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Dynamic metabolic changes occurring in neurons are critically important in directing
brain plasticity and cognitive function. In other tissue types, disruptions to metabolism
and the resultant changes in cellular oxidative state, such as increased reactive oxygen
species (ROS) or induction of hypoxia, are associated with cellular stress. In the brain
however, where drastic metabolic shifts occur to support physiological processes,
subsequent changes to cellular oxidative state and induction of transcriptional sensors of
oxidative stress likely play a significant role in regulating physiological neuronal function.
Understanding the role of metabolism and metabolically-regulated genes in neuronal
function will be critical in elucidating how cognitive functions are disrupted in pathological
conditions where neuronal metabolism is affected. Here, we discuss known mechanisms
regulating neuronal metabolism as well as the role of hypoxia and oxidative stress during
normal and disrupted neuronal function. We also summarize recent studies implicating
a role for metabolism in regulating neuronal plasticity as an emerging neuroscience
paradigm.
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INTRODUCTION

Regulation of tissue metabolite supply and cellular energy metabolism is essential to maintain
healthy cellular and systemic function. This regulation is especially critical to the central nervous
system (CNS) where energy consumption is highly dynamic. Within the brain, increased neuronal
activity drives increased energy consumption and compensatory metabolic and vasculature
changes in turn enhance neuronal function (Roy and Sherrington, 1890). Normal brain function
therefore requires metabolism to be tightly regulated both temporally and spatially from a regional
level down to the level of a single synapse. Currently our knowledge of the relationship between
neuronal activity and oxygen metabolism is poorly understood and it is likely that numerous
mechanisms and complex regulatory pathways are yet to be uncovered.

While making up only a small fraction of our total body mass, the brain represents the
largest source of energy consumption—accounting for over 20% of total oxygen metabolism. Of
this, it is estimated that neurons consume 75%–80% of energy produced in the brain (Hyder
et al., 2013). This energy is primarily utilized at the synapse with a large proportion spent in
restoration of neuronal membrane potentials following depolarization (Harris et al., 2012). Other
neuronal functions such as vesicle recycling, neurotransmitter synthesis and axoplasmic transport
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also contribute to synaptic energy depletion and the requirement
for an elevated metabolic rate in neurons (Attwell and Laughlin,
2001; Rangaraju et al., 2014; Pathak et al., 2015). Energy
requirements are therefore not uniform throughout the brain
but instead increased in localized regions dependent on neuronal
activity. While mechanisms have been identified to modify
oxygen supply to brain regions in response to activity there
appears to be a role for hypoxia in modulating neuronal
function and behavior. Disruption of oxygen metabolism
and mitochondrial function are also consistent pathological
features of various age-related neurodegenerative diseases
associated with cognitive decline (Tabrizi et al., 2000; Silverman
et al., 2001; Zhou et al., 2008). Despite this, the underlying
molecular mechanisms preceding neurodegeneration remain
relatively unknown. In recent years a number of studies have
identified links between metabolically regulated genes and
behavior, which may provide insight into understanding the
role of neuronal oxidative metabolism in both health and
disease.

NEUROVASCULAR AND
NEUROMETABOLIC COUPLING

To compensate for varying energy demands throughout the brain
and to increase efficiency of metabolite supply, neurovascular
and neurometabolic coupling mechanisms have evolved to
enhance blood flow and utilization of metabolites in areas of
neural activity.

Neurovascular Coupling
Cerebral blood flow (CBF), blood volume, glucose consumption
and oxygen metabolism are all increased within localized
regions of activity following neuronal stimulation. Neurovascular
coupling, first postulated by Roy and Sherrington (1890) forms
the basis of many functional neuroimaging technologies, where
areas of neuronal activity are detected by activity-coupled
increases in local CBF. While there has been substantial research
on neurovascular coupling since this finding, details of the
molecular mechanisms are still being uncovered.

Significant evidence suggests neurovascular coupling is
mediated through the free radical, nitric oxide (•NO) produced
in neurons. Vasodilation is strongly stimulated by •NO through
activation of the enzymatic •NO receptor, soluble guanylate
cyclase (sGC), producing cGMP and leading to vasodilation by
cGMP-dependent kinase signaling (Miki et al., 1977; Archer
et al., 1994). Production of •NOby neuronal nitric oxide synthase
(nNOS) is tightly coupled to glutamatergic excitation with
activation of nNOS being linked to stimulation of ionotrophic
glutamate receptors. This principally occurs through NMDA
receptors (NMDA-R) due to strong binding between the
NMDA-R clustering protein, post-synaptic density protein 95
(PSD-95), and nNOS (Garthwaite et al., 1988; Brenman et al.,
1996). Evidence also suggests that •NO is able to spread rapidly
beyond the area of directly activated neurons and is likely
to be self-regulating as enhanced blood flow inactivates •NO
signaling through increased erythrocyte-mediated scavenging
of •NO (Steinert et al., 2008; Santos et al., 2011). Astrocytes

also play a role in mediating CBF regulation during neuronal
activation by triggering Ca2+ release within astrocytic end feet
and inducing various downstream Ca2+ signaling pathways
known to control vasodilation (Mulligan and MacVicar, 2004;
Takano et al., 2006). It recently became clear that astrocytic Ca2+

signaling acts on contractile perictyes surrounding capillaries
and not on arterioles (Mishra et al., 2016). The current view
on neurovascular coupling, therefore, is that increased CBF is
triggered by astrocytic Ca2+ signaling in the capillary bed and
by neuronal •NO generated through NMDA-R activation at the
arteriolar level (Figures 1a,b; Peppiatt et al., 2006; Mishra et al.,
2016).

Neurometabolic Coupling
This synergistic function of astrocytes and neurons in CBF
regulation is mirrored in their inverse yet complimentary
metabolic profiles with astrocytes predominantly metabolizing
glucose via glycolysis while neurons rely on oxidative metabolism
(Kasischke et al., 2004). Astrocytes closely appose both
capillary walls and synaptic clefts and are crucial regulators
of neurometabolic coupling during neuronal activity. One of
the best-characterized roles of astrocytes in neuronal activation
is maintaining neurotransmitter stores through the glutamine-
glutamate cycle. Glutamate released into the synaptic cleft
during excitation is rapidly cleared by astrocytic uptake,
primarily through the Na+-dependent glutamate transporter
GLT-1 (EAAT2), causing attenuation of postsynaptic activation
(Figure 1c; Danbolt et al., 1992; Bergles and Jahr, 1997).
Cleared glutamate is primarily converted by astrocytes into
glutamine, which is then released back into extracellular space
for neuronal re-uptake and conversion back to glutamate
(Hertz et al., 1978; Kvamme, 1998). In the astrocyte-neuron
lactate shuttle (ANLS) hypothesis, proposed by Pellerin and
Magistretti (1994), a secondary effect of astrocytic glutamate
uptake prompts a switch from oxidative metabolism to aerobic
glycolysis in astrocytes causing glucose metabolism to be
diverted from the tricaboxcylic acid (TCA) cycle to the
glycolytic pathway and lactate production. This switch is thought
to be triggered by the associated intracellular increase in
Na+ concentration, which activates Na+/K+-ATPase pumps
stimulating glucose uptake and glycolysis (Figure 1d; Pellerin
and Magistretti, 1997). This adaptation seems to support
an increased neuronal metabolic load with lactate generated
from astrocytic glycolysis being utilized as a substrate for
oxidative metabolism in neurons. This hypothesis is supported
by numerous studies detecting increased lactate in regions of
brain activity as well as evidence that lactate is crucial for
synaptic transmission in rat hippocampal slices and sufficient to
support synaptic activity in the absence of glucose (Figure 1e;
Schurr et al., 1988, 1999; Frahm et al., 1996; Maddock et al.,
2009; Suzuki et al., 2011; Schaller et al., 2014; Machler et al.,
2016).

This segregated metabolism is supported by distinct gene
expression patterns observed in neurons and astrocytes.
Differential expression of lactate transporter proteins,
monocarboxylate transporters (MCTs), supports shuttling
of lactate from astrocytes to neurons. The lactate efflux
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FIGURE 1 | Neurovascular and neurometabolic coupling mechanisms. Schematic illustrating neuronal and astrocytic mechanisms responsible for activity-related
blood flow and metabolic changes. (a) NMDA receptors (NMDA-R) are linked to neuronal nitric oxide synthase (nNOS) through post-synaptic density protein 95
(PSD-95) and neurovascular coupling during activity is thought to be triggered through the neuronally-produced vasodilator •NO, which can diffuse rapidly and freely
through membranes to act on arterioles. (b) Vasodilation is also thought to be controlled at the capillary level through astrocytic Ca+ signaling acting on contractile
perictyes. (c) In the glutamine-glutamate cycle, glutamate (Glu) released into the synaptic cleft is cleared by Na+-dependent astrocytic uptake, primarily through
GLT-1. Glutamate is converted to glutamine (Gln) and returned to neurons to replenish neurotransmitter stores. (d,e) The astrocyte-neuron lactate shuttle (ANLS)
hypothesis suggests associated increases in astrocytic Na+ concentration triggers activation of Na+/K+ ATPase pumps, promoting glucose uptake and glycolysis.
Glycolytically-generated lactate is released and utilized as a substrate for oxidative phosphorylation in neurons during periods of activity. LDH, lactate
dehydrogenase; MCT, monocarboxylate transporter. Solid lines indicate enzymatic activity, dashed lines indicate solute movement.

transporter MCT4 is expressed primarily in astrocytes while
MCT2, an isoform that allows for rapid substrate uptake of
lactate, is primarily expressed in neurons (Debernardi et al.,
2003; Rafiki et al., 2003). Additionally, the lactate dehydrogenase
(LDH) isoenzyme, LDH-5, which promotes conversion of
pyruvate to lactate is highly expressed in astrocytes but not in
neurons while LDH-1, which promotes pyruvate production
is found in both neurons and astrocytes (Bittar et al., 1996;
Bröer et al., 1997). In support of glycolysis induction in
astrocytes, the pyruvate dehydrogenase kinase-4 (PDK4) is
expressed at high levels in astrocytes causing its target, pyruvate
dehydrogenase (PDH), to remain in an inactive, phosphorylated
state thereby decreasing pyruvate entry into the TCA cycle
(Halim et al., 2010; Zhang et al., 2014). Correspondingly,
astrocytes express higher levels of the glyoxalase enzymes
Glo-1 and Glo-2 that detoxify methyglycoxal, a metabolic
by-product of glycolysis (Belanger et al., 2011). An enzymatic
promoter of glycolysis, 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphate 3 (Pfkfb3), is also found to be functional
in astrocytes but subject to constant degradation in neurons
contributing to the diversion of neuronal glucose from glycolysis
to the pentose-phosphate pathway (PPP; Herrero-Mendez
et al., 2009; Belanger et al., 2011; Zhang et al., 2014). While
there is substantial evidence in support for the ANLS acting
as a mechanism for coupling of neuronal activity to neuronal
metabolism, contradictory evidence continues the debate of
this hypothesis. Glucose uptake and phosphorylation has

been shown to preferentially occur in neurons, not astrocytes.
Further, neurons metabolize substantial amounts of glucose
and increase glucose metabolism in response to activity (Patel
et al., 2014; Lundgaard et al., 2015). This contradictory evidence
may be due to metabolism being differentially regulated
within different neural networks or brain regions. These
observations all contribute, however, to mounting evidence
suggesting that neurons can sustain and enhance oxidative
metabolism to meet energetic requirements during periods of
activity.

OXIDATIVE METABOLISM AND HYPOXIA

Oxygen Concentration in the Brain
While there is significant evidence to support enhanced neuronal
oxidative metabolism during activity, what remains unclear is
what is happens to cellular oxygen concentration following
activation. This is partly due to difficulties in recording oxygen
concentration as well as from confounds in interpreting oxygen
consumption imaging signals. Blood-oxygen-level dependent
(BOLD) fMRI which relies on neurovascular coupling to
measure regions of brain activity based on measurements of
oxyhemeoglobin and deoxyhemeoglobin consistently generates
signals with a post-stimulus undershoot (van Zijl et al., 2012).
The physiological basis of the BOLD undershoot is heavily
debated and is likely stimulus-dependent, one theory however
suggests that the BOLD undershoot reflects an uncoupling of
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CBF and energy metabolism. This is supported by evidence
that oxidative metabolism remains elevated post activation
after both blood flow and blood volume have returned to
baseline (Lu et al., 2004). Consistent with this, numerous
studies have reported similar increases in oxidative metabolism
indicating that sustained focal activation raises the rate of
oxidative metabolism to a new steady state level (Hoge et al.,
2005; Mangia et al., 2007; Frahm et al., 2008; Donahue et al.,
2009; Lin et al., 2010). With dynamic changes in oxygen
metabolism occurring during neuronal activity, dynamic changes
are likely to be reflected in levels of oxygen concentration,
potentially having secondary effects on protein function and gene
expression.

Neurons and neuronal functions are generally viewed as
highly sensitive to hypoxia with disruption of oxygen supply to
the brain causing detrimental damage within minutes. Although
there is not a clearly defined ‘‘critical’’ oxygen tension (PtO2)
at which hypoxic damage will occur in neurons, in rat cortex
a PtO2 value between 6.8 mm Hg and 8.8 mm Hg has
been estimated as a PtO2 where oxidative metabolism will be
disrupted (Rolett et al., 2000). Under physiological conditions,
PtO2 measurements in rat range from 6 mm Hg to 40 mm
Hg within the cortex (6–16 mm Hg in white matter and
19–40 mm Hg in gray matter) and from 1 mm Hg to 60 mm
Hg across all brain regions with proximal structures displaying
large variations in oxygen tension (Erecińska and Silver, 2001).
During embryonic development, oxygen tension is low in the
fetal brain (0.076–7.6 mmHg) and hypoxia is essential for proper
embryo morphological development. Within the developing
brain, oxygen tension acts as a regulator of neurogenesis
with low oxygen promoting progenitor expansion in cortical
neurogenic regions and decreasing dopaminergic neurogenesis
in the midbrain (Wagenführ et al., 2015, 2016). Additionally, in
the adult brain, hypoxic injury caused by ischemic stroke triggers
increased neuronal stem cell proliferation and neurogenesis
(Arvidsson et al., 2002; Macas et al., 2006; Martí-Fàbregas et al.,
2010). This evidence supports a role for hypoxia as a regulatory
mechanism in neuronal function and indicates that physiological
hypoxia occurring in the adult brain may play a functional role.

Hypoxia Inducible Transcription Factors
Long-term changes in cellular response to hypoxia are mediated
through changes in gene expression with hypoxia predicted to
regulate around 1%–1.5% of the genome, primarily through
the hypoxia-inducible factors (HIFs; Koong et al., 2000; Denko
et al., 2003). HIF is a heterodimeric complex consisting of
a constitutively expressed β subunit shared by a family of
three oxygen-sensitive α subunits. Most widely studied among
these is the HIF-1α subunit. HIFα protein is constitutively
expressed but is immediately targeted for degradation by HIF
prolyl hydroxylases (PHDs) that associate with and hydroxylate
two conserved HIFα proline residues in an oxygen dependent
manner (Bruick and McKnight, 2001). The Von Hippel-
Lindau tumor suppressor ubiquitin ligase complex (pVHL),
subsequently recognizes HIFα causing HIFα ubiquitination and
protein degradation (Ivan et al., 2001; Jaakkola et al., 2001).
During hypoxia, though oxygen-limited inactivation of HIF

PHD activity, HIFα is no longer targeted by pVHL and is
able to accumulate in the cytoplasm before translocating to
the nucleus and acting to promote transcription (Figure 2).
Within the nervous system HIF-1α and target genes of HIF-1
are widely expressed under hypoxia, but regulation of HIF-1α
can differ among neuronal subtypes (Bergeron et al., 1999;
Stroka et al., 2001). Following hypoxia, HIF-1α has been shown
both in vitro and in vivo to be significantly upregulated in
interneurons but not in pyramidal neurons and in neuronal and
non-neuronal cells it has been established that the redox state
of a cell contributes to HIF-1α regulation (Welsh et al., 2002;
Ramamoorthy and Shi, 2014). Additionally, during in C. elegans
development, hypoxia has been shown to cause defects in axonal
migration that occur in a neuronal cell-type specific manner
and are dependent on stabilization of Hif-1 by either hypoxia
or increased reactive oxygen species (ROS; Pocock and Hobert,
2008). Being a primary source of reducing agents, glucose is
a major contributor to the redox state of a cell and HIF-1α
expression in neurons has been shown to increase in a glucose-
dependent manner during hypoxia (Shi and Liu, 2006; Guo et al.,
2008). There is also a negative relationship between HIF-1α and
ROS levels indicating ROS promotes HIF-1α degradation while
a reducing environment stabilizes HIF-1α (Schafer and Buettner,
2001; Niecknig et al., 2012).

ROS are highly reactive free radical molecules that can
cause cellular damage through oxidation of lipids, proteins
and DNA. ROS production primarily occurs through electron
leakage at electron transport chain (ETC) complexes I or III
during normal oxidative respiration. This causes conversion
of 1%–2% of oxygen into the superoxide anion, a precursor
to hydrogen peroxide and hydroxyl free radicals. Within the
brain, a high neuronal oxidative rate heightens the potential
for ROS production and neurons are especially vulnerable to
oxidative damage due to low levels of antioxidant enzymes such
as glutathione (GSH; Dringen et al., 1999). Neuronal diversion
of glucose catabolism from glycolysis to the PPP through
Pfkfb3 degradation therefore not only supports oxidative
metabolism of lactate but also enhances neuronal antioxidant
capacity through production of the reducing agent, NADH.
HIF-1α is also involved in this process and acts as a glycolytic
enhancer through transcriptional activation of metabolic genes
including Pfkfb3 and pyruvate dehydrogenase kinase-1 (PDK1),
both positive regulators of glycolysis and the lactate efflux
transporter, MCT4 (Figure 2; Minchenko et al., 2002; Kim et al.,
2006; Ullah et al., 2006).

As an oxygen-sensitive molecule, which is highly integrated
into metabolic processes, HIF-1α is likely to have an important
role in brain plasticity, and dysregulation of HIF-1α expression
has already been implicated in neuronal activation and learning
and memory. In a rat microarray study, seizures induced
by injection of Kainate, a potent glutamate-receptor agonist
that causes overstimulation of neurons, resulted in a 2.2-
fold increase in HIF-1α after 24 h (Hunsberger et al.,
2005). In another microarray study HIF-1α was found to be
increased 7-fold in mice following environmental enrichment,
where mice are exposed to heightened sensory stimulation
known to promote neurogenesis and improve performance
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FIGURE 2 | Hypoxia inducible transcription factor regulation. Under normal oxygen conditions hypoxia-inducible factor-1α (HIF-1α) is hydroxylated by prolyl
hydroxylase (PHD) enzymes and targeted for ubiquitination by the Von Hippel-Lindau tumor suppresser ubiquitin ligase complex (pVHL). During hypoxia or low
oxygen conditions, HIF-1α is stabilized, translocates to the nucleus and associates with HIF-β to promote gene expression, targeting genes containing a hypoxia
response element (HRE). HIF-1α acts as a glycolytic enhancer through transcriptional activation of metabolic genes including
6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 3 (PFKFB3) and pyruvate dehydrogenase kinase-1 (PDK1), both positive regulators of glycolysis and
monocarboxylate transporter 4 (MCT4), the lactate efflux transporter. Ub, ubiquitin; OH, hydroxyl group.

in memory tasks (Rampon et al., 2000). Elevated HIF-1α
levels have also been observed in rats following learning in
the Morris water maze and analysis of genes upregulated
at early-time points following Morris water maze tests has
found an over-representation of HIF-binding sites, hypoxia
response elements (HREs), in their promoters (O’Sullivan et al.,
2007). These data support a significant role for hypoxia in
neuronal activity, potentially though neurovascular uncoupling
and enhanced neuronal oxidative metabolism depleting neuronal
oxygen levels.

DISRUPTED METABOLISM IN
NEURODEGENERATIVE DISORDERS

Alzheimer’s Disease
Neurodegenerative disorders encompass a range of conditions
characterized by progressive neuronal damage and degeneration
as well as neuronal cell death. Although neurodegenerative
disorders vary in the neuronal populations and cognitive or
motor functions affected, metabolic dysfunction is a unifying
pathology underlying many of these disorders. The most
prevalent and most extensively studied of these is Alzheimer’s
disease (AD) occurring in around 1:10 people aged over 65.
AD principally affects short-term working memory and is
classified by the presence of two hallmark neuropathologies;
extracellular amyloid plaques, formed from aggregation of
amyloid (Aβ) peptide, and intraneuronal neurofibrillary tangles
formed from aggregation of hyperphosphorylated tau. In AD
patients, regional hypometabolism in the brain is a predictor for
progressive cognitive decline and reduced cerebral metabolism
is associated with carriers of the AD risk allele of the

APOE-4 gene (Small et al., 1995; Silverman et al., 2001).
At the cellular level, mitochondria (MC) isolated from AD
patients display reduced enzymatic activity of the ETC complex
IV (cytochrome C oxidase; Parker et al., 1990; Parker and
Parks, 1995). Similarly, in mouse models of AD, oxidative
respiration is diminished and Aβ is found to localize and
progressively accumulate in neuronal MC (Mucke et al., 2000;
Manczak et al., 2006; Rhein et al., 2009; Yao et al., 2009).
This progressive accumulation of Aβ in MC is associated
with reduced oxidative respiration and reduced activity of the
rate-limiting TCA cycle enzyme, α-ketoglutarate dehydrogenase
complex (KGDHC), and the pyruvate dehydrogenase complex
(PDHC), which generates acetyl-CoA for entry into the
TCA cycle (Casley et al., 2002). Both metabolic dysfunction
and mitochondrial Aβ accumulation appear to occur early
in disease progression, preceding the onset of extracellular
plaque formation (Wirths et al., 2001; Du et al., 2010). This
indicates that early metabolic dysfunction is a key process
in AD progression and a potential target for therapeutic
intervention.

Also preceding extracellular plaque formation in the AD
brain significantly increased ROS production and oxidative
stress. Substantially increased ROS activity and oxidative damage
is consistently detected in AD patients by various measures
(Hensley et al., 1995; Gabbita et al., 1998; Praticò et al., 1998;
Calingasan et al., 1999; Greilberger et al., 2008). Increased
oxidative stress occurs early in disease progression being
observed in patients with mild AD as well as in cases of mild
cognitive impairment, at high-risk of developing AD (Baldeiras
et al., 2008). The pathological Aβ is also known to be a source of
ROS production and a cause of neuronal oxidative damage in AD
(Behl et al., 1994; Harris et al., 1995; Bianca et al., 1999).
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Related to oxidative stress, and also implicated in AD
pathology, is dysregulated homeostasis of redox transition metal
ions including zinc, copper and iron (Schrag et al., 2011;
Ventriglia et al., 2012; Ayton et al., 2015). Both elevation and
deficiency of zinc is associated with AD and evidence suggests
that altered compartmentalization of zinc rather than altered zinc
levels may be the cause of zinc pathology in AD (Suh et al.,
2000; Schrag et al., 2011). This is supported by dysregulation of
numerous zinc transporters in AD patient brains (Lovell et al.,
2005, 2006; Beyer et al., 2009). Zinc has important roles in normal
neuronal function and is co-released along with glutamate at the
synapse (Vogt et al., 2000). A major role of zinc is its significant
antioxidant capacity, such that zinc deficiency is linked to
neuronal oxidative stress (Aimo et al., 2010). Like zinc, copper
elevation and copper deficiency have both been associated with
AD as well as co-localization of copper with Aβ plaques (Miller
et al., 2006; Schrag et al., 2011; Ventriglia et al., 2012). Copper
is also modulated by synaptic activation in neurons and both
zinc and copper are able to bind Aβ (Schlief et al., 2005; Tõugu
et al., 2008). In AD pathology, copper enhances Aβ toxicity
and copper:Aβ complexes are a source of ROS production and
oxidative damage in neurons (Dikalov et al., 2004; Liu et al., 2008;
Ellis et al., 2010).

The redox active iron, although vital for cellular function, is
also a pro-oxidant and promotes generation of highly reactive
hydroxyl radicals from hydrogen peroxide. Elevated levels of
brain iron in the AD brain as well as iron association with Aβ

plaques and neurofibrillary tangles have been detected in various
studies (Smith et al., 1997; Bartzokis et al., 2000; Raven et al.,
2013). Recently, elevated iron has been shown to predict AD
progression and elevated iron was linked to the APOE-4 AD risk
allele suggesting it may have a pathological role in AD (Ayton
et al., 2015).

Another common feature of AD that contributes to AD
pathology is vascular dysfunction. Cerebrovascular disease,
characterized by disrupted blood flow to the brain, significantly
increases AD risk and occurs before Aβ accumulation and
cognitive decline (Arvanitakis et al., 2016). In animal models,
hypoperfusion also leads to symptoms similar to AD and
exacerbates existing AD pathology (Walsh et al., 2002; Wang
et al., 2010b). Vascular dysfunction contributes to the pathology
of AD due to lower capillary density, meaning narrowed blood
vessels and decreased CBF (Hamel et al., 2008). Diminished
blood flow reduces metabolite and oxygen supply to the
brain and potentially contributes to build-up of Aβ through
impaired clearance of neurotoxic molecules (Shibata et al.,
2000; Kumar-Singh et al., 2005). Aβ itself is also thought to
amplify deficits in CBF and glucose utilization in AD through
impairing vasodilation and cerebrovascular autoregulatory
mechanisms (Niwa et al., 2002). Cerebrovascular dysfunction can
lead to disrupted oxygen metabolism through hypoperfusion-
hypoxia and hypoxia in-turn can enhance AD pathology by
promoting tau phosphorylation as well as transcriptionally
upregulating the HIF-1 target, β-site β-amyloid precursor
protein cleavage enzyme 1 (BACE1) that cleaves amyloid
precursor protein (APP) to produce Aβ (Figure 3; Sun et al.,
2006).

FIGURE 3 | Disrupted metabolic pathways in neurodegenerative diseases.
Hypoxia associated with Alzheimer’s Disease (AD) leads to increases in the
HIF-1α target, β-site β-amyloid precursor protein cleavage enzyme 1 (BACE1),
which cleaves amyloid precursor protein (APP) to produce Aβ. Aβ

accumulates in neuronal mitochondria (MC) early in disease progression and
disrupts oxidative metabolism. Acetyl-CoA production and tricaboxcylic acid
(TCA) cycle entry is decreased in AD through reduced activity of the pyruvate
dehydrogenase complex (PDHC). In all three diseases, activity of
α-ketoglutarate dehydrogenase complex (KGDHC) is reduced, reactive oxygen
species (ROS) is increased and transglutaminase (TG) activity is increased. TG
increases α-synuclein aggregation and reduces oxidative respiration.

Parkinson’s and Huntington’s Disease
Aside from rare cases of genetic mutations in familial AD, the
major risk factor for developing AD is aging. Correspondingly,
AD, shares a number of similarities with other late-onset
neurodegenerative disorders including Parkinson’s Disease (PD)
and Huntington’s disease (HD). PD is thought to be caused
by both genetic and environmental factors and primarily
impacts patient motor function. PD involves the formation
of protein aggregates consisting mainly of α-synuclein and
affects the dopaminergic neurons of the midbrain substantia
nigra. HD is an inherited neurodegenerative disorder caused
by expanded CAG repeats in the Huntingtin (HTT) gene
causing progressive neuronal degeneration and cell death
throughout the brain, affecting mood, cognition and motor
skills. Inclusions are also found in the HD brain from
aggregation of mutant HTT (mHTT) protein. Like AD, both
PD and HD are associated with increased oxidative stress as
well as decreased activity of the KGDHC enzyme (Tabrizi
et al., 2000; Gibson et al., 2003; Klivenyi et al., 2004; Zhou
et al., 2008). Also, common to all three disorders is increased
activity of transglutaminase (TG; Johnson et al., 1997; Junn
et al., 2003; Jeitner et al., 2008). TG catalyzes polyamination
post-translational modifications of proteins, is known to be
increased by ROS and also attenuates HIF-1 signaling (Campisi
et al., 2004; Filiano et al., 2008). TG can decrease oxidative
metabolism through modification of glycolytic enzymes and
is known to cause oxidative stress in HD and aggregation of
α-synuclein in PD (Cooper et al., 1997; Junn et al., 2003; Kim
et al., 2005).

Mutations in mitochondrial genes have also been identified
in cases of familial PD and exposure to the neurotoxin
MPP+, which inhibits ETC Complex I and therefore oxidative
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respiration, causes permanent Parkinsonism (Langston et al.,
1983; Parker and Parks, 2005; Plun-Favreau et al., 2007). Altered
metal ion homeostasis may have a role in PD pathology as
well with disrupted levels of both zinc and copper observed in
PD patients (Brewer et al., 2010; Davies et al., 2014). Similar
to Aβ, copper also contributes to α-synuclein aggregation and
can contribute to oxidative stress through the formation of
reactive copper: α-synuclein complexes (Wang et al., 2010a;
Dell’Acqua et al., 2015). α-synuclein is also know to exacerbate
mitochondrial dysfunction in the presence of toxic oxidizing
agents, with loss of α-synuclein in animal models conferring
resistance to mitochondrial toxins (Klivenyi et al., 2006; Norris
et al., 2007). Additionally, levels of α-synuclein are increased
when oxidative metabolism is inhibited and animal models
expressing mutant forms of α-synuclein exhibit neuronal
mitochondrial degeneration and cell death (Lee et al., 2002;
Martin et al., 2006). In HD, increased oxidative damage to
mitochondrial DNA is observed as well as higher frequencies
of deletions in the mitochondrial genome and deficits in
ETC function with decreased expression of complex II in the
striatum and decreased activity of complex IV in striatal and
cortical regions (Horton et al., 1995; Polidori et al., 1999).
Neuronal mitochondrial permeability is also disrupted by the
mHTT protein through increasing sensitivity of the permeability
transition pore to Ca2+ concentration, leading to mitochondrial
dysfunction and decreased ATP production (Brustovetsky et al.,
2003; Milakovic et al., 2006). Vascular deficits and disrupted
blood flow is a major pathology of HD as well with altered
blood vessel density and size found in cortical gray matter,
putamen and striatal brain regions. In HD patients, inclusions
of mHTT are also detected in the basal membrane and
epithelium of cortical blood vessels and in mouse models of
the disease pericytic coverage of cortical and striatal blood
vessels is decreased (Drouin-Ouellet et al., 2015; Hsiao et al.,
2015).

Aging
A number of the metabolic pathologies observed in
neurodegenerative disorders are associated with normal
aging and may explain the age-related manifestation of
neurodegenerative disease phenotypes. While no longer thought
to be directly causative of aging, free radicals and oxidative
stress accumulate in the aging brain as in neurodegeneration
(Smith et al., 1992). Mitochondrial function is also linked to
aging due to the association of mitochondrial DNA (mtDNA)
haplotypes with longevity and the generation of mtDNAmutator
mice that have a premature aging phenotype (Trifunovic et al.,
2004; Alexe et al., 2007; Bilal et al., 2008). It has also been
shown there is an increased rate of damaging mutations in
mtDNA of post-mitotic aging cells as opposed to aging mitotic
cells (Greaves et al., 2012). While it has been suggested that
the somatic rate of mtDNA mutation is unlikely to have a
pathological affect due to redundancy in cell mitochondrial
numbers, in post-mitotic neurons mtDNA mutation rates are
significantly higher than average and, within the cortex, MC with
large mtDNA deletions possess a replicative advantage during
mitochondrial expansion (Song et al., 2005; Bender et al., 2006;

Kraytsberg et al., 2006; Fukui and Moraes, 2009). Aside from AD
and PD, deficiency of zinc is also associated with aging, being
decreased in the general elderly population (Pepersack et al.,
2001). Diminished CBF occurs in normal aging as well with
cortical perfusion found to decrease with age in healthy adults
(Chen et al., 2011). An age-dependent reduction in perictyes
also occurs in mice and is associated with microvascular changes
and neurodegeneration (Bell et al., 2010). Substantial evidence
therefore exists supporting disrupted neuronal oxygen supply
and oxidative metabolism as a major pathological component of
age-related neurodegeneration.

OXYGEN METABOLISM AS A DRIVER OF
NEURONAL PLASTICITY

Although it has been well established that metabolic regulation
is critical to neuronal function and that metabolic dysfunction is
a major pathology in diseases affecting behavior and cognition,
there is little known regarding how regulators of metabolism
may be involved in neuronal plasticity. A number of studies,
however, support a direct role for metabolic regulation and
metabolically linked genes in influencing learning and memory.
One of the best examples of this is exposure of hypoxia as
a modulator of cognitive performance. In C. elegans, hypoxia
acts as an enhancer of gustatory sensory perception through
Hif-1 dependent induction of the neurotransmitter serotonin
within specific sensory neurons (Pocock and Hobert, 2010). In
rodent models, exposure to hypobaric hypoxia in adult rats for
periods of 7–21 days causes decline in spatial learning similar to
aging and is associated with aging-related lipofuscin deposition
and ultrastructural changes in MC. Increasing duration of
hypobaric hypoxic exposure also positively correlates with
increasing expression of aging markers (Biswal et al., 2016).
Brief hypoxic exposure (100 s) in rats also causes synaptic
arrest of pyramidal CA1 hippocampal neurons and deficits
in spatial memory that are both reversed by blockade of
receptors for Adenosine, an inhibitory neurotransmitter (Sun
et al., 2002). Intermittent hypoxia (90–120 s intervals of
6%–10% O2 for 10 h/day) also produces deficits in acquisition
of spatial memory in adult rats that could be prevented by
administration of antioxidant (Row et al., 2003; Ward et al.,
2009). In contrast, long-term facilitation of motor output in
adult rats is enhanced by intermittent hypoxia (3 × 3 min
intervals, separated by 5 min hyperoxia) increasing both
phrenic amplitude and burst frequency, which was not observed
with a continuous hypoxia of the same cumulative duration
(Baker and Mitchell, 2000). Differing effects of hypoxia in
brain plasticity are likely related to differing exposures as
well as measurement of different outputs. Interestingly, mild
hypoxia preconditioning confers protection of cognitive abilities
during subsequent exposure to severe hypoxia implicating
a role for HIFs and transcriptional changes induced by
mild hypoxia (Rybnikova et al., 2005). Indeed, neuronal
knockout of HIF-1α in mice impairs spatial memory and
the stabilization of HIF improves hippocampal memory in
fear conditioning (Tomita et al., 2003; Adamcio et al., 2010).
Similar learning deficits and age-related changes are also
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observed in a D-galactose induced model of aging where
oxidative injury was the major stimulus for aging (Li et al.,
2016).

In learning andmemory studies using an inhibitory avoidance
paradigm, changes in metabolic gene expression were observed
at 24 h, with increased expression of Na+/K+ ATPase, Glut1,
Glut3 and, most prominently, lactate transporters MCT1 and
MCT4 detected, suggesting transcriptional modulation of
neurometabolic coupling occurs following learning (Yao et al.,
2009; Tadi et al., 2015). Altered expression of lactate metabolic
enzymes and transporters is also related to stress induced
improvements in cognitive function. Psychological stress, while
harmful under chronic conditions, has evolved to enhance
cognitive function and improve reactions to stressful situations
through hypothalamic activation of adrenergic receptors and
hypothalamic-pituitary-adrenal axis glucocorticoid production
(Dong et al., 2017). In a mouse model of stress, induced by
activation of the β2 adrenergic receptor (β2AR), cognitive
function was improved with short-term (3–5 days) activation
while longer activation (>6 days) was harmful. Improved
cognitive function following short-term stress induction
corresponds with β2AR-dependant increases in LDH A,
MCT1 and MCT4 expression, the expression of which was
modulated by β-arrestin-1 activation of HIF-1α, downstream of
β2AR (Dong et al., 2017).

Altered expression of ETC oxidative phosphorylation genes is
also associated with altered behavior in the honeybee. In a study
exploring molecular profiles in aggressive honeybee behavior,
oxidative phosphorylation was most significantly enriched in
association with increased aggression. This was found to be
true for aged bees that display increased aggressive behavior as
well as following environmentally enhanced aggression by alarm
pheromone exposure and genetic-related aggression occurring
in the Africanized honeybee population (Alaux et al., 2009).
Consistent with this, inhibition of oxidative phosphorylation
by treatment with drugs targeting the TCA cycle increased
aggression of honeybees measured using an intruder assay
(Li-Byarlay et al., 2014). In the same study, cell-type-specific
knockdown of ETC complex genes using GAL4 drivers in
Drosophila found that neuron-specific, but not glia-specific
knockdown of the complex I gene ND20-like, significantly
increased aggressive lunging behavior in flies (Li-Byarlay et al.,
2014).

Also involved in learning and memory are non-coding
miRNA genes which are regulated during neuronal activity
by various mechanisms and able to regulate translation of
various downstream target genes. A number of miRNAs
have been associated with plasticity including the hypoxia-
regulated, HIF-1 target, miR-210 that is known to be involved
in metabolic regulation. miR-210 is significantly upregulated
24 h after long-term memory formation in the honeybee
using an olfactory conditioning paradigm. Upregulation of
miR-210 correlated with downregulation of a number of
metabolically linked protein-coding genes including Gapdh2,
Glucose dehydrogenase, Laccase2 and Aldose reductase-like.
Inhibition of miR-210 by treatment of honeybees with miR-210
antogmiR also resulted in reduced memory retention in the

olfactory conditioning assay indicating a functional role in
learning and memory (Cristino et al., 2014). Considering
the sensitivity of neurons and neural structures to hypoxia,
Cristino et al. (2014) suggest small changes to oxygen levels in
metabolic activity neurons may induce expression of miR-210,
which in turn targets key molecules, including plasticity
molecules, asparagine synthetase (involved in the biosynthesis of
Glutamate) and actin. A follow-up study found that in a human-
derived neuronal cell-line, miR-210 targeted neurodegeneration-
associated genes as well as other plasticity-related genes within
the human transcriptome. This included a number of oxidative
metabolism genes, the AD risk-gene APOE as well as the
NMDA-R, GRINA, and the human actin homolog, ACTB (Watts
et al., 2018). Another hypoxia-regulated miRNA, miR-181c,
is also associated with modulating cognitive function in rats.
In a model of chronic cerebral hypoperfusion miR-181c was
continuously inhibited, correlating with upregulation of its
plasticity-related target gene, TRIM2. Hypoperfusion in this
model was associated with deficits in spatial learning that were
ameliorated by hippocampal overexpression of miR-181c (Fang
et al., 2017). These studies all provide support to the hypothesis
that metabolically regulated genes are directly involved in the
regulation of neuronal plasticity.

CONCLUSION

While neurovascular coupling mechanisms appear to maintain
steady-state oxygen levels in the brain, it is becoming evident
that neurovascular uncoupling may in fact have a physiological
role in regulating plasticity via oxygen depletion and induction of
downstream hypoxia response pathways. Disruptions to hypoxia
and oxidative metabolism have also been extensively attributed
to neurodegeneration pathology albeit, there is a lack of
understanding, as to how these disruptions are triggered and how
they may be therapeutically targeted to halt disease progression
and improve cognitive and motor functions. Altered behavior,
including learning and memory, associated with dysregulation
of metabolic genes highlights the importance of understanding
the role of oxygen metabolism in neuronal plasticity. Further
elucidation of how the hypoxia response pathway and other
metabolic genes are involved in neuronal function will be critical
in determining the molecular links between cognitive function
and oxidative metabolism. This in turn will help elucidate
how disrupted metabolism can lead to cognitive deficits and
neurodegenerative disease.
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