yu et al., 2018). The central helix of complexin
binds to the interface of the v- and t-SNAREs close to
the membrane (Fernández-Chacón et al., 2001; Chen et al.,
2002; Tang et al., 2006). Complexin displays an activated
effect in fast synchronous release and an inhibited effect
in spontaneous release (Maximov et al., 2009; Kaeser-Woo
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et al., 2012). The synchronous function of complexin-1 is
promoted by interactions with the SNARE complex at the
N-terminal, whereas the suppressive action of spontaneous
fusion is involved in binding with the C-terminal domain
of complexin-1, but not the N-terminal domain (Lai et al.,
2014). Lai et al. (2016) have demonstrated the mechanism that
the N-terminal domain of the complexin can independently
modulate the interaction of presynaptic membrane and the
SNAREs. Furthermore, Gong et al. (2016) have revealed that
the C-terminal domain is pivotal for regulation of spontaneous
release and suppression of Ca2+-independent fusion in a
curvature-dependent phase. Misplacement of complexin to the
plasma membrane increases the variableness and the mean decay
time constant of synchronization with NMDA-type glutamate
receptor initiated postsynaptic currents.

Synaptotagmin (syt) is a Ca2+ sensor that can evoke fast and
synchronous neurotransmitter release (Xu et al., 2007). Syt-1
contains two homologous Ca2+ sensor modules: C2 domains
(C2A and C2B) and transmembrane domain. Syt-1, Syt-2 and
Syt-9 bind to Ca2+ to promote synchronous transmitter release,
while Syt-7 evokes a asynchronous transmitter release (Bacaj
et al., 2013; Brewer et al., 2015; Zhou et al., 2015; Pérez-Lara et al.,
2016).

Ca2+ binding to syt abolishes the complexin clamp and
triggers synaptic vesicle fusion. Recent study has revealed
that complexin may regulate fusion in cooperation with Syt.
Syt1-SNARE and complexin-SNARE cooperate to activate
synchronous release and regulate synchronous release after
the AP has arrived at the synaptic terminal (Jorquera et al.,
2012; Dhara et al., 2014). Recent study has demonstrated
that the tripartite SNARE complexin-syt-1 complex at a
synaptic vesicle docking site exerts an open state for trigger
fusion. Interaction of interfaces are fundamental for Ca2+-
triggered neurotransmitter release. Disruption of tripartite
interface cannot trigger neurotransmitter release, although the
primary interface is intact. It implied that both the primary
and tripartite interfaces are required for Ca2+-triggered
synaptic vesicle fusion (Akyuz et al., 2013; Gipson et al.,
2017). Before the Ca2+ trigger, syt interacts with SNARE
proteins in the targeted membrane to prevent SNARE complex
assembly (Chicka et al., 2008). Ca2+ entry through Ca2+

channels increases the affinity of syt-1 with syntaxin-1 for
approximately two orders of magnitude (Chapman et al.,
1995; Bhalla et al., 2006). Munc13, notably, enhances the
transforms from the Munc18-1 syntaxin-1 complex to the
SNARE complex (Ma et al., 2011) that can open the closed
form of the SNARE protein (Lu et al., 2006; Kaeser et al.,
2011). NSF (Sec18) and α-SNAP (Sec17) form a molecular
chaperone for dynamic modulation of the disassembly of
cis-SNAREs. Recently, Song et al. (2017) demonstrated that
Sec17 residue K159 contributes to enhance the synaptic vesicle
fusion. Furthermore, Sec18 can augment the interactions of
Sec17 and trans-SNARE (Schwartz et al., 2017; Song et al.,
2017). Lai et al. (2013) also have found that syt1 and Ca2+ are
required for pore formation and expansion. Furthermore,
SNAREs alone are sufficient in promoting membrane
hemifusion.

INTERACTION OF Ca2+ CHANNEL
SUBTYPES AND SNARE PROTEINS
COMPLEX

Presynaptic VGCCs have been classified into three super families
(Cav1, Cav2 and Cav3). Cav2 (P/Q-, N- and R-type) are the
dominant channel subtypes for fast presynaptic transmitter.
Cav2.2 (N-type) interacts with active zone proteins (RIM, RIM-
BP) and SNAREs to regulate the vesicle fusion. RIM-C2A
and RIM-C2B bind the pore-forming subunit of N-type Cav
channels in a Ca2+-independent manner that weakly interacts
with the Cav1.2 (L-type, α1c), but do not interact with the Cav1.3
(L-type, α1D). Furthermore, RIM (C2 domain) enhances the
interaction with syt-1 when intracellular Ca2+ concentration is
increased. Removal of RIM domain heavily reduces the channel
current and number of docking vesicles resulting in decreasing
Ca2+ channel coupling with vesicle. The central PDZ-domain
of RIM interacts with the C-terminal of presynaptic N- and
P/Q-type Ca2+-channels, with no act on L-type Ca2+ channels.
Deletion of RIM inhibits most neurotransmitter release due
to impairing the synaptic priming and decreasing the Ca2+

channels localization in presynaptic membrane (Kaeser et al.,
2011; Han et al., 2015). It is well-known that vesicle priming
and Ca2+ influx do not require RIM C2B domains. Recently,
studies have found that C2 domains of RIM do not bind to
Ca2+, but bind to PIP2. PIP2 binding to RIM C2B domains
exerts a critical role for vesicle priming and Ca2+ channel
tethering to PIP2 containing targeted membranes (de Jong et al.,
2018).

Active zone scaffold protein Bassoon directly binds to
RIM-BP to modulate synaptic vesicle docking via an indirect
contact with Cav2.1. Genetic deletion of Bassoon or an acute
interference with Bassoon RIM-BP interaction reduces synaptic
amount of CaV2.1, which gently regulates P/Q-type Ca2+

current to trigger synaptic transmission (Davydova et al.,
2014). Both genetic ablation of Bassoon or interference of the
link between Bassoon and RIM-BP reduced the numbers of
Cav2.1 in active zone, decelerated AP-triggered neurotransmitter
release and impaired the synaptic transmission. Cav2.2 current
was increased for compensation for Cav2.1-induced decreases
(Acuna et al., 2015). RIMs-mediated vesicle priming is not
produced by coupling with Munc13, whereas it is directly
activated by Munc13. Zn2+ finger domain of RIM binds
to Munc13 to promote vesicle priming, thereby dissociating
Munc13 from heterodimer to homodimer and promotes
priming in Munc13-deficient synapses. Hence, homodimer
of Munc13 inhibits priming, and RIM activates priming by
disrupting Munc13 homodimer (Deng et al., 2011). At rod
photoreceptor ribbon synapses, RIM causes a dramatic loss
of Ca2+ entry through Cav1.4 channels and reduces trigger
release. RIM induces Ca2+ entry, which in turn promotes
release by modulating Cav1.4 channel opening (Grabner et al.,
2015). Alternative splicing (exons of 44 and 47) of Cav2.1α1
(P/Q-type) induces gene variants of the C-terminal region
(CTD) of Cav2.1. The two exons interact with RIM (1α
and 2α), impair the binding of CTD with RIM and implied
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suppressive effect of RIM on voltage-dependent inactivation
(Hirano et al., 2017). Syntaxin, SNAP-25 and syt-1 possess
specific ‘‘synprint’’ binding site interaction with CaV2.1 and
CaV2.2 at the intracellular loop linking domains II and III
(LII-III; Figure 1C). Diversity of VGCC types display distinct
tissue specificity, subcellular localizations, kinetics performance
and amount of Ca2+ influx. CaV2.1 is the most abundant
expression in neurons (Cabañes, 2008; Catterall and Few,
2008; Davies et al., 2011; Jahn and Fasshauer, 2012; Davydova
et al., 2014; Wang and Augustine, 2014; Chai et al., 2017;
Silva et al., 2017). GSK-3β displays inhibitory effects in
presynaptic vesicle exocytosis by phosphorylating CaV2.1 and
disturbing SNARE complex formation. A mutation in the
first intracellular loop of CaV2.1 prevents interaction with
SNARE proteins and impair SNAREs complex formation.
SNAREs proper interact with synprint site to help vesicles
docking near the Ca2+ entry pathway, and modulate steady-
state inactivation of Cav2.1 (Serra et al., 2018). R-type (Cav2.3)
channels are localized at the presynaptic terminal and trigger
neurotransmitter release by enhancing presynaptic Ca2+ levels.
Wu et al. (1999) reported that R-type (Cav2.3) Ca2+ channels
contributed to about 26% of the total Ca2+ current during
a medial nucleus of the trapezoid body presynaptic AP, but
display a lower efficacy than other types of Ca2+ channels.
R-type Ca2+ channels are also involved in fast synaptic excitation
(Naidoo et al., 2010). Recently, researchers revealed that R-type
Ca2+ channels linked with NOS to induce NO release by
controlling gastrointestinal smooth muscle relaxation in the
guinea pig ileum via a purine transmitter (Rodriguez-Tapia et al.,
2017).

Aplysia pleural sensory neurons are involved in the forms
of presynaptic plasticity. The Aplysia CaV2α1 subunit EF-hand
tyrosine Y1501 are targets for modulation by GPCRs through
Src kinase. The heterosynaptic depression of the CaV2 channel
current is inhibited when channel is combined with a Y-F
mutation at the conserved Src phosphorylation. It implies
that the inhibition of the Cav2 calcium current is partially,
at least, responsible for the inhibition of neurotransmitter
release with heterosynaptic depression (Dunn et al., 2018).
Ca2+ channels are also involved in nerve injury. Lu et al.
(2018) first demonstrated that lycopene depress glutamate
release through inhibition of voltage-dependent Ca2+ entry
(N-type and P/Q-type channels) and protein kinase C in rat
cerebrocortical nerve terminals and not by intracellular Ca2+

release.
The CaV3 family CaV3.1(α1G), CaV3.2(α1H), and

CaV3.3(α1I) mediate T-type Ca2+ currents. T-type channels
have been revealed to regulate neurotransmitter release in
central, peripheral synapses and neuroendocrine cells that
modulate basal neurosecretion close to resting potential with
mild stimulations. Although T-type channels have no directly
binding peptide (no synprint binding site), Cav3.2 channels
interact with syntaxin 1A and SNAP-25. The interactions
form nanodomains that can be regulated transiently and
low voltages controlling neural activity and neuroendocrine.
Interaction of T-type channels, secretory vesicles, and SNAREs
form a nanodomains complex. T-type Ca2+ channels can

directly interact with SNAREs (syntaxin 1A-Cav3.2-SNAP25)
to control exocytosis. It is clear that T-type channels contribute
to synaptic transmission in neurons and neuroendocrine cells
under conditions of rest and mild stimulation. T-type Ca2+

channels are also involved in the development of a neuropathic
pain. T-type Ca2+ channel subunit CaVα2δ interaction with
the extracellular matrix protein thrombospondin-4 (TSP4)
contributes to initiate, but not for the maintenance of excitatory
synaptogenesis. Treatment with gabapentin blocks the early pain
state but does not reverse the delayed state. It implies that early
intervention with gabapentin may prevent the development
of injury-induced chronic pain, one of the reasons is that
CaVα2δ1/TSP4 initiates abnormal synapse formation (Yu et al.,
2018).

Interestingly, Diao et al. (2013) have found that native
presynaptic protein α-Synuclein (α-Syn) has little effect
on Ca2+-triggered synaptic fusion efficiency or kinetics in
neurotransmitter releases. On the contrary, α-Syn plays a key
role in clustering of v-vesicles. Parkinson’s disease induces
α-Syn mutant at A30P. Pathogenic α-Syn reduces the clustering
ability that resulted in affecting neurotransmission (Diao et al.,
2013). Furthermore, N-terminal acetylation can significantly
decrease α-Syn oligomerization that can preserve its native
conformation against pathological aggregation (Bu et al.,
2017).

Ca2+ CHANNELS REGULATION AND
SYNAPTIC TRANSMISSION

The activity of presynaptic calcium channels is also modulated
by βγ-subunits of G proteins (Gβγ), protein kinases (PKC,
CaMKII) and Ca2+ sensor (CaS) proteins. Gβγ negatively
regulates the neurotransmitter release by inhibition of CaV2
(P/Q- and N-type) Ca2+ channels in synaptic terminals. Gβγ

directly binds to CaV2.2α1 at the N-terminal45–55 (Cantí et al.,
1999), the intracellular loop domains between I and II (LI-
II) at 377393 (Zamponi et al., 1997) and the C-terminus at
22572336 (Li et al., 2004). Only the N-terminal can suppress
CaV2 channels activity. The site at the N terminus and
intracellular loop (LI-II) produces a more potent effect (Stephens
and Mochida, 2005; Figure 1C). Furthermore, it has also
been demonstrated that the CaV2.2 alternative splicing isoform,
e37a, exerts an increase in the expression of N-type Ca2+

channels and also increases the channel opening compared to
Cav2.2 channels that contain e37b (Castiglioni et al., 2006).
Injection of N-terminal or a I-II loop interaction domain peptide
into sympathetic superior cervical ganglion (SCG) neurons
attenuates noradrenaline-initiated G protein regulation, and
reduces synaptic transmission, and decreases Ca2+ current
density. Furthermore, mutation at N-terminal abolishes the
inhibitory effects of the N-terminal peptide (Bucci et al., 2011).
Gβγ binding to N-terminal and loop I–II of CaV2.2 contributes
to regulate the function of CaV2.2. Interestingly, the SNARE
protein syntaxin 1A co-localizes with Ca2+ channels and Gβγ.
Co-expression of syntaxin 1AwithN-type channels induces tonic
inhibition mediated by Gβγ (Jarvis et al., 2000). Nevertheless,
syntaxin 1B does not display such effect (Lü et al., 2001).
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It is suggested that the spatial localization of the G protein-
synaprint-CaV2.2 complex is critical for neurotransmitter release
(Yoon et al., 2008). The synaptic protein cysteine string protein
promotes interaction between G proteins and the synprint
site on CaV2.2 channel for enhancing neurotransmitter release
(Figure 2C).

Protein kinases (such as PKC and CaMKII) are localized
in presynaptic terminals that can phosphorylate both Ca2+

channels and SNAREs (Figure 2C). PKC and CaMKII-
phosphorylation of Ca2+ channels at the synprint site induce
forceful inhibition of its binding to syntaxin-1A and SNAP-25
(Yokoyama et al., 1997). Phosphorylation of Ca2+ channels at
the synprint by PKC is located at serines 774 and 898 which
resulted in modulating the interaction with syntaxin-1A and
SNAP-25. However, PKC phosphorylation failed to dissociate
CaV2.2/syntaxin 1A complexes. Auxiliary subunits of Cav2.2 also
participate in regulation of the function of Cav2.2 channel
and then modulate the transmitter release. The acetyl-β-
methylcholine (MCh) or PKC isozymes (βII or ε) are unable
to potentiate Cav2.2 current in the presence of CaVβ subunits.
Cavβ subunits complete suppression of the interactions between
PKC and Ser/Thr sites of Cav2.2α1 subunits (Thr-422, Ser-425,
Ser-1757, Ser-2108 and ser-2132; Rajagopal et al., 2014). The
mutation of PKC sites (Thr-422, Ser-1757 and Ser2132) can
abolishMCh potentiation on Cav2.2α1 currents. The stimulatory
sites at Thr-422, Ser-2108 or Ser-2132 and inhibitory sites at
Ser-425 of Cav2.2α1 are identified by binding to PKCs βII and ε

subunits.Whereas, the stimulatory sites at Thr-365, Ser-1995 and
Ser-2011 and the inhibitory sites at Ser-369of Cav2.3α1 subunits
are homologous with Cav2.2α1. The stimulatory effects of
PKC at the site of Thr-365 or Ser-1995 were fully offset by
inhibitory site at Ser-369. PKC cannot inhibit the effects via
the coexistence with Thr-365 and Ser-1995 (Rajagopal et al.,
2017).

The phosphorylation of Core-conserved residues inside the
SNARE domain can suppress vesicle fusion. Studies revealed that
secretory protein VAMP8 phosphorylation by PKC at multiple
residues in the SNARE domain mediated vesicle fusion, where
protein kinase activation decreases and phosphatase activation
increases the capacity of VAMP8 (Malmersjö et al., 2016).

CaMKII potently inhibits the interactions between
syntaxin-1A and SNAP25 by phosphorylation at Ser 784 and 896
(Yokoyama et al., 2005). Each site of phosphorylation modulates
syntaxin-1 and SNAP-25 binding to the synprint site. PKC
or CaMKII phosphorylates Cavα1 at the synprint sites that
manipulates a biochemical switch for controlling the interaction
of synprint and SNAREs. It implied that switch role provides
a potential functional link between neurotransmitter release
and protein phosphorylation for tethering and docking synaptic
vesicle in an optimal position to respond to the Ca2+ signal from
presynaptic Ca2+ channels (Catterall and Few, 2008).

In neurons, multiple Ca2+ sensor (CaS) proteins are
involved in neuronal Ca2+ signaling transmitter. The distance
between voltage-gate Ca2+ channels and CaS for exocytosis
determines the timing and probability of neurotransmitter
release (Nakamura et al., 2018). Calmodulin (CaM) is one of
the members of a subfamilies of CaS proteins. Vesicle protein

synaptotagmin is also a CaS protein for fast neurotransmission.
Interactions of Ca2+/CaM binding to the CaM-binding domain
(CBD) and IQ-like motif (IM) of CaV2.1 contribute to facilitate
and inactivate Cav2.1 channels. Mutation of the motifs of CBD
and IM prevents synaptic facilitation. Nanou et al. (2018)
demonstrate a direct link between regulation of CaV2.1 channels
and short-term synaptic plasticity in native hippocampal
excitatory and inhibitory synapses. CaBP1 and VILIP-2 are
neurospecific CaM-like CaS proteins that potently modulate
CaV2.1 channels function. Ca2+-binding protein (CaBP1),
Visinin-like protein 2 (VILIP-2) and neuronal calcium sensor-1
(NCS-1) are the key CaS proteins for synaptic transmission.
CaBP1 is highly expressed in the brain and retina, and co-
localized in the CBD of Cav2.1α1 (Lee et al., 2002). CaBP1 binds
to CBD in a Ca2+ independent profile. Leal et al. (2012)
demonstrated that CaBP1 performed a blockade effect on Ca2+-
dependent facilitation of Cav2.1, and reduced facilitation of
synaptic transmission in superior cervical ganglion neurons.
Nanou et al. (2018) also demonstrated CaBP1/caldendrin as the
CaS protein interacting with CaV2.1 channels to mediate rapid
synaptic depression in the inhibitory hippocampal synapses.
On the contrary, VILIP-2 blocked Ca2+-dependent inactivation
of CaV2.1 current, and notably reduced synaptic depression
and showed increasing facilitation. VILIP-2 is highly expressed
in neocortex and hippocampus, and plays a complementary
effect on CaBP1. These studies reveal that CaBP1 and VILIP-2
bind to the same site with opposite effects on Cav2.1.
The integrated effect contributes to modulating short-term
synaptic plasticity (Leal et al., 2012; Catterall et al., 2013).
The N-terminal myristoylation site and EF-hand motifs of
CaBP1 and VILIP-2 determine their differential regulated
role on CaV2.1 channels. CaS proteins serve as bidirectional
switch that fine-tune the relationships of CaV and synaptic
transmission. Thereby, the balance between facilitation and
depression is a key role on neurotransmitter release (Leal et al.,
2012).

Neuronal calcium sensor-1 (NCS-1) has been also shown
to enhance synaptic facilitation. NCS-1 directly interacts with
IQ-like motif and CBD site at the C-terminal domain of CaV2.1.
NCS-1 reduces Ca2+-dependent inactivation of Cav2.1 through
interaction with the IQ-like motif and CBD. NCS-1 modulates
Ca2+ current amplitude or kinetics activity. These studies
indicate that NCS-1 directly binds to CaV2.1 to serve short-term
synaptic facilitation and confirm that CaS proteins are crucial in
fine-tuning short-term synaptic plasticity (Yan et al., 2014).
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