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Epilepsy is a group of neurological disorders commonly associated with the neuronal

malfunction leading to generation of seizures. Recent reports point to a possible

contribution of astrocytes into this pathology. We used the lithium-pilocarpine model

of status epilepticus (SE) in rats to monitor changes in astrocytes. Experiments were

performed in acute hippocampal slices 2–4 weeks after SE induction. Nissl staining

revealed significant neurodegeneration in the pyramidal cell layers of hippocampal CA1,

CA3 areas, and the hilus, but not in the granular cell layer of the dentate gyrus. A

significant increase in the density of astrocytes stained with an astrocyte-specific marker,

sulforhodamine 101, was observed in CA1 stratum (str.) radiatum. Astrocytes in this area

were also whole-cell loaded with a morphological tracer, Alexa Fluor 594, for two-photon

excitation imaging. Sholl analyses showed no changes in the size of the astrocytic domain

or in the number of primary astrocytic branches, but a significant reduction in the number

of distal branches that are resolved with diffraction-limited light microscopy (and are

thought to contain Ca2+ stores, such as mitochondria and endoplasmic reticulum). The

atrophy of astrocytic branches correlated with the reduced size, but not overall frequency

of Ca2+ events. The volume tissue fraction of nanoscopic (beyond the diffraction limit)

astrocytic leaflets showed no difference between control and SE animals. The results of

spatial entropy-complexity spectrum analysis were also consistent with changes in ratio

of astrocytic branches vs. leaflets. In addition, we observed uncoupling of astrocytes

through the gap-junctions, which was suggested as a mechanism for reduced K+

buffering. However, no significant difference in time-course of synaptically induced K+

currents in patch-clamped astrocytes argued against possible alterations in K+ clearance

by astrocytes. The magnitude of long-term-potentiation (LTP) was reduced after SE.
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Exogenous D-serine, a co-agonist of NMDA receptors, has rescued the initial phase of

LTP. This suggests that the reduced Ca2+-dependent release of D-serine by astrocytes

impairs initiation of synaptic plasticity. However, it does not explain the failure of LTP

maintenance which may be responsible for cognitive decline associated with epilepsy.

Keywords: astrocyte remodeling, epilepsy, D-serine, calcium, plasticity, spatial entropy, spatial complexity,

neurodegeneration

INTRODUCTION

Epilepsy is a group of neurological disorders, associated
with pathological synchronization of neuronal activity causing
seizures. Several cellular mechanisms of this pathology were
proposed. The classical view holds that seizures occur because
of a shift in the balance between excitation and inhibition
in the brain toward excitation (During and Spencer, 1993;
DiNuzzo et al., 2014). However, pathological synchronization
of excitatory neurons may also result from enhanced inhibition
of a relatively small group of inhibitory interneurons, which
then synchronously disinhibits numerous excitatory neurons.
This is called “rebound” excitation and may make all these

cells to fire in synchrony (Paz and Huguenard, 2015). The K+

hypothesis of epilepsy suggests that extracellular accumulation of
this ion in the brain depolarizes neurons and cause epileptiform

activity (Green, 1964; Fertziger and Ranck, 1970; Fröhlich et al.,
2008). Mutation in astrocytic K+ channels (Kir4.1 type) has been
proposed as one of the causes of human epilepsy (Villa and
Combi, 2016). Indeed, it has long been reported that periodic
elevations of extracellular K+ concentration could produce long-
term changes in neuronal excitability, making the network prone
to epileptogenesis (Semyanov and Godukhin, 1997).

An excessive activity of neuronal networks induces
excitotoxicity, which leads to neurodegeneration. Hippocampal
sclerosis is typically reported in temporal lobe epilepsy (TLE)
(Kim, 2001; Blümcke et al., 2002; de Lanerolle and Lee, 2005;
Thom, 2014). The loss of neurons is considered as a mechanism

for epileptic focus formation and an indication for hippocampus
removal in clinic. Neurodegeneration in TLE may also lead to
a mild cognitive impairment affecting learning and memory
(Hermann and Seidenberg, 2007; Höller and Trinka, 2014).
Long-term potentiation (LTP) and depression (LTD) are widely
accepted experimental models to explore mechanisms of synaptic

memory formation (Bliss and Collingridge, 1993; Ju et al., 2004).
Recent studies have demonstrated a significant impairment of
long-term synaptic plasticity after SE in different animal models,
including a lithium-pilocarpine model of TLE (Zhou et al.,
2007; Müller et al., 2013; Cunha et al., 2015; Kryukov et al.,
2016; Carpenter-Hyland et al., 2017; Ivanov and Zaitsev, 2017;
Postnikova et al., 2017). A reduction or elimination of LTP that
can be observed for weeks after SE has frequently been reported
(Zhang et al., 2010; Zhou et al., 2011; Suárez et al., 2012). Despite
numerous studies, the exact mechanisms of LTP impairment
after SE remain unidentified.

The quest for themechanisms of epileptogenesis have typically
been focused on neuronal malfunction, such as altered expression

of receptors and channels; extracellular K+ accumulation
synchronizing neuronal populations; a shift in the balance of
synaptic excitation and inhibition toward excitation (DiNuzzo
et al., 2014). Intriguingly, many of these functions are regulated
by astrocytes. Astrocytic uptake of neurotransmitters and
extracellular K+ clearance are key to synaptic function (Cheung
et al., 2015; Lebedeva et al., 2018; Verkhratsky and Nedergaard,
2018). Astrocytes control synaptic plasticity in glutamatergic
synapses by releasing of D-serine, a co-agonist of NMDA
receptors (Henneberger et al., 2010, 2012; Papouin et al., 2017).
They are involved in uptake and release of GABA, inhibitory
neuro- and gliotransmitter (Angulo et al., 2008; Lee et al., 2010;
Héja et al., 2012; Kersante et al., 2013; Song et al., 2013).
Therefore, astrocytic mechanisms can potentially contribute to
epileptogenesis. Indeed, astrocyte control of synaptic NMDA
receptors is implicated in the progressive development of TLE
(Clasadonte et al., 2013). Astrocytic Ca2+-dependent glutamate
release is suggested to trigger synchronous neuronal discharges
in rat hippocampal slices following application of a K+ channel
blocker, 4-aminopyridine (4-AP) (Tian et al., 2005). In contrast,
some other models of acute epileptiform activity in slices (Mg2+-
free solution, picrotoxin, increased extracellular K+) produce
Ca2+ oscillations in astrocytes, which are not responsible for
paroxysmal activity in neurons (Fellin et al., 2006). Thus,
the role of astrocytic Ca2+ activity in epileptogenesis remains
controversial. Moreover, acute effects have often been obtained in
brain slices using convulsants, which may not necessarily reflect
changes in astrocytic Ca2+ activity after SE.

Another critical aspect of neuron-astrocyte interactions is
morphological. Astrocytic processes approach synapses, forming
so-called “astrocytic cradle” (Verkhratsky and Nedergaard,
2014). Being highly plastic, perisynaptic astrocytic processes can
retract from or extend toward dendritic spines (Bernardinelli
et al., 2014a; Heller and Rusakov, 2015). Rearing laboratory
animals in complex environment or certain LTP induction
protocols appear to increase glial coverage of excitatory synapses
(Jones and Greenough, 1996; Lushnikova et al., 2009) whereas
some memory consolidation tasks (Ostroff et al., 2014) or
experiencing a lactation period (Oliet et al., 2001) appear
to decrease it. Suppression of IP3-dependent Ca2+ signaling
in astrocytes reduces synaptic coverage (Tanaka et al., 2013).
Morphological remodeling of astrocytes following SE has not
been systematically studied.

Impairment of K+ clearance by astrocytes has been proposed
as amechanism for extracellular K+ accumulation in the epileptic
brain (Bedner and Steinhauser, 2013). This may occur due to the
redistribution of astrocytic K+ channels or reduced K+ buffering
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due to astrocyte uncoupling through gap-junctions in epileptic
tissue (Wallraff et al., 2006; Bedner et al., 2015). Interestingly,
K+ clearance by astrocytes can be linked to astrocytic Ca2+

activity, via Ca2+-dependent K+ channels (Wang et al., 2012).
However, this link has not been considered in the context of
epileptogenesis.

Although recent reports have convincingly demonstrated the
involvement of astrocytes in epileptogenesis, further analysis of
cellular and subcellular mechanisms is still needed. Here we
report morphological and physiological changes in astrocytes
following SE induced by lithium-pilocarpine injection, as well
as their possible association with synaptic plasticity changes.
Our quantitative morphological assessment employs a novel
approach based on the spatial entropy-complexity spectrum
analysis.

MATERIALS AND METHODS

Pilocarpine Model of Epilepsy
All procedures were carried out in accordance with University
of Nizhny Novgorod regulations. 3–6 weeks old male Sprague-
Dawley (Wistar for LTP experiments) rats were injected with
lithium chloride (127 mg/kg, Sigma Aldrich) 20–24 h prior to
pilocarpine and methylscopolamine (1 mg/kg, Sigma Aldrich)
20min prior to pilocarpine. Then pilocarpine (Tocris), 10
mg/kg was injected every 30min (but no more than 60
mg/kg) to induce SE which characterized with generalized
seizures lasting for at least 20min (Supplementary Figure
1). To reduce mortality, phenazepam 1 mg/kg was injected
every 10min for 30–40min after 20min of generalized
seizures.

Nissl Staining
Brain tissue was prepared according to routine histologic
methods (Singh et al., 2008). Briefly, brains were removed
immediately after decapitation, immersed in ethanol 96% and
embedded in paraffin after dehydration. Paraffin sections (5µm)
were cut in a coronal plane and stained with Nissl’s method.
Each sixth staining section was chosen for quantitative analysis
for each animal. Images of CA1, CA3, hilus, and dentate gyrus
were obtained using an x40 magnification. The neurons were
counted per 100µm for cell layer in each area using the plugin
“Cell counter” for ImageJ.

Hippocampal Slice Preparation
The slices were prepared 2–4 weeks after SE. The animals
were anesthetized with Isoflurane (1-Chloro-2,2,2-trifluoroethyl
difluoromethyl ether) and then decapitated. The rest of the
procedure was slightly different for whole cell and field potential
recordings.

Preparation for Whole-Cell Recording and Imaging
The brains were exposed, and then chilled with ice-cold
solution containing (in mM): 50 sucrose; 87 NaCl; 2.5 KCl;
8.48 MgSO4; 1.24 NaH2PO4; 26.2 NaHCO3; 0.5 CaCl2; 22 D-
Glucose. Hippocampi from both hemispheres were dissected,
isolated, and transverse slices (350µm)were cut using a vibrating

microtome (Microm HM650V; Thermo Fisher Scientific) and
left to recover at 34◦C for 1 h in a submerged incubation
chamber with “storage” solution containing (in mM): 119 NaCl;
2.5 KCl; 1.3 MgSO4; 1 NaH2PO4; 26.2 NaHCO3; 1 CaCl2;
1.6 MgCl2; 22 D-Glucose. Then the slices were transferred
to the recording chamber and were continuously perfused
with a solution containing (in mM): 119 NaCl; 2.5 KCl;
1.3 MgSO4; 1 NaH2PO4; 26.2 NaHCO3; 2.5 CaCl2; 11 D-
Glucose. All solutions were saturated with carbogen gas mixture
containing 95% O2 and 5% CO2. Osmolarity was 295 ± 5
mOsm, pH 7.4. All recordings were done at a temperature of
34◦C.

Preparation for Field Potential Recording and LTP

Induction
The cerebellum and a small section of the frontal cortex were
removed. A flat surface for mounting the brain was created by
making a cut on the dorsal surface parallel to the horizontal plane.
The brain was then mounted onto the stage of the vibratome,
and horizontal sections (400µm thick) were cut in ice-cold
artificial cerebrospinal fluid (ACSF). ACSF composed of (in
mM): 126 NaCl, 2.5 KCl, 1.25 NaH2PO4, 1 MgSO4, 2 CaCl2,
24 NaHCO3, and 10 D-glucose was saturated with carbogen.
The prepared slices were immersed in a chamber with ACSF,
which was placed in a temperature-controlled water bath (35◦C)
for 1 h. After the incubation, the slices were transferred to the
recording chamber, where they were kept for 15–20min prior
to the electrophysiological study. In this chamber, hippocampal
slices were perfused with a constant flow of oxygenated ACSF at
a rate of 5 ml/min at room temperature. One to five slices from
each rat were used in the experiment.

Sholl Analysis
Sholl analysis was performed on adaptively thresholded maximal
projections of Z-stacks, where each XY-plane has been filtered
with anisotropic diffusion filtering. All processing steps were
performed using image-funcut library [image-funcut, https://
github.com/abrazhe/image-funcut] and other custom-written
Python scripts, using Scikit-Image [scikit, http://scikit-image.
org/] and Sci-Py [scipy, http://www.scipy.org/] libraries (Van Der
Walt et al., 2014). The step-by-step procedure is summarized
in Supplementary Figure 2. Sholl metric was calculated
automatically as a number of intersections of circles with centers
at the soma and increasing radii with the thresholded mask
obtained as described above.

Shearlet-Based Estimate of Spatial
Complexity and Entropy for 2D Patterns
A spatial pattern can be characterized by a pair of statistical
properties, namely entropy and statistical complexity (López-
Ruiz et al., 1995). An ordered (e.g., periodic) structure with a
single spatial scale and preferred feature orientation will have
both low entropy and small statistical complexity, as the structure
in any part of the system can be reconstructed from a small area.
At the other end of the complexity-entropy spectrum, where the
state is disordered with no spatial correlations, the entropy of the
system will be maximal, while the complexity will again be low
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(the spatial pattern has the same local statistics). Intermediate
cases with high statistical complexity are of more interest,
as they represent systems with non-trivial regularities and
underlying structure embedded in randomness. We developed
an algorithm to map local entropy and complexity values for
biologically relevant structures using shearlet transform to induce
local probability densities of scale and orientation and Jensen-
Shannon divergence to define statistical complexity. Below we
describe the two points in more detail.

Entropy and Statistical Complexity
Both entropy and complexity (entropic non-triviality) measures
for a 2D pattern were defined statistically for a distribution of
spatial features, such as orientation, or scale. Here we denoted
such a distribution as

P : = {Pi} (1)

for a set of features i= 1 . . . N. Then entropy was defined simply
as Shannon information entropy

S[P] = −
∑

i

Pi log2 Pi. (2)

Entropy will have its maximum for the equiprobable distribution
of all features Pe,

S[Pe] = Smax = 2N, (3)

where N is a number of possible states or features. This allows to
introduce normalized entropy:

Hs[P] : = S[P]/S[Pe],Hs[P] ∈ [0, ...1] (4)

Following (López-Ruiz et al., 1995) we used the disequilibrium-
based complexity measure

C[P] : = Q[P, Pe]Hs[P] (5)

i.e., the one based on the statistical distance between the
observed (P) and equiprobable (Pe) distributions. Here, following
(Lamberti et al., 2004; Rosso et al., 2007), we employed
normalized Jensen-Shannon divergence

QJS = J[P, Pe]/Jmax (6)

as a measure of distance between two distributions, where
Jensen-Shannon divergence is defined as

J[P, Pe] = S

[

P + Pe

2

]

−
1

2
(S[P]+ S[Pe]). (7)

Clearly, J[P, Pe] = 0 if P = Pe and reaches its maximum when
only one feature, say m, is present, while all others are absent:
Pi = 1|i = m, and Pi = 0|i 6= m.

Shearlet Transform
Shearlet transform provides a convenient probability density
function for spatial entropy and complexity estimates, describing
local prevalence of structures with some specific scale and
orientation. We used fast finite discrete shearlet transform
(FFST) described in detail by (Häuser and Steidl, 2013). Here we
provide a minimally sufficient description of the FFST and its use
in calculation of spatial entropy and complexity.

Discrete shearlet transform was based on convolving the
digital 2D image

I(x, y) ∈ R(N,N) (8)

with scaled, sheared, and shifted copies of a “mother” shearlet
function ψ , thus accounting for different scales and orientations
of features contained in the image; one uses the dilation matrix A
and shear matrix S to create the sheared, scaled and shifted copies
of the mother wavelet ψx:

ψa,s,t = a−3/4(Aa−1Ss−1(x− t)). (9)

Thus, the scaled and shared copies of ψ pick up dominant
anisotropic features at different spatial scales and orientations.
In the discrete transform, one uses a fixed number of
decomposition scales and shifts as well as scale-dependent
number of orientations (more orientations at higher spatial
frequencies). Finally, shearlet decomposition of image was given
by shearlet coefficients

T(I)(j, k,m) = 〈I,ψj,k,m〉 (10)

where discrete shearlet ψj,k,m = ψajsj,ktm(x) is the shearlet at
discrete scale αj, shear sj,k and shift tm. Thus, T(I) is a set of K
images of the same size as I(x,y), where the value at a specific
(x,y) location in the k-th image represents the shearlet coefficient
at some specific scale j and shear s.

Following ideas from wavelet entropy (Rosso et al., 2001) and
earlier of spectral entropy of (Powell and Percival, 1979), in each
location of the studied 2D image I(x,y), we defined P(x, y) =

Pk(x, y) as normalized power of the shearlet coefficients at this
point:

Pk(x, y) = Ek(x, y)/
∑

j
Ej(x, y) (11)

thus, interpreting a spectrum of local feature scales and
orientations as a density function. Here (K∗

σ ·) denotes
convolution with a Gaussian kernel with scale-dependent
standard deviation σj.

Volume Fraction (VF) of Astrocytic Leaflets
To calculate the VF of the fine process of the astrocyte, we
followed a similar method described by Heller and Rusakov
(2015) A line of 45µm length were drawn from the soma on a
single Z plane of the stack. Spatial attention was paid to ensure
that fluorescence of soma was not saturated. The estimated VF
was calculated with the following:

GV(i, j) = (F(i, j)− F0)/(Fmax − F0) (12)
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where F(I,j)—the fluorescent in particular pixel of the
line, Fmax—the fluorescence of soma, F0–the background
fluorescence. F0 was obtained in image area which had no
stained astrocytes.

Astrocyte Coupling Analysis
The astrocytes were loaded with 50µMAlexa Fluor 594 through
the patch pipette for 30min. then Z-stack two-photon images
was obtained (emission band-pass filter 565–610 nm, 512 x 512
pixels). The images were then denoised with block matching 4D
(BM4D) free scrip forMATLAB (Maggioni et al., 2013; Danielyan
et al., 2014). The distance to neighboring astrocytes coupled
to the target astrocyte through gap-junctions was calculated
in 3D-space using Pythagorean theorem with custom-written
MATLAB script. Fluorescence Intensities of all coupled cells were
normalized to fluorescence of soma of the patched astrocyte. The
relationship between distance fluorescence of coupled astrocyte
and distance to this astrocyte was fitted by monoexponential
function to obtain coupling length constant (Cλ) (Anders et al.,
2014):

I(d) = I0exp(−d/Cλ), (13)

were, d—distance, Io—the normalized fluorescence intensity of
the coupled cell.

Electrophysiological Recordings
Whole-Cell Recording
Whole-cell voltage-clamp and current-clamp were performed
with Multiclamp 700B amplifier (Molecular Devices). The
CA1 str.radiatum astrocytes were visualized with BX51WI
(Olympus) or Axio Examiner Z1 (Zeiss) microscope equipped
with infrared differential interference contrast. Borosilicate patch
pipettes (Resistance 3−5 MΩ) were filled with internal solution
containing (in mM): 130 KCH3SO3, 10 HEPES, 10 Na2-
phosphocreatine, 8 NaCl, 3 l-ascorbic acid, 2 Mg-GTP (pH
adjusted to 7.2, osmolarity of 295 ± 3 mOsm). For simultaneous
two-photon imaging, 50µM Alexa Fluor 594 was added to the
internal solution.

Bipolar extracellular tungsten electrode (FHC) was placed
in str. radiatum between CA1 and CA3 areas. Once whole-
cell configuration was obtained, the cell was dialyzed for 5
to 10min before the start of recording. In voltage clamp
recordings the astrocytes were held at−80mV. Voltage steps
were applied to obtain current-voltage (I-V) relationship. In
current clamp, current steps were applied to corroborate the
absence of membrane excitability. Cycles of 1, 4, and 5 electrical
stimuli (100ms, 50Hz) were applied to Schaffer collaterals. The
intensity of stimulation was set to induce synaptic currents
in astrocytes of 20 to 50 pA to a single stimulus. Series and
input resistances were continuously monitored by a voltage step
of−5mV after each cycle. Signals were sampled at 5 kHz and
filtered at 2.5 kHz.

Passive astrocytes were taken at 100−200µm from the
stimulating electrode. They were identified by small soma (5–
10µm), low resting membrane potential (∼−80mV), low input
resistance (<20 M�), and linear I-V relationship. Cells with
similar characteristics except for higher input resistance (>50

M�) were considered NG2 or complex cells and were excluded
from the study.

Membrane currents were analyzed using custom-written
MATLAB scrips (MathWorks R2016a). Synaptic currents of 1, 4,
and 5 stimuli were baseline subtracted and then averaged. IK (K+

current) was measured 200ms after the stimulus. At this time
point IK was not contaminated by the current mediated by field
potential and transporter current. From this point the decay was
fitted with mono-exponential function and τdecay calculated. To
obtain IK in response to 5th stimulus, the response to 4 stimuli
was subtracted from the response to 4 stimuli.

Field Potential Recording
Field excitatory postsynaptic potentials (fEPSPs) were recorded
from CA1 str. radiatum using glass microelectrodes (0.2–1.0
M�) filled with ACSF. Synaptic responses were evoked with
extracellular stimulation of the Schaffer collaterals using a
bipolar twisted stimulating electrode made of insulated nichrome
wire placed in the str. radiatum at the CA1–CA2 border.
The stimulation was performed with rectangular paired pulses
(duration, 0.1ms; interstimulus interval, 50ms) every 20 s via
an A365 stimulus isolator (WPI). Responses were amplified
using a microelectrode AC amplifier model 1800 (A-M Systems)
and were digitized and recorded on a personal computer using
ADC/DAC NI USB-6211 (National Instruments) and WinWCP
v5.2.2 software by John Dempster (University of Strathclyde).
Electrophysiological data were analyzed with the Clampfit 10.2
program (Axon Instruments).

The dependence of field response amplitude on stimulation
strength was determined by increasing the current intensity
from 25 to 300 µA. For each fEPSP, the amplitude and the
slope of the rising phase at a level of 20–80% of the peak
amplitude were measured. The presynaptic fiber volley (PrV)
was quantified by the peak amplitude. The maximum rise slope
of the input-output (I/O) relationships (fEPSP amplitude vs.
PrV amplitude) was calculated for every slice by fitting with a
sigmoidal Gompertz function (Equation 14) using OriginPro 8
(OriginLab Corporation).

y = ae−e(−k(x−xc))
, (14)

where a is an asymptote of the maximum fEPSP amplitude; e is
Euler’s Number (e = 2.71828 . . . ); k and xc are positive numbers
describing the shape of the curve; xc is the PrV amplitude at
which the maximum slope of the curve is observed; ak/e is a
maximum slope of the curve.

The stimulus intensity used in the experiment was chosen
so that the amplitude of fEPSP would be 40–50% of the
amplitude where the population spike appeared for the first
time. The strength of stimulation was unvaried during the
experiments, usually being 50–150 µA. The paired-pulse ratio
(PPR) was measured as a ratio of the second and first fEPSP
amplitude.

The LTP induction was started only if a stable amplitude of
the baseline fEPSP had been recorded for 20min. Three trains
of high-frequency stimulation (HFS, 100 pulses at 100Hz, with
an inter-train interval of 20 s protocol) was applied to induce
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LTP. The fEPSPs were recorded after induction protocol during
60min. The baseline fEPSP and the potentiated fEPSP (recorded
47–60min after HFS) were averaged separately to measure LTP
in a slice. Plasticity value was calculated as a ratio of the slope
of the rising phase in the averaged potentiated and baseline
fEPSP.

Ca2+ Imaging
Ca2+ activity was recorded with a confocal microscope, Zeiss
LSM DuoScan 510, in CA1 str.radiatum of acute hippocampal
slices pre-incubated with Ca2+ dye, Oregon Green 488
BAPTA-1 AM (Invitrogen) and an astrocyte specific marker,
sulforhodamine 101 (100 nM, Invitrogen). After the preparation,
the slices were transferred to a 3ml incubation chamber with
constantly gassed ACSF containing both dyes. Oregon Green
488 BAPTA-1 AM was initially dissolved to 0.795mM in 0.8%
Pluronic F-127 in DMSO. Then 3 µl of the dye was added to
the chamber. After incubation for 40–45min at 37◦C in the dark,
the slices were transferred to the recording/imaging chamber for
time-lapse imaging (one frame/s). Oregon Green 488 BAPTA1
was excited with a 488 nm argon laser and imaged with an
emission band-pass filter 500–530 nm; sulforhodamine 101 was
excited with a 543 nm HeNe laser and imaged with an emission
band-pass filter 650–710 nm. The imaging was performed for
10min at 34◦C in normal ASCF, then 30 dark noise images were
recorded.

The raw imaging data were exported to MATLAB. The
median of the dark noise was calculated for each pixel and
subtracted from the corresponding pixel intensity value of the
fluorescence images. Then denoising was done with the BM3D
algorithm (Danielyan et al., 2014). The movement artifacts
were corrected with the single-step DFT algorithm (Guizar-
Sicairos et al., 2008). The whole Ca2+ events (x-y-time 3D
Ca2+ signals) were detected with the adapted algorithm which
we described previously (Wu et al., 2014). Briefly, each pixel
of the image series was analyzed independently. Firstly, we
roughly estimated a baseline fluorescence F0temp applying 60-s
3rd order Savitzky-Golay polynomial filter which smoothed all
Ca2+ signals on the fluorescent signal F. Then, we estimated
a temporary (1F/F)temp = (F − F0temp) / F0temp to find Ca2+

transients exceeding a statistical threshold. Then these transients
were excluded from the baseline which was further smoothed
with 100-s filter. This filter interpolated the intervals left by the
excluded transients, and, thus, we obtained the uninterrupted
final baseline F0 which was used to obtain 1F/F = (F − F0) /
F0. Ca

2+ transients exceeding a statistical threshold were detected
and binarized. The active neighboring pixels were grouped into
x-y 2D Ca2+ events, which were reconstructed into x-y-time 3D
Ca2+ events. For each Ca2+ event the maximal projection (Smax),
the integral and the duration were calculated. To avoid noise
detection the events excluded from further analysis if the integral
was less than 4 µm2 s, or the Smax was less than 10 µm2, or the
duration less than 2 s.

The probability density of the events sizes and the durations
appeared linear in log-log scale, suggesting that the obtained
distributions can be described by a power law. Therefore, the

power law fit was applied, and the corresponding exponent was
calculated for each slice.

Statistical Analysis
All data are presented as mean± standard error of mean (SEM).
Statistical significance was assessed using non-parametric Mann-
Whitney test, parametric Student’s t-test and repeated measures
two-way ANOVA as stated in the text. P < 0.05 was considered
statistically significant.

RESULTS

Rat hippocampal slices were prepared 2–4 weeks after
pilocarpine-induced SE when the animals typically started
to develop spontaneous seizures. Nissl staining confirmed
statistically significant neurodegeneration in pyramidal layers
of three hippocampal regions: CA1, CA3, and hilus (CA1: 7.9
± 0.36 cells per 100µm in control, n = 6; 6.0 ± 0.4 cells per
100µm after SE, n= 6; p= 0.02; CA3: 8.9± 0.5 cells per 100µm
in control, n = 6; 6.0 ± 0.4 cells per 100µm after SE, n = 6;
p = 0.01, Mann-Whitney test; hilus: 7.5 ± 0.6 cells per 100µm
in control, n = 6; 5.3 ± 0.5 cells per 100µm after SE, n = 6;
p = 0.04, Mann-Whitney test; Figures 1A–C). No significant
changes in the cell density were observed in granular cell layer
of the dentate gyrus (17.2 ± 1.7 cells per 100µm in control,
n = 6; 15.5 ± 0.7 cells per 100µm after SE, n = 6; p = 0.37,
Mann-Whitney test; Figure 1D). Consistent with previously
reported astrogliosis, the density of CA1 str. radiatum astrocytes
stained with an astrocyte-specific marker, sulforhodamine 101,
was significantly higher after SE (1.2 ± 0.1 cells per 100 µm2 in
control, n = 15; 1.5 ± 0.1 cells per 100 µm2 after SE, n = 20;
p = 0.02, Mann-Whitney test; Figures 1E,F) (Mazzuferi et al.,
2010; Pekny et al., 2016). However, this astrogliosis would be
considered rather minor.

Then we performed Sholl analysis on two-photon images
of astrocytes loaded trough patch pipette with 50µM Alexa
Fluor 594 (morphological tracer, see Materials and Methods,
Supplementary Figure 2 and Figure 2A). There was no significant
difference in the number of primary branches (connected to
soma), the peak number of the branches and size of the astrocytic
domain in control and SE animals (Supplementary Figure 3).
However, the number of distal branches was significantly lower
after SE (control, n = 6; SE, n = 6; two-way repeated measures
(RM) ANOVA, F(1,5) = 6.862, p= 0.047, partial η2 = 0.578, with
a mean difference of 5.61± 2.14; Figure 2B). This morphological
rearrangement can also be assessed using the analysis of spatial
complexity-entropy spectrum (Figure 2C). Spatial complexity
and spatial entropy are both low in highly ordered or anisotropic
systems. As the system loses the order, both entropy and
complexity start to increase. When the elements of the systems
become randomly distributed (“noise”) the entropy is the
highest, while the complexity decreases. Remodeling of astrocytic
processes after SE significantly increased both entropy and
complexity (entropy: 0.51± 0.02 in control, n= 11; 0.56± 0.001
after SE n = 8; p = 0.009, Mann-Whitney test; complexity 0.343
± 0.003 in control; 0.352 ± 0.003 after SE; p = 0.02, Mann-
Whitney test; Figure 2D). This finding suggests that astrocytic
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FIGURE 1 | Neurodegeneration and astrogliosis after SE. (A–D) Nissl staining showing neurodegeneration in the str. pyramidale of CA1 (A), CA3 (B), and hilus (C)

after SE. No significant neurodegeneration was observed in the granular cell layer of dentate gyrus (D). Right, illustrations of stained cells in control (top) and SE-rats

(bottom). Left, the summary data from several rats. The cells were counted along the cell layers and normalized to the length of the layers. (E) Fluorescent images of

astrocytes stained with sulforhodamine 101: in control (left image) and SE-rats (right image). (F) the summary data on several rats. The circles show values in individual

rats. The bars with error bars are means ± SEMs. **p < 0.01, *p <0.05, N.S. p > 0.05 Mann-Whitney test.

processes become less orderly organized after SE. It can be
potentially explained by the decrease in the ratio of primary
astrocytic branches which are resolved with diffraction-limited

light microscopy and thin astrocytic leaflets which appear as
a chaotic fluorescent pattern because of their sizes are beyond
diffraction-limited light microscopy resolution. To estimate
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FIGURE 2 | Morphological remodeling of astrocytes after SE. (A) Masks of astrocytic branches in control (left) and SE rats (right) which were used for Sholl analysis.

The masks were obtained from maximal projections of z-stack of fluorescence images of astrocytes loaded with 50µM Alexa Fluor 594 through patch pipette. (B) The

summary data for the number of intersections of circles drawn around center of the astrocyte soma with astrocytic branches. *p < 0.05, N.S. p > 0.05, two-way

ANOVA. (C) Spatial entropy-complexity analysis. Left, maximal projection of Z-stack of fluorescence images of an astrocyte. Middle, The spatial complexity profile of

the astrocyte. Right, The spatial entropy profile of the astrocyte. (D) The summary graph of spatial entropy-complexity pairs of astrocytes on control (black circles) and

SE-rats (red circles). Empty circles are individual astrocytes. Filled circles are means ± SEMs. (E) Estimation of astrocyte leaflets’ VF. Left, construction of fluorescence

profile across an astrocyte. Dashed line indicates the place there the profile was obtained. It passes through the soma and the area or unresolved processes devoid of

identifiable branches. Right, the mean ± SEM fluorescent profiles normalized to the fluorescence in soma for control (black trace) and SE-rats (red trace).

possible changes in leaflets volume fraction, we performed
line scan through soma and the area of unresolved astrocytic
leaflets avoiding astrocytic branches (Figure 2E). This method
is based on the assumption that unsaturated fluorescence level
in soma corresponds to 100% volume fraction (VF) (Medvedev
et al., 2014; Heller and Rusakov, 2015). The ratio between
the fluorescence of leaflets area and fluorescence of soma was
considered VF of leaflets and did not differ between control

and SE rats (mean leaflets VF: 3.4 ± 0.2%, n = 6 in control;
3.6 ± 0.2%, n = 6 after SE; p = 0.59, Mann-Whitney test;
Figure 2E). The equal VF of leaflets does not, however, rule out
their spatial rearrangement after SE which can be only assessed
with super-resolution light microscopy or electron microscopy.

Morphological remodeling of astrocytes can be linked to
astrocytic uncoupling and disruption of astrocytic syncytium
after SE (Wallraff et al., 2006; Bedner et al., 2015). To assess
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astrocyte coupling, we monitored diffusion of Alexa Fluor 594
from patched astrocyte to its neighbors through gap-junctions
(Figure 3A). The number of stained astrocytes was significantly
lower after SE compared to control (15.3 ± 2.8, n = 7, in
control; 6.6 ± 2.9, n = 8 after SE; p = 0.03 Mann-Whitney
test; Figure 3B). We also estimated the “strength” of gap-
junction connections by the decay of fluorescence measured in
somas of coupled astrocytes as a function of distance from the
astrocyte loaded with Alexa Fluor 594 through patch pipette.

The exponential decay of fluorescence was observed both in
control and SE rats (linear relationship in semi-logarithmic scale,
Figure 3C). Although length constant (λ) tended to be smaller
after SE, the difference did not reach significance (λ: 33 ± 5µm,
n = 7, in control; 26 ± 5µm, n = 6, after SE, p = 0.07,
Mann-Whitney test, Figure 3D).

Decreased coupling of astrocytes through gap-junctions can
lead to reduced spatial buffering of K+ released during synaptic
transmission (Wallraff et al., 2006; Shih et al., 2013; Bedner

FIGURE 3 | Astrocytic uncoupling through the gap-junctions does not affect K+ clearance by astrocytes. (A) Fluorescence image of an astrocyte stained with 50µM

Alexa Fluor 594 through patch pipette in control (left) and SE-rats (left). Because the dye goes through gap-junctions, the coupled astrocytes are also stained. The

number of stained astrocytes is lower after SE. (B) The summary data showing the number of coupled astrocytes in control (black) and after SE (red). (C) Decay of

fluorescence in somas of coupled astrocytes with distance from the astrocyte loaded with Alexa Fluor 594. The slope of the linear fit in semi-logarithmic scale

determines the length constant. (D) The summary data showing the length constant in control (black) and after SE (red). (E) The sample traces of the IK recorded to

the single stimulus [IK (1), black trace] and to the fifth stimulus [the response to 4 stimuli was subtracted from the response to 5 stimuli, IK (5), green trace]. (F) The

summary data of decay time constant of IK (1) [τdecay IK (1)] in control (black) and after SE (red). (G,H) The summary data of IK (5)/IK (1) and τdecay IK (5)/ τdecay IK (1)

ratios, respectively. The circles show values in individual rats. The bars with error bars are means ± SEMs. *p <0.05, N.S. p > 0.05 Mann-Whitney test.
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et al., 2015; Cheung et al., 2015; Lebedeva et al., 2018). To
address possible changes in K+ dynamics after SE, we recorded
K+ current (IK) in CA1 str.radiatum astrocytes in response to
stimulation of Schaffer collaterals (Figure 3E). The astrocytic
response consists of three overlapping currents: field potential-
induced current, glutamate transporter current, and IK (Sibille
et al., 2014). First two currents are short and typically end
within 100ms, while IK lasts for several seconds (Afzalov et al.,
2013; Lebedeva et al., 2018). Therefore, the amplitude of IK
was measured 200ms after the stimulus. The IK was also fitted
from this point with mono-exponential function, which was used
to calculate the decay time-constant (τdecay IK). No significant
difference was observed in τdecay IK in response to single stimulus
after SE [τdecay IK(1): 2.5 ± 0.3 s, n = 7, in control; 3.0 ± 0.2 s,
n = 8, after SE; p = 0.09, Mann-Whitney test, Figure 3F]. This
result suggests that K+ clearance is not affected during single
synaptic events after SE, but it may be affected during repeated
activity. To address this issue, we stimulated Schaffer collaterals
4 times and 5 times at 50Hz. Then the response to 4 stimuli
was subtracted from the response to 5 stimuli to obtain isolated
IK to 5th stimulus [IK(5)].The ratio of IK(5)/IK(1) demonstrated
activity-dependent depression of IK and was not significantly
different between control and SE rats [IK(5)/IK(1): 0.72 ± 0.06,
n = 7, in control; 0.68 ± 0.07, n = 8, after SE; p = 0.26, Mann-
Whitney test, Figure 3G]. The ratio of τdecay IK(5)/τdecay IK(1)
was also not significantly different between control and SE rats
[τdecay IK(5)/τdecay IK(1): 1.45 ± 0.23, n = 7, in control; 1.09 ±

0.14, n = 8, after SE; p = 0.14, Mann-Whitney test, Figure 3H].
These findings suggest that possible reduction in K+ spatial
buffering in astrocytic syncytium does not affect K+ clearance
during moderate activity of the neuronal network.

Astrocytic atrophy and uncoupling can affect Ca2+ signaling
in an astrocytic syncytium. To test this hypothesis, we
measured Ca2+ signals in CA1 str. radiatum stained with
membrane-permeable Ca2+ dye Oregon Green 488 BAPTA-
1, AM (Figure 4A). Although this dye predominantly stains
astrocytes, we could not rule out the contribution of neuronal
responses to a fluorescent signal. Fortunately, astrocyte can
generate much slower Ca2+ signals than neurons (seconds
vs. hundreds of milliseconds) (Bazargani and Attwell, 2016).
Such long signals are likely to represent only a proportion of
overall Ca2+ activity in astrocytes and require Ca2+ release from
endogenous Ca2+ stores. Thus, astrocytic Ca2+ events can be
separated from neuronal based on their duration (Monai et al.,
2016). Time-lapse Ca2+ imaging was performed with a confocal
microscope at the rate of 1 frame per second. Events lasting≥ 2 s
were considered astrocytic (Supplementary Video). Whole (x-y-
time) Ca2+ events were identified in local astrocytic syncytium as
previously described for single astrocytes (Figure 4B) (Wu et al.,
2014). The frequency of Ca2+ events normalized to the imaged
area (frequency density) was not significantly different between
control and SE rats (frequency density: 5.3 ± 1.8 s−1 mm−2,
n = 7, in control; 3.8 ± 0.8 s−1 mm−2, n = 7, after SE; p = 0.5,
Mann-Whitney test, Figure 4C). Consistent with the previous
report the distributions of event sizes (Smax, maximal projection)
and of events durations followed a power law (Wu et al., 2014):

P(x)∼x−α , (15)

where P–probability, x–analyzed parameter (Smax or
duration), α–power law exponent. α defines mean value and
standard deviation of the sample. Smaller α suggests that
distribution has higher proportion of larger or longer events,
and vice versa. To calculate α the sample was log-binned and
fitted with power function. The α of Smax was significantly larger
after SE, suggesting a smaller proportion of large Ca2+ events
in the distribution [α(Smax): 2.7 ± 0.3, n = 7, in control; 3.5 ±

0.2, n = 7, after SE; p = 0.015, Mann-Whitney test, Figure 4D].
No significant difference in α of durations was observed after SE
[α(durations): 2.75 ± 0.23, n = 7, in control; 3.02 ± 0.24, n = 7,
after SE; p = 0.15, Mann-Whitney test, Figure 4E]. This finding
suggests that morphological changes in astrocytes correlate with
reduction of large-sized Ca2+ events in astrocytic syncytium
after SE.

Ca2+ activity in astrocytes is responsible for a number
of functions including the release of gliotransmitters such
as D-serine (Papouin et al., 2017). D-serine acts as a co-
agonist of NMDA receptors and is required for long-term
potentiation (LTP) (Henneberger et al., 2010, 2012). Thus, the
decrease of astrocytic Ca2+ activity can reduce the amount
of D-serine released and thus impair LTP after SE (Sherwood
et al., 2017). To test this hypothesis, we recorded field
(f)EPSPs in CA1 str.radiatum in response to stimulation of
Shaffer collaterals (Figure 5A) The relationship between fEPSP
amplitude and stimulus strength has significantly decreased
after SE [F(11,297) = 4.39, p < 0.001, two-way ANOVA;
Figures 5B,C], but no significant difference in relationship
between presynaptic fiber volley (PrV) and stimulus strength
was observed [F(11,275) = 0.37, p = 0.97, two-way ANOVA;
Figures 5B,C]. The maximum rise slope of the input-output
(I/O) relationships (fEPSP amplitude vs. PrV amplitude) was
lower after SE (control: 3.32 ± 0.32, n = 13, SE: 1.61 ± 0.33,
n = 14, p < 0.01, t-test; Figure 5C). These results suggest
that the number of fibers or excitability of Shaffer collaterals
did not change (unless the decreased number of fibers is
compensated by their higher excitability), but the number of
activated synapses decreased after SE. This result is consistent
with neurodegeneration observed after SE. 10µM D-serine
changed the relationship between fEPSP amplitude vs. stimulus
strength both in control [F(11,231) = 2.23, p < 0.05, two-
way ANOVA; Figures 5B,C] and after SE [F(11,330) = 2.13,
p < 0.05, two-way ANOVA; Figures 5B,C], however, post hoc
LSD test did not confirm the effect of D-serine at any level of
stimulation.

Three trains of high-frequency stimulation (HFS, 100 pulses
at 100Hz, with an inter-train interval of 20 s) were applied to
induce LTP (Henneberger et al., 2010). The LTP magnitude was
significantly lower after SE compared to control animals (1.73 ±
0.12, n = 14, in control 50–60min after induction; 1.29 ± 0.07,
n= 15, after SE; p< 0.01, t-test; Figures 5D–G).D-serine did not
significantly affect the magnitude of LTP in control (p = 0.48, t-
test; Figures 5D–G), but restored initial phase of LTP (5–15min)
after SE (1.92± 0.17, n= 13) to the level of control animals (1.99
± 0.13, n = 14, t-test = 0.35, p = 0.73). LTP enhancement by
exogenous D-serine in a later phase of LTP (50–60min) was not
however significant (1.37 ± 0.14, n = 13, t-test = 0.54, p = 0.60,
Figure 5G).
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FIGURE 4 | Reduction in sizes of spontaneous Ca2+ events in astrocytic syncytium. (A) Hippocampal slice stained with Oregon Green 488 BAPTA-1 AM. The image

shows that astrocytes in str.radiatum, but not neurons in str.pyramidale stained. (B) 3D reconstruction of Ca2+ events in str.radiatum astrocytes (x-y-time). Top,

Time-course of Ca2+ events in control slice. Bottom, in slice after SE. (C) The summary data of the frequency density of astrocytic Ca2+ events in control (black) and

SE-rats (red). (D,E) Right, Probability density distributions of Smax (D) and durations (E) of Ca2+ events in log–log scale (log-binned data) for all recorded slices. Solid

black and red lines are the power function fits for control and SE data, respectively. Left, The summary data of the exponents α(Smax) (D) and α(durations) (E). The

circles show values in individual rats. The bars with error bars are means ± SEMs. *p <0.05, N.S. p > 0.05 Mann-Whitney test.

Our findings suggest that neurodegeneration 2–4 weeks
after pilocarpine-induced SE is accompanied by re-modeling
of astrocytes and reduction of their coupling through gap-
junctions. It does not affect the ability of astrocytes to clean
up extracellular K+ despite the expected decrease in its spatial
buffering. Decreased number of astrocytic branches correlates
with reduced sizes of spontaneous Ca2+ events in astrocytes. This

in turn may be responsible for D-serine deficiency and impaired
LTP after SE.

DISCUSSION

Astrocytic processes often comprise of thicker astrocytic
branches and thinner, nanoscale leaflets (Bernardinelli et al.,
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FIGURE 5 | Effects of D-serine on synaptic neurotransmission in the hippocampus of control and SE-rats. (A) Representative examples of fEPSPs recorded in the

hippocampal CA1 of control (ctrl) and SE-rats (SE). (B) Input-output (I/O) curves for the fEPSPs (left) and PrV (right). (C) Bar graphs showing the maximum slope of I/O

curves for the fEPSPs. (D) Traces are the average of fEPSPs recorded during baseline (1) and 47–60min after HFS (2). (E) LTP induced by HFS in the CA1 region of

the hippocampus of control and SE-rats. Note that application of D-serine (D-ser) does not affect the magnitude of LTP in control rats but fully restored initial phase of

LTP (5–15min) in SE-rats. (F,G) The summary bar graphs showing significant reductions in LTP after SE as measured by the average normalized fEPSP amplitude and

the effect of D-serine on initial (F) and later (G) phase of LTP. The bars with error bars are means ± SEMs. ***p < 0.01 *p < 0.05, N.S. p > 0.05 t-test.

2014a; Khakh and Sofroniew, 2015). Electron microscopy
studies have suggested that thicker astrocytic branches contain
endoplasmic reticulum and mitochondria serving as endogenous
Ca2+ stores (Reichenbach et al., 2010; Patrushev et al., 2013;
Bernardinelli et al., 2014b). These structures are thought to
be responsible for the amplification of Ca2+ signals and their
propagation within the astrocyte. The leaflets are thin, sheet-like

structures connected to branches. They have the minimal volume
of cytoplasm and seem to be largely devoid of organelles.
The high surface-to-volume ratio of leaflets ensures the high
surface of their plasma membrane within the limited volume
of brain tissue (Lehre and Rusakov, 2002). This makes leaflets
highly efficient for neurotransmitter uptake and K+ clearance.
Perisynaptic leaflets form an “astrocytic cradle” around synapses
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(Verkhratsky and Nedergaard, 2014). Like dendritic spines,
astrocytic leaflets are highly plastic; morphological plasticity of
perisynaptic leaflets regulates synaptic coverage (Witcher et al.,
2007; Reichenbach et al., 2010; Bernardinelli et al., 2014a; Heller
and Rusakov, 2015). For example, reduced IP3-dependent Ca

2+

activity in astrocytes leads to reduced coverage of spines by
astrocytic processes and enhanced glutamate spillover (Tanaka
et al., 2013). Changes in the astrocytic environment are also
reported following synaptic plasticity (Bernardinelli et al., 2014a).

Our morphological analysis revealed a striking difference
between SE and control astrocytes. The Sholl analysis was
performed on astrocytic processes identified with two-photon
laser scanning microscopy (astrocytic branches ∼ >0.5µm in
diameter). Although this analysis did not reveal a difference
between the samples in the enclosing radius (size of the
astrocytic domain) and number of primary astrocytic branches, a
significant reduction in the number of distal astrocytic branches
was detected. However, astrocytic leaflets are very thin and are
beyond the diffraction-limited light microscopy resolution. To
assess possible changes in leaflets VF, we plotted a profile of
leaflets fluorescence normalized to the fluorescence of soma
(Medvedev et al., 2014; Heller and Rusakov, 2015). This method
assumes that, with a ∼1µm thick two-photon excitation plane,
somatic fluorescence originates from the dye that occupies
∼100% of the visualized volume whereas fluorescence of the
leaflets area is determined by tissue volume fraction occupied
by the cytoplasm of all leaflets in the excitation region. Thus,
the ratio between the non-saturated soma fluorescence and the
fluorescence of leaflet area is roughly proportional to the VF of
leaflets. No significant difference in this ratio was found between
astrocytes of SE and control animals. Nevertheless, equal VFs of
leaflets do not rule out nanoscopic redistribution of leaflets that
affect synaptic coverage.

To get further insights into the spatial organization of
astrocytic processes, we advanced a novel, spatial complexity-
entropy spectra analysis. This analysis evaluates the nature
of order and structure prevalence in a system. Entropy
monotonically increases as the system goes from a highly
ordered crystalline-like structure to a completely disordered state
lacking internal structure. Statistical complexity, on the other
hand, changes non-monotonically and reaches a maximum at
intermediate levels of entropy, falling near zero for the two
extremes of orderliness in a system. Intuitively, the complexity
of regular patterns is low due to its predictability and the
complexity of a disordered state is low due to the simplicity
of its statistical description. Between the two extremes, a
given entropy level can correspond to a range of complexity
levels. Systems near critical states or in dynamical chaos
regimes are characterized by high levels of complexity (Rosso
et al., 2007). In such systems, disorder is non-trivial, and the
systems contain both structure and randomness. Branching
patterns of astrocytic processes are an example of such a non-
trivial structure, where large astrocytic branches correspond
to locally ordered structures, whereas fine ramifications of
leaflets are seen as more complex and chaotic. Thus, entropy-
complexity spectra will reflect the ratio between astrocytic
branches and leaflets. Consistent with other morphological

analysis we observed a shift in entropy-complexity spectra
of astrocytes corresponding to a decrease in branches/leaflets
ratio.

Astrocytic coupling through gap junctions has been suggested
as a mechanism for K+ “spatial buffering” in the central nervous
system (Kofuji and Newman, 2004; Meeks andMennerick, 2007).
K+ released during action potential propagation and during
activation of postsynaptic glutamate receptors is removed by
astrocytes through various mechanisms (Walz, 2000; Dallérac
et al., 2013; Shih et al., 2013; Pekny et al., 2016; Lebedeva
et al., 2018). Once taken by astrocytes, K+ quickly re-equilibrates
within an astrocytic syncytium through gap-junctions which are
permeable to this ion. One counterargument to this hypothesis is
that intracellular K+ concentration does not considerably change
due to the removal of K+ from narrow intercellular cleft to
the large volume of cytoplasm. To test if astrocytic remodeling
and uncoupling through gap-junctions affect K+ clearance, we
recorded IK in astrocytes in response to synaptic stimulation.
No significant difference in the amplitude and the timecourse
of IK was detected between SE and control animals. Thus,
in conditions of synchronous synaptic activity, K+ clearance
did not change after SE. It rasises the question whether gap
junction suppression could contribute significantly for excessive
K+ accumulation in epileptogenesis.

Astrocytic remodeling may occur as a result of
neurodegeneration which is pronounced 2 weeks after SE
(Curia et al., 2008). Fewer neurons make fewer synaptic
connections which need less astrocytic processes to support
them. Reduction in a number of distal astrocytic branches and
gap-junction coupling may also decrease Ca2+ events spread in
single astrocytes and astrocytes syncytium. Spreading of Ca2+

events depends on Ca2+ release from endogenous stores. When
some of the distal astrocytic branches containing Ca2+ stores are
abolished, Ca2+ transients starting in leaflets have less chance
to be amplified after SE. Astrocytic gap-junction may play a
role in the propagation of Ca2+ signals in astrocytic syncytium
(Enkvist and Mccarthy, 1992; Höfer et al., 2002; Fujii et al.,
2017). When astrocytes become uncoupled, Ca2+ events spread
may be limited. This, however, does not exclude a possibility
of Ca2+ activity spread by the release of gliotransmitters (e.g.,
ATP) (Guthrie et al., 1999; Cotrina et al., 2000). Overall, we
found that morphological changes correlated with the reduced
spread of Ca2+ events in astrocytic syncytium observed after
SE. Diminished Ca2+ signaling in astrocytes may affect several
astrocytic functions such as release of gliotransmitters (Zorec
et al., 2012; Araque et al., 2014), Ca2+ dependent K+ clearance
(Wang et al., 2012) or outgrow of perisynaptic astrocytic
processes (Tanaka et al., 2013; Heller and Rusakov, 2015). This
can not only affect signaling in astrocytic syncytium, but also
neuronal excitability, activation of extrasynaptic receptors,
synaptic transmission, and plasticity (Rusakov et al., 2011; Zorec
et al., 2012; Verkhratsky and Nedergaard, 2018).

In the present study, we have demonstrated hippocampal
synaptic dysfunctions in pilocarpine-treated rats, as assessed by
the reductions in both basal transmission and LTP at Schaffer
collateral-CA1 synapses. The decrease in basal transmission is
consistent with a reduction in the number of principal neurons
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in the CA3 hippocampal area of pilocarpine-treated animals
observed earlier by us and other investigators in different
hippocampal areas (see for review Curia et al., 2014). LTP
induction at Schaffer collateral-CA1 synapses is an NMDA
receptor-dependent form of synaptic plasticity (Malenka and
Bear, 2004) and, therefore, the impairment of LTP most likely
indicates the disturbance in NMDA receptor signaling. NMDA
receptor signaling might be disturbed in many ways in epilepsy.
For example, it might be affected because of the perturbations
in the glutamate-glutamine cycle, such as increased extracellular
levels of glutamate, loss of astrocytic glutamine synthetase, and
changes in glutaminase and glutamate dehydrogenase, which
are frequently encountered in patients with epilepsy (Coulter
and Eid, 2012; Eid et al., 2016). Another possible reason is the
changes in the production of individual subunits of NMDA
receptors, which have been shown in several experimental models
of epilepsy including the lithium-pilocarpine model (Di Maio
et al., 2013; Müller et al., 2013; Peng et al., 2016; Amakhin et al.,
2017). Hippocampal astrocytes in brain slices retain the ability to
control LTP within or near their individual territories involving
Ca2+-dependentD-serine release (Henneberger et al., 2010). This
implies that astrocytes are at least capable of regulating local
D-serine supply and might indeed be able to deliver D-serine
to specific NMDA receptor populations. Therefore, our next set
of experiments was designed to evaluate the role of D-serine
signaling. We found that application of D-serine fully restored
the initial phase of LTP (5–15min) after SE.

Morphological and functional integrity of astrocytes is a
key to the healthy brain. Astrocytes occupy non-overlapping
or slightly overlapping spatial domains (Bushong et al., 2002)
which they fill with highly ramified processes (Khakh and
Sofroniew, 2015). Such architecture helps to support neurons
metabolically, maintain local homeostasis, synaptic plasticity etc.
(Verkhratsky andNedergaard, 2018). Disruption of the astrocytic
domain organization, morphological alterations of astrocytes
and changes in the number of these cells are characteristic to
many of brain disorders (Verkhratsky et al., 2017). It appears
that the changes in astrocytes often precede neurodegeneration
and clinical symptoms (Rossi and Volterra, 2009). Astrocytic
pathologies can be of several types: (1) changes in the number
of astrocytes, e.g., astrogliosis or astrodegeneration; (2) astrocytic
remodeling, e.g., atrophy; and (3) reactive astrogliosis. A
combination of such astrocytic pathologies might signify of a
particular disease or of a stage of the disease (Verkhratsky
and Parpura, 2016). Astrocyte degeneration and atrophy have
been described in the hSOD1 mouse, an experimental model
of amyotrophic lateral sclerosis (Rossi et al., 2008). Astrocytic
markers are reduced in the Parkinson’s disease (Tong et al., 2015).
Region- and stage-specific alterations in astrocytic morphology
have been reported in the Alzheimer’s disease (Olabarria et al.,
2010; Rodríguez-Arellano et al., 2016). Loss of astrocytic domain
organization has been observed in the epileptic brain (Oberheim
et al., 2008). Here we find that the lithium-pilocarpine model of
SE is associated with the atrophy of distal astrocytic branches

and with astrocyte uncoupling reported earlier (Bedner et al.,
2015). This, in turn, diminishes Ca2+ activity in these cells
and correlates with the D-serine dependent impairment of LTP
initiation. However, the LTP maintenance phase failure was not
related to the insufficient D-serine supply. The maintenance
phase could be potentially linked to reduced supply of energy
substrates from atrophic astrocytes or to a malfunction of any
other metabolic or homeostatic support of synapses. However,
this hypothesis requires further experimental testing. Our results
demonstrate that the astrocyte remodeling after SE does not affect
VF of astrocytic leaflets and K+ clearance. This indicates that
astrocytes can effectively maintain synaptic microenvironment at
moderate levels of synaptic activity. However, if astrocytes can
prevent the K+ accumulation during synchronized epileptiform
activity remains unclear. In agreement with previous reports we
observe astrocyte uncoupling through the gap-junctions (Bedner
et al., 2015). This may affect spatial buffering of excessive
amounts of K+ that are released during focal seizures (Fröhlich
et al., 2008). In addition, optical methods, which we used, assess
the synaptic microenvironment very indirectly. More careful
studies on the integrity of “astrocytic cradle” around synapses
are required with the use of super-resolution light microscopy or
electron microscopy.
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